When using permissions that use tags, a user may receive multiple permissions
of the same type if multiple tags are assigned to the device. This causes the
RestrictedQuerySet class to generate a query similar to this:
>>> dcim.models.Device.objects.filter(Q(tags__name='tag1')|Q(tags__name='tag2'))
<ConfigContextModelQuerySet [<Device: device1>, <Device: device1>]>
This query returns the same object twice if both tags are assigned to it. This
is due to the use of the django-taggit library. The library's documentation
describes this behavior as expected and suggests using an explicit distinct()
call in queries to avoid duplicates.
However, the use of DISTINCT in queries has a global side effect -
deduplication of responses, which may or may not be acceptable behavior
(depending on further use). Since it is not known how RestrictedQuerySet will
be used in the rest of the code, it was decided to dedupe using a subquery.
* Fixes#8398: Add ConfigParam.size to enlarge specific config fields
* Revert "Fixes #8398: Add ConfigParam.size to enlarge specific config fields"
This reverts commit 05e8fff458.
* Use forms.Textarea for the banner config fields
created & last_updated fields are missing from some REST API calls. Added missing fields to the following API calls
/api/dcim/virtual-chassis/
/api/dcim/cables/
/api/dcim/power-panels/
/api/dcim/rack-reservations/
/api/circuits/circuit-terminations/
/api/extras/webhooks/
/api/extras/custom-fields/
/api/extras/custom-links/
/api/extras/export-templates/
/api/extras/tags/
Adds two fields to all relevant tables to allow the addition of Created & Last Updated columns.
All tables with a Configure Table option were updated.
Some sections reformatted to comply with E501 line length as a result of changes
* Updating asdot computation to use an fstring
* Cleaning code. Custom property now returns either the ASN with ASDOT notation or just the ASN. asn_with_asdot can now be referenced in ASNTable & objet template.
Adds custom property to asn model to compute asdot notation if required.
Updates asn view to show asdot notation if one exists in the format xxxxx (yyy.yyy)
Adds a custom column renderer to asn table to display asdot notation if one exists
A device that is part of a VC that has no name should display [virtual-chassis name]:[virtual-chassis position] as opposed to [device_type] in the rack rendering.
Adds a custom column class to format the commit rate in the circuits table view using humanize_speed template helper. Export still exports the raw number.
Updating site location list to visually match the /dcim/locations list where child locations are "indtended" with mdi-circle-small.
Also removes the padding-left attribute on each row as it is no longer functional.
* Re-instates ASN field on Site model
* Re-instates ASN field on Site view
* Re-instates ASN field on edit form and API, except for where forms instances are new (add site) or instance does not have any existing AS data
* Does not re-instate asn field on SiteBulkEditForm
* Does not re-instate ASN field on SiteTable
* Does not re-instate filter for filterset, but does allow filtering by query (q=34342)
* Does not include tests for ASN field on Site model due to planned deprecation
fix incorrect assumption about when to run the group sync
Add documentation for new Settings
format to autopep8 compliance
add first set of basic testcases
format test to comply with pep8
rename SEPERATOR to SEPARATOR
remove accidentally carried over parameter
* Fixes#7035: Refactor APISelect query_param logic
* Add filter_fields to extras.ObjectVar & fix default value handling
* Update ObjectVar docs to reflect new filter_fields attribute
* Revert changes from 89b7f3f
* Maintain current `query_params` API for form fields, transform data structure in widget
* Revert changes from d0208d4
* Split object list and filters into tabs
* Use object_list template for connections, rack elevations
* Include custom field filters in grouped filter form
* Annotate number of applied filters on tab
* Rearrange table controls
* Incorporate local documentation build in upgrade script
* Add docs build to CI
* Include docs build path in revision control
* Update footer dcos link
* Changelog for #6328
* Clean up errant links
When users are authenticated with an API token not all permissions where
assigned to the session because the LDAP group memberships where not
available.
Now the information is loaded from the directory if the user is found.
If not the local group memberships are used.
This prevents a crash when the current user has authenticated himself
with an API token. In this case the user will not have the permissions
given to his LDAP groups.
When AUTH_LDAP_FIND_GROUP_PERMS is set to true the filter to find the
users permissions is extended to search for all permissions assigned to
groups in which the LDAP user is.
@jeremystretch:
> It'd be better to have the custom field return a date object than to
> accommodate string values in the template filter. Let's just omit custom
> field dates for now to keep this from getting any more complex.
This changes the text from: Updated 5 months, 1 week ago
to: Updated 2021-01-24 00:33 (5 months, 1 week ago)
Co-authored-by: Jeremy Stretch <jstretch@ns1.com>
With this commit all dates in the UI are now consistently displayed.
I changed the long date format as suggested by @xkilian and confirmed by my own
research.
* DATETIME_FORMAT
* Before July 20, 2020 4:52 p.m.
* Now 20th July, 2020 16:52
"20th July, 2020" would be spoken as "the 20th of July, 2020" but the "the" and
"of" are never written.
The only exception is `object_list.html`. I tried it but there it does not
work so easily because the dates are passed to Jinja as SafeString.
* Clean up & comment base templates
* Clean up login template & form
* Use SVG file for NetBox logo
* Simplify breadcrumbs
* Merge changelog.html into home.html
* Rename title_container block to header
* Move breadcrumbs block to object.html
* Attach names to endblock template tags
* Reorganize root-level templates into base/ and inc/
* Remove obsolete reference to Bootstrap 3.4.1
New validate_form method on ComponentCreateView handles validation generically, which any post() method on ComponentCreateView can use to validate the form but handle the response differently as needed.
There are situations in which it is convenient to be able to modify the name of the cookie that the application uses for storing the session token (conflicts with other cookies on the same domain, for example).
At present, a mix of link types are used in the Netbox
documentation from markdown file links to relative and
absolute anchor links.
Of the three types, linking to markdown files is the
most ideal because it allows navigation locally on disk,
as well as being translated into working links at render
time.
While not obvious, mkdocs handles converting markdown
links to valid URLs.
Signed-Off-by: Marcus Crane <marcu.crane@daimler.com>
* Initial work on #5892
* Add site group selection to object edit forms
* Add documentation for site groups
* Changelog for #5892
* Finish application of site groups to config context
* Initial work on #5913
* Provide per-line diff highlighting
* BulkDeteView should delete objects individually to secure a pre-change snapshot
* Add changelog tests for bulk operations
At least on ubuntu 20.04, the python3 package is now 3.8, but the package 'python3' points to the current best version of python available without needing to specialize a minor version and should require fewer changes to the document.
* Use HTTPS everywhere (mechanical edit using util from https-everywhere)
```Shell
node ~/src/EFForg/https-everywhere/utils/rewriter/rewriter.js .
git checkout netbox/project-static/
```
A few additional changes where reset manually before the commit.
* Use HTTPS everywhere (mechanical edit using util from opening_hours.js)
```Shell
make -f ~/src/opening-hours/opening_hours.js/Makefile qa-https-everywhere
git checkout netbox/project-static/
git checkout netbox/*/tests
```
* Convert circuits to use subqueries
* Convert dcim to use subqueries
* Convert extras to use subqueries
* Convert ipam to use subqueries
* Convert secrets to use subqueries
* Convert virtualization to use subqueries
* Update global search view to use subqueries where appropriate
* Remove extraneous order_by() calls
Since the CONNECTION_STATUS_PLANNED constant is gone from dcim.constants, the DeviceConnectionsReport script is no longer correct.
The suggested fix is based on the fact that console_port.connection_status and power_port.connection_status currently have the following set of values:
* None = A cable is not connected to a Console Server Port or it's connected to a Rear/Front Port;
* False = A cable is connected to a Console Server Port and marked as Planned;
* True = A cable is connected to a Console Server Port and marked as Installed.
Update the LDAP troubleshooting steps so that they are consistent with the rest of the documentaiton, which nowadays expects us to be running netbox via systemd instead of supervisord. Fixes#4504.
* Add tests for rack elevation filtering
* Add q variable to serializers for RackElevationDetailFilterSerializer
* Add code to allow filtering of position on the rack elevation
* Add email testing example
Includes an example provided by Jeremy
* Updated with suggestions
Co-authored-by: Jeremy Stretch <jeremy.stretch@networktocode.com>
There was no documentation to move back into the netbox folder after installing/configuring nginx. You would move into nginx on line 42 then try and figure out why you couldn't copy gunicorn on line 113.
Closes#822: CSV import for device components
* Implement CSV import for netbox-community#822
* Comment out default_return_url until there is a proper target
* Fix the default value of `enabled` when not included in the import
* rear_port is definitely required here
* Power Ports don't have a type (yet)
* Add import for console-ports and console-server-ports
* Add import for device-bays
* Fixes#3341 - Added in-line vlan editing
* Fixes#2160 - Added bulk vlan editing
Inconsequential behaviour changes:
* APISelect can now take "full=True" to return a non-brief set
* Select2 will no group by "group & site, group, site, global" if full=True is set in APISelect
* Closes#2902 - Migrate to systemd from supervisord
* Closes#2902 - Migrate to systemd from supervisord
* Update systemd unit and environment file
* Add gunicorn.conf
* Update documentation and CHANGELOG. Moved parameters around on service file
* Update Gitignore
* Add filter for has local context data
* Broke out filter and form for re-use
* Fix missing StaticSelect2 import
* Fix missing BOOLEAN_WITH_BLANK_CHOICES import
* Fix class resolution
* Fix field ordering
* Fix PEP8 errors
As per the [`README.rst`][1] of `django-cacheops`, if a password is
added to the connection string, it must be in the form
`redis://:password@host:port/db`. Notice the colon, which was missing
from the implementation in [`settings.py`][2].
[1]: 8ad970d55a/README.rst
[2]: 86d5b48007/netbox/netbox/settings.py (L349)
Include the full path for the ?next= variable in login links if we are not on the logon page.
Additionally include next for post requests that have the next variable set (will only come from the login page itself generally)
* Hide URLs
* Hide elements with "noprint" class
* Added noprint to:
* Header Panel
* Search Panel, Tags Panel
* Buttons
* Various list elements
* Related elements
Paths with trailing slashes do not work on windows, they cause errors such as `django.core.exceptions.SuspiciousFileOperation: The joined path (C:\Projects\netbox\netbox\static\clipboard-2.0.4.min.js) is located outside of the base path component (C:\Projects\netbox\netbox\static\)`.
After some feedback, that `netbox-community/docker` is not an ideal name, I've renamed the repo back to `netbox-docker`. Hence one more PR to update that link.
This means that problems give a more specific reason. In the event
that dot is not found, the error is now:
There was an error generating the requested graph: failed to execute ['dot',
'-Tpng'], make sure the Graphviz executables are on your systems' PATH
* Fix tags field to be shown as array in API view
`tags` field in serializers is defineded as `TagListSerializerField`.
It should be shown as an array value in API view but actually, it is a
simple string value.
This fixes it by introducing a new `FieldInspector` to handle
`TagListSerializerField` type field as an array. It doesn't affects any
other type fields.
* Fix SerializedPKRelatedField type API expression
A field definded as `SerializedPKRelatedField` should be shown as an
array of child serializer objects in a response value definition in API
view but it is shown as an array of primary key values (usually
`integer` type) of a child serializer.
This fixes it by introducing a new `FieldInspector` to handle the field.
It doesn't affect any other type fields.
* Fix request parameter representation in API view
In API view, representation of a parameter defined as a sub class of
`WritableNestedSerializer` should be vary between a request and a
response. For example, `tenant` field in `IPAddressSerializer` should be
shown like following as a request body:
```
tenant: integer ...
```
while it should be shown like following as a response body:
```
tenant: {
id: integer ...,
url: string ...,
name: string ...,
slug: string ...
}
```
But in both cases, it is shown as a response body type expression. This
causes an error at sending an API request with that type value.
It is only an API view issue, API can handle a request if a request
parameter is structured as an expected request body by ignoring the
wrong expression.
This fixes the issue by replacing an implicitly used default auto schema
generator class by its sub class and returning a pseudo serializer with
'Writable' prefix at generating a request body. The reason to introduce
a new generator class is that there is no other point which can
distinguish a request and a response. It is not enough to distinguish
POST, PUT, PATCH methods from GET because former cases may return a JSON
object as a response but it is also represented as same as a request
body, causes another mismatch.
This also fixes `SerializedPKRelatedField` type field representation. It
should be shown as an array of primary keys in a request body.
Fixed#2400
* Add constant for DB_MINIMUM_VERSION
* Refactor verify_postgresql_version to use Django connection pg_version method for comparing versions.
* Remove StrictVersion import
* Remove DB_MINIMUM_VERSION as not necessary in constants.
* Define DB_MINIMUM_VERSION locally to freeze to migration.
* Refactor database version verification to use django builtin methods.
Fix the handling of shared IPs (VIP, VRRF, etc.) when unique IP space enforcement is set.
Add parentheses for the logical OR-statement to make the evaluation valid.
Fixes: #2501
* #2347 - Expand Webhook Documentation
Move "Install Python Packages" section up one header level. Should make Napalm/Webhook sections appear in table of contents for direct linking.
* #2347 - Expand Webhook Documentation
Add text for installation to link to other documentation sections with instructions.
* merge branch develop
* bugfix, signals for virtualization's class wasn't correctly defined
* updated webhooks for 2.4 and cleanup
* updated docs to cover changes to supervisor config
* review changes and further cleanup
* updated redis connection settings
* cleanup settings
drf_yasg is interpreting it as a number because NumericInFilter inherits
from django's NumberFilter which explicitly identifies as being a
DecimalField.
drf_yasg provides more complete swagger output, allowing for generation
of usable clients.
Some custom work was needed to accommodate Netbox's custom field
serializers, and to provide x-nullable attributes where appropriate.
The `upgrading.md` file does not mention reports. If the user created reports in the old version's default directory (`./netbox/reports`), then the reports will not be transferred to the new version.
* fixed prefix header to represent new serial "vlan_vid"
* shows option in creation now
* fixed visibility on rack page
* cleanup
* Added view to Tenant page
* Moved migration for update from #1666 and fixed tenant enumeration in FilterForm
* Fixed conflict #1
* Fixed filters from merge and made migration merge
* added tenant to api
* Fixed migrations problem
* Added Tenant to bulkedit option
* Update 0008_reports.py
PG10 version string appears to, at least on Windows, contain a comma.
* Fix missing re import.
Fix missing re import.
* Update 0008_reports.py
* Fixes#1655
Further field name references were found in `consoleport.html`. These have now been removed, so we rely on proper a proper `__str__` implementation of both `ConsolePort` and `ConsoleServerPort`.
* Fixes#1655: Removed explicit field references
Cleaned up all (notable) .name references, and removed them so __str__ can do the lifting. Did not remove the references where it was explicitly referenced to .name (eg. in details). Extended the Secret model to also include the name in __str__, since that was weirdly absent.
* Adapted PR to comply with comments
Re-introduced certain references to make sure explicit references are still used where needed.
NetBox is an IP address management (IPAM) and data center infrastructure management (DCIM) tool. Initially conceived by the network engineering team at [DigitalOcean](https://www.digitalocean.com/), NetBox was developed specifically to address the needs of network and infrastructure engineers.
NetBox runs as a web application atop the [Django](https://www.djangoproject.com/) Python framework with a [PostgreSQL](http://www.postgresql.org/) database. For a complete list of requirements, see `requirements.txt`. The code is available [on GitHub](https://github.com/digitalocean/netbox).
NetBox is an infrastructure resource modeling (IRM) tool designed to empower
network automation, used by thousands of organizations around the world.
Initially conceived by the network engineering team at
[DigitalOcean](https://www.digitalocean.com/), NetBox was developed specifically
to address the needs of network and infrastructure engineers. It is intended to
function as a domain-specific source of truth for network operations.
The complete documentation for NetBox can be found at [Read the Docs](http://netbox.readthedocs.io/en/stable/).
Myriad infrastructure components can be modeled in NetBox, including:
Questions? Comments? Please subscribe to [the netbox-discuss mailing list](https://groups.google.com/forum/#!forum/netbox-discuss), or join us on IRC in **#netbox** on **irc.freenode.net**!
* Hierarchical regions, site groups, sites, and locations
* Racks, devices, and device components
* Cables and wireless connections
* Power distribution
* Data circuits and providers
* Virtual machines and clusters
* IP prefixes, ranges, and addresses
* VRFs and route targets
* FHRP groups (VRRP, HSRP, etc.)
* AS numbers
* VLANs and scoped VLAN groups
* Organizational tenants and contacts
### Build Status
In addition to its extensive built-in models and functionality, NetBox can be
customized and extended through the use of:
NetBox is built against both Python 2.7 and 3.5. Python 3.5 is recommended.
NetBox also features a complete REST API as well as a GraphQL API for easily
integrating with other tools and systems.
## Screenshots
NetBox runs as a web application atop the [Django](https://www.djangoproject.com/)
Python framework with a [PostgreSQL](https://www.postgresql.org/) database. For a
complete list of requirements, see `requirements.txt`. The code is available [on GitHub](https://github.com/netbox-community/netbox).

The complete documentation for NetBox can be found at [Read the Docs](https://netbox.readthedocs.io/en/stable/). A public demo instance is available at https://demo.netbox.dev.

<div align="center">
<h4>Thank you to our sponsors!</h4>

Please see [the documentation](http://netbox.readthedocs.io/en/stable/) for instructions on installing NetBox. To upgrade NetBox, please download the [latest release](https://github.com/digitalocean/netbox/releases) and run `upgrade.sh`.
### Discussion
## Alternative Installations
* [GitHub Discussions](https://github.com/netbox-community/netbox/discussions) - Discussion forum hosted by GitHub; ideal for Q&A and other structured discussions
* [Slack](https://netdev.chat/) - Real-time chat hosted by the NetDev Community; best for unstructured discussion or just hanging out
Every time an object in NetBox is created, updated, or deleted, a serialized copy of that object taken both before and after the change is saved to the database, along with meta data including the current time and the user associated with the change. These records form a persistent record of changes both for each individual object as well as NetBox as a whole. The global change log can be viewed by navigating to Other > Change Log.
A serialized representation of the instance being modified is included in JSON format. This is similar to how objects are conveyed within the REST API, but does not include any nested representations. For instance, the `tenant` field of a site will record only the tenant's ID, not a representation of the tenant.
When a request is made, a UUID is generated and attached to any change records resulting from that request. For example, editing three objects in bulk will create a separate change record for each (three in total), and each of those objects will be associated with the same UUID. This makes it easy to identify all the change records resulting from a particular request.
Change records are exposed in the API via the read-only endpoint `/api/extras/object-changes/`. They may also be exported via the web UI in CSV format.
All primary objects in NetBox support journaling. A journal is a collection of human-generated notes and comments about an object maintained for historical context. It supplements NetBox's change log to provide additional information about why changes have been made or to convey events which occur outside NetBox. Unlike the change log, in which records typically expire after a configurable period of time, journal entries persist for the life of their associated object.
Each journal entry has a selectable kind (info, success, warning, or danger) and a user-populated `comments` field. Each entry automatically records the date, time, and associated user upon being created.
NetBox supports integration with the [NAPALM automation](https://github.com/napalm-automation/napalm) library. NAPALM allows NetBox to serve a proxy for operational data, fetching live data from network devices and returning it to a requester via its REST API. Note that NetBox does not store any NAPALM data locally.
The NetBox UI will display tabs for status, LLDP neighbors, and configuration under the device view if the following conditions are met:
* Device status is "Active"
* A primary IP has been assigned to the device
* A platform with a NAPALM driver has been assigned
* The authenticated user has the `dcim.napalm_read_device` permission
!!! note
To enable this integration, the NAPALM library must be installed. See [installation steps](../../installation/3-netbox/#napalm) for more information.
Below is an example REST API request and response:
```no-highlight
GET /api/dcim/devices/1/napalm/?method=get_environment
{
"get_environment": {
...
}
}
```
!!! note
To make NAPALM requests via the NetBox REST API, a NetBox user must have assigned a permission granting the `napalm_read` action for the device object type.
## Authentication
By default, the [`NAPALM_USERNAME`](../configuration/dynamic-settings.md#napalm_username) and [`NAPALM_PASSWORD`](../configuration/dynamic-settings.md#napalm_password) configuration parameters are used for NAPALM authentication. They can be overridden for an individual API call by specifying the `X-NAPALM-Username` and `X-NAPALM-Password` headers.
The list of supported NAPALM methods depends on the [NAPALM driver](https://napalm.readthedocs.io/en/latest/support/index.html#general-support-matrix) configured for the platform of a device. Because there is no granular mechanism in place for limiting potentially disruptive requests, NetBox supports only read-only [get](https://napalm.readthedocs.io/en/latest/support/index.html#getters-support-matrix) methods.
## Multiple Methods
It is possible to request the output of multiple NAPALM methods in a single API request by passing multiple `method` parameters. For example:
```no-highlight
GET /api/dcim/devices/1/napalm/?method=get_ntp_servers&method=get_ntp_peers
{
"get_ntp_servers": {
...
},
"get_ntp_peers": {
...
}
}
```
## Optional Arguments
The behavior of NAPALM drivers can be adjusted according to the [optional arguments](https://napalm.readthedocs.io/en/latest/support/index.html#optional-arguments). NetBox exposes those arguments using headers prefixed with `X-NAPALM-`. For example, the SSH port is changed to 2222 in this API call:
NetBox supports optionally exposing native Prometheus metrics from the application. [Prometheus](https://prometheus.io/) is a popular time series metric platform used for monitoring.
NetBox exposes metrics at the `/metrics` HTTP endpoint, e.g. `https://netbox.local/metrics`. Metric exposition can be toggled with the `METRICS_ENABLED` configuration setting. Metrics are not exposed by default.
## Metric Types
NetBox makes use of the [django-prometheus](https://github.com/korfuri/django-prometheus) library to export a number of different types of metrics, including:
- Per model insert, update, and delete counters
- Per view request counters
- Per view request latency histograms
- Request body size histograms
- Response body size histograms
- Response code counters
- Database connection, execution, and error counters
- Cache hit, miss, and invalidation counters
- Django middleware latency histograms
- Other Django related metadata metrics
For the exhaustive list of exposed metrics, visit the `/metrics` endpoint on your NetBox instance.
## Multi Processing Notes
When deploying NetBox in a multiprocess manner (e.g. running multiple Gunicorn workers) the Prometheus client library requires the use of a shared directory to collect metrics from all worker processes. To configure this, first create or designate a local directory to which the worker processes have read and write access, and then configure your WSGI service (e.g. Gunicorn) to define this path as the `prometheus_multiproc_dir` environment variable.
!!! warning
If having accurate long-term metrics in a multiprocess environment is crucial to your deployment, it's recommended you use the `uwsgi` library instead of `gunicorn`. The issue lies in the way `gunicorn` tracks worker processes (vs `uwsgi`) which helps manage the metrics files created by the above configurations. If you're using NetBox with gunicorn in a containerized environment following the one-process-per-container methodology, then you will likely not need to change to `uwsgi`. More details can be found in [issue #3779](https://github.com/netbox-community/netbox/issues/3779#issuecomment-590547562).
A webhook may include a set of conditional logic expressed in JSON used to control whether a webhook triggers for a specific object. For example, you may wish to trigger a webhook for devices only when the `status` field of an object is "active":
```json
{
"and":[
{
"attr":"status.value",
"value":"active"
}
]
}
```
For more detail, see the reference documentation for NetBox's [conditional logic](../reference/conditions.md).
## Webhook Processing
When a change is detected, any resulting webhooks are placed into a Redis queue for processing. This allows the user's request to complete without needing to wait for the outgoing webhook(s) to be processed. The webhooks are then extracted from the queue by the `rqworker` process and HTTP requests are sent to their respective destinations. The current webhook queue and any failed webhooks can be inspected in the admin UI under System > Background Tasks.
A request is considered successful if the response has a 2XX status code; otherwise, the request is marked as having failed. Failed requests may be retried manually via the admin UI.
## Troubleshooting
To assist with verifying that the content of outgoing webhooks is rendered correctly, NetBox provides a simple HTTP listener that can be run locally to receive and display webhook requests. First, modify the target URL of the desired webhook to `http://localhost:9000/`. This will instruct NetBox to send the request to the local server on TCP port 9000. Then, start the webhook receiver service from the NetBox root directory:
```no-highlight
$ python netbox/manage.py webhook_receiver
Listening on port http://localhost:9000. Stop with CONTROL-C.
```
You can test the receiver itself by sending any HTTP request to it. For example:
```no-highlight
$ curl -X POST http://localhost:9000 --data '{"foo": "bar"}'
```
The server will print output similar to the following:
Note that `webhook_receiver` does not actually _do_ anything with the information received: It merely prints the request headers and body for inspection.
Now, when the NetBox webhook is triggered and processed, you should see its headers and content appear in the terminal where the webhook receiver is listening. If you don't, check that the `rqworker` process is running and that webhook events are being placed into the queue (visible under the NetBox admin UI).
Local user accounts and groups can be created in NetBox under the "Authentication and Authorization" section of the administrative user interface. This interface is available only to users with the "staff" permission enabled.
At a minimum, each user account must have a username and password set. User accounts may also denote a first name, last name, and email address. [Permissions](./permissions.md) may also be assigned to users and/or groups within the admin UI.
## Remote Authentication
NetBox may be configured to provide user authenticate via a remote backend in addition to local authentication. This is done by setting the `REMOTE_AUTH_BACKEND` configuration parameter to a suitable backend class. NetBox provides several options for remote authentication.
NetBox includes an authentication backend which supports LDAP. See the [LDAP installation docs](../installation/6-ldap.md) for more detail about this backend.
Another option for remote authentication in NetBox is to enable HTTP header-based user assignment. The front end HTTP server (e.g. nginx or Apache) performs client authentication as a process external to NetBox, and passes information about the authenticated user via HTTP headers. By default, the user is assigned via the `REMOTE_USER` header, but this can be customized via the `REMOTE_AUTH_HEADER` configuration parameter.
NetBox supports single sign-on authentication via the [python-social-auth](https://github.com/python-social-auth) library. To enable SSO, specify the path to the desired authentication backend within the `social_core` Python package. Please see the complete list of [supported authentication backends](https://github.com/python-social-auth/social-core/tree/master/social_core/backends) for the available options.
Most remote authentication backends require some additional configuration through settings prefixed with `SOCIAL_AUTH_`. These will be automatically imported from NetBox's `configuration.py` file. Additionally, the [authentication pipeline](https://python-social-auth.readthedocs.io/en/latest/pipeline.html) can be customized via the `SOCIAL_AUTH_PIPELINE` parameter.
NetBox includes a `housekeeping` management command that should be run nightly. This command handles:
* Clearing expired authentication sessions from the database
* Deleting changelog records older than the configured [retention time](../configuration/dynamic-settings.md#changelog_retention)
This command can be invoked directly, or by using the shell script provided at `/opt/netbox/contrib/netbox-housekeeping.sh`. This script can be linked from your cron scheduler's daily jobs directory (e.g. `/etc/cron.daily`) or referenced directly within the cron configuration file.
On Debian-based systems, be sure to omit the `.sh` file extension when linking to the script from within a cron directory. Otherwise, the task may not run.
The `housekeeping` command can also be run manually at any time: Running the command outside scheduled execution times will not interfere with its operation.
NetBox includes a Python shell withing which objects can be directly queried, created, modified, and deleted. To enter the shell, run the following command:
# The NetBox Python Shell
NetBox includes a Python management shell within which objects can be directly queried, created, modified, and deleted. To enter the shell, run the following command:
```
./manage.py nbshell
```
This will launch a customized version of [the built-in Django shell](https://docs.djangoproject.com/en/dev/ref/django-admin/#shell) with all relevant NetBox models pre-loaded. (If desired, the stock Django shell is also available by executing `./manage.py shell`.)
This will launch a lightly customized version of [the built-in Django shell](https://docs.djangoproject.com/en/stable/ref/django-admin/#shell) with all relevant NetBox models pre-loaded. (If desired, the stock Django shell is also available by executing `./manage.py shell`.)
### lsmodels() will show available models. Use help(<model>) for more info.
```
@@ -26,13 +28,17 @@ DCIM:
...
```
!!! warning
The NetBox shell affords direct access to NetBox data and function with very little validation in place. As such, it is crucial to ensure that only authorized, knowledgeable users are ever granted access to it. Never perform any action in the management shell without having a full backup in place.
## Querying Objects
Objects are retrieved by forming a [Django queryset](https://docs.djangoproject.com/en/dev/topics/db/queries/#retrieving-objects). The base queryset for an object takes the form `<model>.objects.all()`, which will return a (truncated) list of all objects of that type.
Objects are retrieved from the database using a [Django queryset](https://docs.djangoproject.com/en/stable/topics/db/queries/#retrieving-objects). The base queryset for an object takes the form `<model>.objects.all()`, which will return a (truncated) list of all objects of that type.
<Device: TestDevice4>, <Device: TestDevice5>, '...(remaining elements truncated)...']>
```
Use a `for` loop to cycle through all objects in the list:
@@ -41,11 +47,11 @@ Use a `for` loop to cycle through all objects in the list:
>>> for device in Device.objects.all():
... print(device.name, device.device_type)
...
(u'TestDevice1', <DeviceType: PacketThingy 9000>)
(u'TestDevice2', <DeviceType: PacketThingy 9000>)
(u'TestDevice3', <DeviceType: PacketThingy 9000>)
(u'TestDevice4', <DeviceType: PacketThingy 9000>)
(u'TestDevice5', <DeviceType: PacketThingy 9000>)
('TestDevice1', <DeviceType: PacketThingy 9000>)
('TestDevice2', <DeviceType: PacketThingy 9000>)
('TestDevice3', <DeviceType: PacketThingy 9000>)
('TestDevice4', <DeviceType: PacketThingy 9000>)
('TestDevice5', <DeviceType: PacketThingy 9000>)
...
```
@@ -65,52 +71,53 @@ To retrieve a particular object (typically by its primary key or other unique fi
### Filtering Querysets
In most cases, you want to retrieve only a specific subset of objects. To filter a queryset, replace `all()` with `filter()` and pass one or more keyword arguments. For example:
In most cases, you will want to retrieve only a specific subset of objects. To filter a queryset, replace `all()` with `filter()` and pass one or more keyword arguments. For example:
Relationships with other models can be traversed by concatenting field names with a double-underscore. For example, the following will return all devices assigned to the tenant named "Pied Piper."
Relationships with other models can be traversed by concatenating attribute names with a double-underscore. For example, the following will return all devices assigned to the tenant named "Pied Piper."
While the above query is functional, it is very inefficient. There are ways to optimize such requests, however they are out of the scope of this document. For more information, see the [Django queryset method reference](https://docs.djangoproject.com/en/dev/ref/models/querysets/) documentation.
While the above query is functional, it's not very efficient. There are ways to optimize such requests, however they are out of scope for this document. For more information, see the [Django queryset method reference](https://docs.djangoproject.com/en/stable/ref/models/querysets/) documentation.
Reverse relationships can be traversed as well. For example, the following will find all devices with an interface named "em0":
```
>>> Device.objects.filter(interfaces__name='em0')
>>> Device.objects.filter(interfaces__name="em0")
```
Character fields can be filtered against partial matches using the `contains` or `icontains` field lookup (the later of which is case-insensitive).
The examples above are intended only to provide a cursory introduction to queryset filtering. For an exhaustive list of the available filters, please consult the [Django queryset API docs](https://docs.djangoproject.com/en/dev/ref/models/querysets/).
The examples above are intended only to provide a cursory introduction to queryset filtering. For an exhaustive list of the available filters, please consult the [Django queryset API documentation](https://docs.djangoproject.com/en/stable/ref/models/querysets/).
## Creating and Updating Objects
New objects can be created by instantiating the desired model, defining values for all required attributes, and calling `save()` on the instance.
New objects can be created by instantiating the desired model, defining values for all required attributes, and calling `save()` on the instance. For example, we can create a new VLAN by specifying its numeric ID, name, and assigned site:
```
>>> lab1 = Site.objects.get(pk=7)
@@ -149,22 +156,22 @@ New objects can be created by instantiating the desired model, defining values f
>>> myvlan.save()
```
Alternatively, the above can be performed as a single operation:
Alternatively, the above can be performed as a single operation. (Note, however, that `save()` does _not_ return the new instance for reuse.)
To delete multiple objects at once, call `delete()` on a filtered queryset. It's a good idea to always sanity-check the count of selected objects _before_ deleting them.
@@ -187,8 +194,10 @@ To delete multiple objects at once, call `delete()` on a filtered queryset. It's
Deletions are immediate and irreversible. Always think very carefully before calling `delete()` on an instance or queryset.
Deletions are immediate and irreversible. Always consider the impact of deleting objects carefully before calling `delete()` on an instance or queryset.
NetBox v2.9 introduced a new object-based permissions framework, which replaces Django's built-in permissions model. Object-based permissions enable an administrator to grant users or groups the ability to perform an action on arbitrary subsets of objects in NetBox, rather than all objects of a certain type. For example, it is possible to grant a user permission to view only sites within a particular region, or to modify only VLANs with a numeric ID within a certain range.
{!models/users/objectpermission.md!}
### Example Constraint Definitions
| Constraints | Description |
| ----------- | ----------- |
| `{"status": "active"}` | Status is active |
| `{"status__in": ["planned", "reserved"]}` | Status is active **OR** reserved |
| `{"status": "active", "role": "testing"}` | Status is active **AND** role is testing |
| `{"name__startswith": "Foo"}` | Name starts with "Foo" (case-sensitive) |
| `{"name__iendswith": "bar"}` | Name ends with "bar" (case-insensitive) |
| `{"vid__gte": 100, "vid__lt": 200}` | VLAN ID is greater than or equal to 100 **AND** less than 200 |
| `[{"vid__lt": 200}, {"status": "reserved"}]` | VLAN ID is less than 200 **OR** status is reserved |
## Permissions Enforcement
### Viewing Objects
Object-based permissions work by filtering the database query generated by a user's request to restrict the set of objects returned. When a request is received, NetBox first determines whether the user is authenticated and has been granted to perform the requested action. For example, if the requested URL is `/dcim/devices/`, NetBox will check for the `dcim.view_device` permission. If the user has not been assigned this permission (either directly or via a group assignment), NetBox will return a 403 (forbidden) HTTP response.
If the permission _has_ been granted, NetBox will compile any specified constraints for the model and action. For example, suppose two permissions have been assigned to the user granting view access to the device model, with the following constraints:
```json
[
{"site__name__in":["NYC1","NYC2"]},
{"status":"offline","tenant__isnull":true}
]
```
This grants the user access to view any device that is assigned to a site named NYC1 or NYC2, **or** which has a status of "offline" and has no tenant assigned. These constraints are equivalent to the following ORM query:
```no-highlight
Site.objects.filter(
Q(site__name__in=['NYC1', 'NYC2']),
Q(status='active', tenant__isnull=True)
)
```
### Creating and Modifying Objects
The same sort of logic is in play when a user attempts to create or modify an object in NetBox, with a twist. Once validation has completed, NetBox starts an atomic database transaction to facilitate the change, and the object is created or saved normally. Next, still within the transaction, NetBox issues a second query to retrieve the newly created/updated object, filtering the restricted queryset with the object's primary key. If this query fails to return the object, NetBox knows that the new revision does not match the constraints imposed by the permission. The transaction is then rolled back, leaving the database in its original state prior to the change, and the user is informed of the violation.
NetBox employs a [PostgreSQL](https://www.postgresql.org/) database, so general PostgreSQL best practices apply here. The database can be written to a file and restored using the `pg_dump` and `psql` utilities, respectively.
!!! note
The examples below assume that your database is named `netbox`.
### Export the Database
Use the `pg_dump` utility to export the entire database to a file:
You may need to change the username, host, and/or database in the command above to match your installation.
When replicating a production database for development purposes, you may find it convenient to exclude changelog data, which can easily account for the bulk of a database's size. To do this, exclude the `extras_objectchange` table data from the export. The table will still be included in the output file, but will not be populated with any data.
When restoring a database from a file, it's recommended to delete any existing database first to avoid potential conflicts.
!!! warning
The following will destroy and replace any existing instance of the database.
```no-highlight
psql -c 'drop database netbox'
psql -c 'create database netbox'
psql netbox < netbox.sql
```
Keep in mind that PostgreSQL user accounts and permissions are not included with the dump: You will need to create those manually if you want to fully replicate the original database (see the [installation docs](../installation/1-postgresql.md)). When setting up a development instance of NetBox, it's strongly recommended to use different credentials anyway.
### Export the Database Schema
If you want to export only the database schema, and not the data itself (e.g. for development reference), do the following:
By default, NetBox stores uploaded files (such as image attachments) in its media directory. To fully replicate an instance of NetBox, you'll need to copy both the database and the media files.
!!! note
These operations are not necessary if your installation is utilizing a [remote storage backend](../../configuration/optional-settings/#storage_backend).
### Archive the Media Directory
Execute the following command from the root of the NetBox installation path (typically `/opt/netbox`):
```no-highlight
tar -czf netbox_media.tar.gz netbox/media/
```
### Restore the Media Directory
To extract the saved archive into a new installation, run the following from the installation root:
The NetBox API employs token-based authentication. For convenience, cookie authentication can also be used when navigating the browsable API.
# Tokens
A token is a unique identifier that identifies a user to the API. Each user in NetBox may have one or more tokens which he or she can use to authenticate to the API. To create a token, navigate to the API tokens page at `/user/api-tokens/`.
Each token contains a 160-bit key represented as 40 hexadecimal characters. When creating a token, you'll typically leave the key field blank so that a random key will be automatically generated. However, NetBox allows you to specify a key in case you need to restore a previously deleted token to operation.
By default, a token can be used for all operations available via the API. Deselecting the "write enabled" option will restrict API requests made with the token to read operations (e.g. GET) only.
Additionally, a token can be set to expire at a specific time. This can be useful if an external client needs to be granted temporary access to NetBox.
# Authenticating to the API
By default, read operations will be available without authentication. In this case, a token may be included in the request, but is not necessary.
However, if the [`LOGIN_REQUIRED`](../configuration/optional-settings/#login_required) configuration setting has been set to `True`, all requests must be authenticated.
Additionally, the browsable interface to the API (which can be seen by navigating to the API root `/api/` in a web browser) will attempt to authenticate requests using the same cookie that the normal NetBox front end uses. Thus, if you have logged into NetBox, you will be logged into the browsable API as well.
NetBox v2.0 and later includes a full-featured REST API that allows its data model to be read and manipulated externally.
# URL Hierarchy
NetBox's entire REST API is housed under the API root, `/api/`. The API's URL structure is divided at the root level by application: circuits, DCIM, extras, IPAM, secrets, and tenancy. Within each application, each model has its own path. For example, the provider and circuit objects are located under the "circuits" application:
* /api/circuits/providers/
* /api/circuits/circuits/
Likewise, the site, rack, and device objects are located under the "DCIM" application:
* /api/dcim/sites/
* /api/dcim/racks/
* /api/dcim/devices/
The full hierarchy of available endpoints can be viewed by navigating to the API root (e.g. /api/) in a web browser.
Each model generally has two URLs associated with it: a list URL and a detail URL. The list URL is used to request a list of multiple objects or to create a new object. The detail URL is used to retrieve, update, or delete an existing object. All objects are referenced by their numeric primary key (ID).
* /api/dcim/devices/ - List devices or create a new device
* /api/dcim/devices/123/ - Retrieve, update, or delete the device with ID 123
Lists of objects can be filtered using a set of query parameters. For example, to find all interfaces belonging to the device with ID 123:
```
GET /api/dcim/interfaces/?device_id=123
```
# Serialization
The NetBox API employs three types of serializers to represent model data:
* Base serializer
* Nested serializer
* Writable serializer
The base serializer is used to represent the default view of a model. This includes all database table fields which comprise the model, and may include additional metadata. A base serializer includes relationships to parent objects, but **does not** include child objects. For example, the `VLANSerializer` includes a nested representation its parent VLANGroup (if any), but does not include any assigned Prefixes.
Related objects (e.g. `ForeignKey` fields) are represented using a nested serializer. A nested serializer provides a minimal representation of an object, including only its URL and enough information to construct its name.
When a base serializer includes one or more nested serializers, the hierarchical structure precludes it from being used for write operations. Thus, a flat representation of an object may be provided using a writable serializer. This serializer includes only raw database values and is not typically used for retrieval, except as part of the response to the creation or updating of an object.
```
{
"id": 1201,
"site": 7,
"group": 4,
"vid": 102,
"name": "Users-Floor2",
"tenant": null,
"status": 1,
"role": 9,
"description": ""
}
```
# Pagination
API responses which contain a list of objects (for example, a request to `/api/dcim/devices/`) will be paginated to avoid unnecessary overhead. The root JSON object will contain the following attributes:
*`count`: The total count of all objects matching the query
*`next`: A hyperlink to the next page of results (if applicable)
*`previous`: A hyperlink to the previous page of results (if applicable)
The default page size derives from the [`PAGINATE_COUNT`](../configuration/optional-settings/#paginate_count) configuration setting, which defaults to 50. However, this can be overridden per request by specifying the desired `offset` and `limit` query parameters. For example, if you wish to retrieve a hundred devices at a time, you would make a request for:
```
http://localhost:8000/api/dcim/devices/?limit=100
```
The response will return devices 1 through 100. The URL provided in the `next` attribute of the response will return devices 101 through 200:
The maximum number of objects that can be returned is limited by the [`MAX_PAGE_SIZE`](../configuration/optional-settings/#max_page_size) setting, which is 1000 by default. Setting this to `0` or `None` will remove the maximum limit. An API consumer can then pass `?limit=0` to retrieve _all_ matching objects with a single request.
!!! warning
Disabling the page size limit introduces a potential for very resource-intensive requests, since one API request can effectively retrieve an entire table from the database.
As with most other objects, the NetBox API can be used to create, modify, and delete secrets. However, additional steps are needed to encrypt or decrypt secret data.
# Generating a Session Key
In order to encrypt or decrypt secret data, a session key must be attached to the API request. To generate a session key, send an authenticated request to the `/api/secrets/get-session-key/` endpoint with the private RSA key which matches your [UserKey](../data-model/secrets/#user-keys). The private key must be POSTed with the name `private_key`.
```
$ curl -X POST http://localhost:8000/api/secrets/get-session-key/ \
To read the private key from a file, use the convention above. Alternatively, the private key can be read from an environment variable using `--data-urlencode "private_key=$PRIVATE_KEY"`.
The request uses your private key to unlock your stored copy of the master key and generate a session key which can be attached in the `X-Session-Key` header of future API requests.
# Retrieving Secrets
A session key is not needed to retrieve unencrypted secrets: The secret is returned like any normal object with its `plaintext` field set to null.
These configuration parameters are primarily controlled via NetBox's admin interface (under Admin > Extras > Configuration Revisions). These setting may also be overridden in `configuration.py`; this will prevent them from being modified via the UI.
A list of permitted URL schemes referenced when rendering links within NetBox. Note that only the schemes specified in this list will be accepted: If adding your own, be sure to replicate all of the default values as well (excluding those schemes which are not desirable).
---
## BANNER_TOP
## BANNER_BOTTOM
Setting these variables will display custom content in a banner at the top and/or bottom of the page, respectively. HTML is allowed. To replicate the content of the top banner in the bottom banner, set:
```python
BANNER_TOP='Your banner text'
BANNER_BOTTOM=BANNER_TOP
```
---
## BANNER_LOGIN
This defines custom content to be displayed on the login page above the login form. HTML is allowed.
---
## CHANGELOG_RETENTION
Default: 90
The number of days to retain logged changes (object creations, updates, and deletions). Set this to `0` to retain
changes in the database indefinitely.
!!! warning
If enabling indefinite changelog retention, it is recommended to periodically delete old entries. Otherwise, the database may eventually exceed capacity.
---
## CUSTOM_VALIDATORS
This is a mapping of models to [custom validators](../customization/custom-validation.md) that have been defined locally to enforce custom validation logic. An example is provided below:
```python
CUSTOM_VALIDATORS={
"dcim.site":[
{
"name":{
"min_length":5,
"max_length":30
}
},
"my_plugin.validators.Validator1"
],
"dim.device":[
"my_plugin.validators.Validator1"
]
}
```
---
## DEFAULT_USER_PREFERENCES
This is a dictionary defining the default preferences to be set for newly-created user accounts. For example, to set the default page size for all users to 100, define the following:
```python
DEFAULT_USER_PREFERENCES={
"pagination":{
"per_page":100
}
}
```
For a complete list of available preferences, log into NetBox and navigate to `/user/preferences/`. A period in a preference name indicates a level of nesting in the JSON data. The example above maps to `pagination.per_page`.
---
## ENFORCE_GLOBAL_UNIQUE
Default: False
By default, NetBox will permit users to create duplicate prefixes and IP addresses in the global table (that is, those which are not assigned to any VRF). This behavior can be disabled by setting `ENFORCE_GLOBAL_UNIQUE` to True.
---
## GRAPHQL_ENABLED
Default: True
Setting this to False will disable the GraphQL API.
---
## MAINTENANCE_MODE
Default: False
Setting this to True will display a "maintenance mode" banner at the top of every page. Additionally, NetBox will no longer update a user's "last active" time upon login. This is to allow new logins when the database is in a read-only state. Recording of login times will resume when maintenance mode is disabled.
This specifies the URL to use when presenting a map of a physical location by street address or GPS coordinates. The URL must accept either a free-form street address or a comma-separated pair of numeric coordinates appended to it.
---
## MAX_PAGE_SIZE
Default: 1000
A web user or API consumer can request an arbitrary number of objects by appending the "limit" parameter to the URL (e.g. `?limit=1000`). This parameter defines the maximum acceptable limit. Setting this to `0` or `None` will allow a client to retrieve _all_ matching objects at once with no limit by specifying `?limit=0`.
---
## NAPALM_USERNAME
## NAPALM_PASSWORD
NetBox will use these credentials when authenticating to remote devices via the supported [NAPALM integration](../additional-features/napalm.md), if installed. Both parameters are optional.
!!! note
If SSH public key authentication has been set up on the remote device(s) for the system account under which NetBox runs, these parameters are not needed.
---
## NAPALM_ARGS
A dictionary of optional arguments to pass to NAPALM when instantiating a network driver. See the NAPALM documentation for a [complete list of optional arguments](https://napalm.readthedocs.io/en/latest/support/#optional-arguments). An example:
```python
NAPALM_ARGS={
'api_key':'472071a93b60a1bd1fafb401d9f8ef41',
'port':2222,
}
```
Some platforms (e.g. Cisco IOS) require an argument named `secret` to be passed in addition to the normal password. If desired, you can use the configured `NAPALM_PASSWORD` as the value for this argument:
```python
NAPALM_USERNAME='username'
NAPALM_PASSWORD='MySecretPassword'
NAPALM_ARGS={
'secret':NAPALM_PASSWORD,
# Include any additional args here
}
```
---
## NAPALM_TIMEOUT
Default: 30 seconds
The amount of time (in seconds) to wait for NAPALM to connect to a device.
---
## PAGINATE_COUNT
Default: 50
The default maximum number of objects to display per page within each list of objects.
---
## PREFER_IPV4
Default: False
When determining the primary IP address for a device, IPv6 is preferred over IPv4 by default. Set this to True to prefer IPv4 instead.
---
## RACK_ELEVATION_DEFAULT_UNIT_HEIGHT
Default: 22
Default height (in pixels) of a unit within a rack elevation. For best results, this should be approximately one tenth of `RACK_ELEVATION_DEFAULT_UNIT_WIDTH`.
---
## RACK_ELEVATION_DEFAULT_UNIT_WIDTH
Default: 220
Default width (in pixels) of a unit within a rack elevation.
NetBox's local configuration is stored in `$INSTALL_ROOT/netbox/netbox/configuration.py` by default. An example configuration is provided as `configuration_example.py`. You may copy or rename the example configuration and make changes as appropriate. NetBox will not run without a configuration file. While NetBox has many configuration settings, only a few of them must be defined at the time of installation: these are defined under "required settings" below.
!!! info "Customizing the Configuration Module"
A custom configuration module may be specified by setting the `NETBOX_CONFIGURATION` environment variable. This must be a dotted path to the desired Python module. For example, a file named `my_config.py` in the same directory as `settings.py` would be referenced as `netbox.my_config`.
For the sake of brevity, the NetBox documentation refers to the configuration file simply as `configuration.py`.
Some configuration parameters may alternatively be defined either in `configuration.py` or within the administrative section of the user interface. Settings which are "hard-coded" in the configuration file take precedence over those defined via the UI.
NetBox's local configuration is held in `netbox/netbox/configuration.py`. An example configuration is provided at `netbox/netbox/configuration.example.py`. You may copy or rename the example configuration and make changes as appropriate. NetBox will not run without a configuration file.
## ALLOWED_HOSTS
This is a list of valid fully-qualified domain names (FQDNs) that is used to reach the NetBox service. Usually this is the same as the hostname for the NetBox server, but can also be different (e.g. when using a reverse proxy serving the NetBox website under a different FQDN than the hostname of the NetBox server). NetBox will not permit access to the server via any other hostnames (or IPs). The value of this option is also used to set `CSRF_TRUSTED_ORIGINS`, which restricts `HTTP POST` to the same set of hosts (more about this [here](https://docs.djangoproject.com/en/1.9/ref/settings/#std:setting-CSRF_TRUSTED_ORIGINS)). Keep in mind that NetBox, by default, has `USE_X_FORWARDED_HOST = True` (in `netbox/netbox/settings.py`) which means that if you're using a reverse proxy, it's the FQDN used to reach that reverse proxy which needs to be in this list (more about this [here](https://docs.djangoproject.com/en/1.9/ref/settings/#allowed-hosts)).
NetBox requires access to a PostgreSQL database service to store data. This service can run locally or on a remote system. The following parameters must be defined within the `DATABASE` dictionary:
* NAME - Database name
* USER - PostgreSQL username
* PASSWORD - PostgreSQL password
* HOST - Name or IP address of the database server (use `localhost` if running locally)
* PORT - TCP port of the PostgreSQL service; leave blank for default port (5432)
'PORT': '', # Database port (leave blank for default)
}
```
---
## SECRET_KEY
This is a secret cryptographic key is used to improve the security of cookies and password resets. The key defined here should not be shared outside of the configuration file. `SECRET_KEY` can be changed at any time, however be aware that doing so will invalidate all existing sessions.
Please note that this key is **not** used for hashing user passwords or for the encrypted storage of secret data in NetBox.
`SECRET_KEY` should be at least 50 characters in length and contain a random mix of letters, digits, and symbols. The script located at `netbox/generate_secret_key.py` may be used to generate a suitable key.
The following are optional settings which may be declared in `netbox/netbox/configuration.py`.
# Optional Configuration Settings
## ADMINS
NetBox will email details about critical errors to the administrators listed here. This should be a list of (name, email) tuples. For example:
```
```python
ADMINS=[
['Hank Hill','hhill@example.com'],
['Dale Gribble','dgribble@example.com'],
@@ -13,15 +13,19 @@ ADMINS = [
---
## BANNER_TOP
## AUTH_PASSWORD_VALIDATORS
## BANNER_BOTTOM
This parameter acts as a pass-through for configuring Django's built-in password validators for local user accounts. If configured, these will be applied whenever a user's password is updated to ensure that it meets minimum criteria such as length or complexity. An example is provided below. For more detail on the available options, please see [the Django documentation](https://docs.djangoproject.com/en/stable/topics/auth/passwords/#password-validation).
Setting these variables will display content in a banner at the top and/or bottom of the page, respectively. To replicate the content of the top banner in the bottom banner, set:
The base URL path to use when accessing NetBox. Do not include the scheme or domain name. For example, if installed at http://example.com/netbox/, set:
The base URL path to use when accessing NetBox. Do not include the scheme or domain name. For example, if installed at https://example.com/netbox/, set:
```
```python
BASE_PATH='netbox/'
```
@@ -50,7 +54,30 @@ If True, cross-origin resource sharing (CORS) requests will be accepted from all
## CORS_ORIGIN_REGEX_WHITELIST
These settings specify a list of origins that are authorized to make cross-site API requests. Use`CORS_ORIGIN_WHITELIST` to define a list of exact hostnames, or `CORS_ORIGIN_REGEX_WHITELIST` to define a set of regular expressions. (These settings have no effect if `CORS_ORIGIN_ALLOW_ALL` is True.)
These settings specify a list of origins that are authorized to make cross-site API requests. Use
`CORS_ORIGIN_WHITELIST` to define a list of exact hostnames, or `CORS_ORIGIN_REGEX_WHITELIST` to define a set of regular
expressions. (These settings have no effect if `CORS_ORIGIN_ALLOW_ALL` is True.) For example:
```python
CORS_ORIGIN_WHITELIST=[
'https://example.com',
]
```
---
## CSRF_TRUSTED_ORIGINS
Default: `[]`
Defines a list of trusted origins for unsafe (e.g. `POST`) requests. This is a pass-through to Django's [`CSRF_TRUSTED_ORIGINS`](https://docs.djangoproject.com/en/4.0/ref/settings/#std:setting-CSRF_TRUSTED_ORIGINS) setting. Note that each host listed must specify a scheme (e.g. `http://` or `https://).
```python
CSRF_TRUSTED_ORIGINS = (
'http://netbox.local',
'https://netbox.local',
)
```
---
@@ -58,38 +85,185 @@ These settings specify a list of origins that are authorized to make cross-site
Default: False
This setting enables debugging. This should be done only during development or troubleshooting. Never enable debugging on a production system, as it can expose sensitive data to unauthenticated users.
This setting enables debugging. Debugging should be enabled only during development or troubleshooting. Note that only
clients which access NetBox from a recognized [internal IP address](#internal_ips) will see debugging tools in the user
interface.
!!! warning
Never enable debugging on a production system, as it can expose sensitive data to unauthenticated users and impose a
substantial performance penalty.
---
## DEVELOPER
Default: False
This parameter serves as a safeguard to prevent some potentially dangerous behavior, such as generating new database schema migrations. Set this to `True` **only** if you are actively developing the NetBox code base.
---
## DOCS_ROOT
Default: `$INSTALL_ROOT/docs/`
The filesystem path to NetBox's documentation. This is used when presenting context-sensitive documentation in the web UI. By default, this will be the `docs/` directory within the root NetBox installation path. (Set this to `None` to disable the embedded documentation.)
---
## EMAIL
In order to send email, NetBox needs an email server configured. The following items can be defined within the `EMAIL` setting:
In order to send email, NetBox needs an email server configured. The following items can be defined within the `EMAIL` configuration parameter:
*SERVER - Hostname or IP address of the email server (use `localhost` if running locally)
*PORT - TCP port to use for the connection (default: 25)
*USERNAME - Username with which to authenticate
*PASSSWORD - Password with which to authenticate
* TIMEOUT - Amount of time to wait for a connection (seconds)
* FROM_EMAIL - Sender address for emails sent by NetBox
* `SERVER` - Hostname or IP address of the email server (use `localhost` if running locally)
* `PORT` - TCP port to use for the connection (default: `25`)
* `USERNAME` - Username with which to authenticate
* `PASSSWORD` - Password with which to authenticate
* `USE_SSL` - Use SSL when connecting to the server (default: `False`)
* `USE_TLS` - Use TLS when connecting to the server (default: `False`)
* `SSL_CERTFILE` - Path to the PEM-formatted SSL certificate file (optional)
* `SSL_KEYFILE` - Path to the PEM-formatted SSL private key file (optional)
* `TIMEOUT` - Amount of time to wait for a connection, in seconds (default: `10`)
* `FROM_EMAIL` - Sender address for emails sent by NetBox
!!! note
The `USE_SSL` and `USE_TLS` parameters are mutually exclusive.
Email is sent from NetBox only for critical events or if configured for [logging](#logging). If you would like to test the email server configuration, Django provides a convenient [send_mail()](https://docs.djangoproject.com/en/stable/topics/email/#send-mail) function accessible within the NetBox shell:
```no-highlight
# python ./manage.py nbshell
>>> from django.core.mail import send_mail
>>> send_mail(
'Test Email Subject',
'Test Email Body',
'noreply-netbox@example.com',
['users@example.com'],
fail_silently=False
)
```
---
# ENFORCE_GLOBAL_UNIQUE
## EXEMPT_VIEW_PERMISSIONS
Default: False
Default: Empty list
Enforcement of unique IP space can be toggled on a per-VRF basis. To enforce unique IP space within the global table (all prefixes and IP addresses not assigned to a VRF), set `ENFORCE_GLOBAL_UNIQUE` to True.
A list of NetBox models to exempt from the enforcement of view permissions. Models listed here will be viewable by all users, both authenticated and anonymous.
List models in the form `<app>.<model>`. For example:
```python
EXEMPT_VIEW_PERMISSIONS = [
'dcim.site',
'dcim.region',
'ipam.prefix',
]
```
To exempt _all_ models from view permission enforcement, set the following. (Note that `EXEMPT_VIEW_PERMISSIONS` must be an iterable.)
```python
EXEMPT_VIEW_PERMISSIONS = ['*']
```
!!! note
Using a wildcard will not affect certain potentially sensitive models, such as user permissions. If there is a need to exempt these models, they must be specified individually.
---
## FIELD_CHOICES
Some static choice fields on models can be configured with custom values. This is done by defining `FIELD_CHOICES` as a dictionary mapping model fields to their choices. Each choice in the list must have a database value and a human-friendly label, and may optionally specify a color. (A list of available colors is provided below.)
The choices provided can either replace the stock choices provided by NetBox, or append to them. To _replace_ the available choices, specify the app, model, and field name separated by dots. For example, the site model would be referenced as `dcim.Site.status`. To _extend_ the available choices, append a plus sign to the end of this string (e.g. `dcim.Site.status+`).
For example, the following configuration would replace the default site status choices with the options Foo, Bar, and Baz:
```python
FIELD_CHOICES = {
'dcim.Site.status': (
('foo', 'Foo', 'red'),
('bar', 'Bar', 'green'),
('baz', 'Baz', 'blue'),
)
}
```
Appending a plus sign to the field identifier would instead _add_ these choices to the ones already offered:
```python
FIELD_CHOICES = {
'dcim.Site.status+': (
...
)
}
```
The following model fields support configurable choices:
* `circuits.Circuit.status`
* `dcim.Device.status`
* `dcim.PowerFeed.status`
* `dcim.Rack.status`
* `dcim.Site.status`
* `extras.JournalEntry.kind`
* `ipam.IPAddress.status`
* `ipam.IPRange.status`
* `ipam.Prefix.status`
* `ipam.VLAN.status`
* `virtualization.VirtualMachine.status`
The following colors are supported:
* `blue`
* `indigo`
* `purple`
* `pink`
* `red`
* `orange`
* `yellow`
* `green`
* `teal`
* `cyan`
* `gray`
* `black`
* `white`
---
## HTTP_PROXIES
Default: None
A dictionary of HTTP proxies to use for outbound requests originating from NetBox (e.g. when sending webhook requests). Proxies should be specified by schema (HTTP and HTTPS) as per the [Python requests library documentation](https://2.python-requests.org/en/master/user/advanced/). For example:
```python
HTTP_PROXIES = {
'http': 'http://10.10.1.10:3128',
'https': 'http://10.10.1.10:1080',
}
```
---
## INTERNAL_IPS
Default: `('127.0.0.1', '::1')`
A list of IP addresses recognized as internal to the system, used to control the display of debugging output. For
example, the debugging toolbar will be viewable only when a client is accessing NetBox from one of the listed IP
addresses (and [`DEBUG`](#debug) is true).
---
## LOGGING
By default, all messages of INFO severity or higher will be logged to the console. Additionally, if `DEBUG` is False and email access has been configured, ERROR and CRITICAL messages will be emailed to the users defined in `ADMINS`.
By default, all messages of INFO severity or higher will be logged to the console. Additionally, if [`DEBUG`](#debug) is False and email access has been configured, ERROR and CRITICAL messages will be emailed to the users defined in [`ADMINS`](#admins).
The Django framework on which NetBox runs allows for the customization of logging, e.g. to write logs to file. Please consult the [Django logging documentation](https://docs.djangoproject.com/en/1.11/topics/logging/) for more information on configuring this setting. Below is an example which will write all INFO and higher messages to a file:
The Django framework on which NetBox runs allows for the customization of logging format and destination. Please consult the [Django logging documentation](https://docs.djangoproject.com/en/stable/topics/logging/) for more information on configuring this setting. Below is an example which will write all INFO and higher messages to a local file:
```
```python
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
@@ -109,95 +283,160 @@ LOGGING = {
}
```
### Available Loggers
* `netbox.<app>.<model>` - Generic form for model-specific log messages
* `netbox.auth.*` - Authentication events
* `netbox.api.views.*` - Views which handle business logic for the REST API
* `netbox.views.*` - Views which handle business logic for the web UI
---
## LOGIN_PERSISTENCE
Default: False
If true, the lifetime of a user's authentication session will be automatically reset upon each valid request. For example, if [`LOGIN_TIMEOUT`](#login_timeout) is configured to 14 days (the default), and a user whose session is due to expire in five days makes a NetBox request (with a valid session cookie), the session's lifetime will be reset to 14 days.
Note that enabling this setting causes NetBox to update a user's session in the database (or file, as configured per [`SESSION_FILE_PATH`](#session_file_path)) with each request, which may introduce significant overhead in very active environments. It also permits an active user to remain authenticated to NetBox indefinitely.
---
## LOGIN_REQUIRED
Default: False
Setting this to True will permit only authenticated users to access any part of NetBox. By default, anonymous users are permitted to access most data in NetBox (excluding secrets) but not make any changes.
Setting this to True will permit only authenticated users to access any part of NetBox. By default, anonymous users are permitted to access most data in NetBox but not make any changes.
---
## MAINTENANCE_MODE
## LOGIN_TIMEOUT
Default: 1209600 seconds (14 days)
The lifetime (in seconds) of the authentication cookie issued to a NetBox user upon login.
---
## MEDIA_ROOT
Default: $INSTALL_ROOT/netbox/media/
The file path to the location where media files (such as image attachments) are stored. By default, this is the `netbox/media/` directory within the base NetBox installation path.
---
## METRICS_ENABLED
Default: False
Setting this to True will display a "maintenance mode" banner at the top of every page.
Toggle the availability Prometheus-compatible metrics at `/metrics`. See the [Prometheus Metrics](../additional-features/prometheus-metrics.md) documentation for more details.
---
## MAX_PAGE_SIZE
## PLUGINS
Default: 1000
Default: Empty
An API consumer can request an arbitrary number of objects by appending the "limit" parameter to the URL (e.g. `?limit=1000`). This setting defines the maximum limit. Setting it to `0` or `None` will allow an API consumer to request all objects by specifying `?limit=0`.
A list of installed [NetBox plugins](../../plugins/) to enable. Plugins will not take effect unless they are listed here.
!!! warning
Plugins extend NetBox by allowing external code to run with the same access and privileges as NetBox itself. Only install plugins from trusted sources. The NetBox maintainers make absolutely no guarantees about the integrity or security of your installation with plugins enabled.
---
## NAPALM_USERNAME
## PLUGINS_CONFIG
## NAPALM_PASSWORD
Default: Empty
NetBox will use these credentials when authenticating to remote devices via the [NAPALM library](https://napalm-automation.net/), if installed. Both parameters are optional.
This parameter holds configuration settings for individual NetBox plugins. It is defined as a dictionary, with each key using the name of an installed plugin. The specific parameters supported are unique to each plugin: Reference the plugin's documentation to determine the supported parameters. An example configuration is shown below:
Note: If SSH public key authentication has been set up for the system account under which NetBox runs, these parameters are not needed.
---
## NAPALM_ARGS
A dictionary of optional arguments to pass to NAPALM when instantiating a network driver. See the NAPALM documentation for a [complete list of optional arguments](http://napalm.readthedocs.io/en/latest/support/#optional-arguments). An example:
```
NAPALM_ARGS = {
'api_key': '472071a93b60a1bd1fafb401d9f8ef41',
'port': 2222,
```python
PLUGINS_CONFIG = {
'plugin1': {
'foo': 123,
'bar': True
},
'plugin2': {
'foo': 456,
},
}
```
Note: Some platforms (e.g. Cisco IOS) require an argument named `secret` to be passed in addition to the normal password. If desired, you can use the configured `NAPALM_PASSWORD` as the value for this argument:
```
NAPALM_USERNAME = 'username'
NAPALM_PASSWORD = 'MySecretPassword'
NAPALM_ARGS = {
'secret': NAPALM_PASSWORD,
# Include any additional args here
}
```
Note that a plugin must be listed in `PLUGINS` for its configuration to take effect.
---
## NAPALM_TIMEOUT
## RELEASE_CHECK_URL
Default: 30 seconds
Default: None (disabled)
The amount of time (in seconds) to wait for NAPALM to connect to a device.
This parameter defines the URL of the repository that will be checked for new NetBox releases. When a new release is detected, a message will be displayed to administrative users on the home page. This can be set to the official repository (`'https://api.github.com/repos/netbox-community/netbox/releases'`) or a custom fork. Set this to `None` to disable automatic update checks.
!!! note
The URL provided **must** be compatible with the [GitHub REST API](https://docs.github.com/en/rest).
---
## NETBOX_USERNAME (Deprecated)
## REPORTS_ROOT
## NETBOX_PASSWORD (Deprecated)
Default: `$INSTALL_ROOT/netbox/reports/`
These settings have been deprecated and will be removed in NetBox v2.2. Please use `NAPALM_USERNAME` and `NAPALM_PASSWORD` instead.
The file path to the location where [custom reports](../customization/reports.md) will be kept. By default, this is the `netbox/reports/` directory within the base NetBox installation path.
---
## PAGINATE_COUNT
## RQ_DEFAULT_TIMEOUT
Default: 50
Default: `300`
Determine how many objects to display per page within each list of objects.
The maximum execution time of a background task (such as running a custom script), in seconds.
---
## PREFER_IPV4
## SCRIPTS_ROOT
Default: False
Default: `$INSTALL_ROOT/netbox/scripts/`
When determining the primary IP address for a device, IPv6 is preferred over IPv4 by default. Set this to True to prefer IPv4 instead.
The file path to the location where [custom scripts](../customization/custom-scripts.md) will be kept. By default, this is the `netbox/scripts/` directory within the base NetBox installation path.
---
## SESSION_COOKIE_NAME
Default: `sessionid`
The name used for the session cookie. See the [Django documentation](https://docs.djangoproject.com/en/stable/ref/settings/#session-cookie-name) for more detail.
---
## SESSION_FILE_PATH
Default: None
HTTP session data is used to track authenticated users when they access NetBox. By default, NetBox stores session data in its PostgreSQL database. However, this inhibits authentication to a standby instance of NetBox without write access to the database. Alternatively, a local file path may be specified here and NetBox will store session data as files instead of using the database. Note that the NetBox system user must have read and write permissions to this path.
---
## STORAGE_BACKEND
Default: None (local storage)
The backend storage engine for handling uploaded files (e.g. image attachments). NetBox supports integration with the [`django-storages`](https://django-storages.readthedocs.io/en/stable/) package, which provides backends for several popular file storage services. If not configured, local filesystem storage will be used.
The configuration parameters for the specified storage backend are defined under the `STORAGE_CONFIG` setting.
---
## STORAGE_CONFIG
Default: Empty
A dictionary of configuration parameters for the storage backend configured as `STORAGE_BACKEND`. The specific parameters to be used here are specific to each backend; see the [`django-storages` documentation](https://django-storages.readthedocs.io/en/stable/) for more detail.
If `STORAGE_BACKEND` is not defined, this setting will be ignored.
---
@@ -205,21 +444,19 @@ When determining the primary IP address for a device, IPv6 is preferred over IPv
Default: UTC
The time zone NetBox will use when dealing with dates and times. It is recommended to use UTC time unless you have a specific need to use a local time zone. [List of available time zones](https://en.wikipedia.org/wiki/List_of_tz_database_time_zones).
The time zone NetBox will use when dealing with dates and times. It is recommended to use UTC time unless you have a specific need to use a local time zone. Please see the [list of available time zones](https://en.wikipedia.org/wiki/List_of_tz_database_time_zones).
---
## Date and Time Formatting
You may define custom formatting for date and times. For detailed instructions on writing format strings, please see [the Django documentation](https://docs.djangoproject.com/en/dev/ref/templates/builtins/#date).
You may define custom formatting for date and times. For detailed instructions on writing format strings, please see [the Django documentation](https://docs.djangoproject.com/en/stable/ref/templates/builtins/#date). Default formats are listed below.
Defaults:
```
```python
DATE_FORMAT = 'N j, Y' # June 26, 2016
SHORT_DATE_FORMAT = 'Y-m-d' # 2016-06-27
SHORT_DATE_FORMAT = 'Y-m-d' # 2016-06-26
TIME_FORMAT = 'g:i a' # 1:23 p.m.
SHORT_TIME_FORMAT = 'H:i:s' # 13:23:00
DATETIME_FORMAT = 'N j, Y g:i a' # June 26, 2016 1:23 p.m.
The configuration parameters listed here control remote authentication for NetBox. Note that `REMOTE_AUTH_ENABLED` must be true in order for these settings to take effect.
---
## REMOTE_AUTH_AUTO_CREATE_USER
Default: `False`
If true, NetBox will automatically create local accounts for users authenticated via a remote service. (Requires `REMOTE_AUTH_ENABLED`.)
This is the Python path to the custom [Django authentication backend](https://docs.djangoproject.com/en/stable/topics/auth/customizing/) to use for external user authentication. NetBox provides two built-in backends (listed below), though custom authentication backends may also be provided by other packages or plugins.
*`netbox.authentication.RemoteUserBackend`
*`netbox.authentication.LDAPBackend`
---
## REMOTE_AUTH_DEFAULT_GROUPS
Default: `[]` (Empty list)
The list of groups to assign a new user account when created using remote authentication. (Requires `REMOTE_AUTH_ENABLED`.)
---
## REMOTE_AUTH_DEFAULT_PERMISSIONS
Default: `{}` (Empty dictionary)
A mapping of permissions to assign a new user account when created using remote authentication. Each key in the dictionary should be set to a dictionary of the attributes to be applied to the permission, or `None` to allow all objects. (Requires `REMOTE_AUTH_ENABLED` as True and `REMOTE_AUTH_GROUP_SYNC_ENABLED` as False.)
---
## REMOTE_AUTH_ENABLED
Default: `False`
NetBox can be configured to support remote user authentication by inferring user authentication from an HTTP header set by the HTTP reverse proxy (e.g. nginx or Apache). Set this to `True` to enable this functionality. (Local authentication will still take effect as a fallback.) (`REMOTE_AUTH_DEFAULT_GROUPS` will not function if `REMOTE_AUTH_ENABLED` is enabled)
---
## REMOTE_AUTH_GROUP_SYNC_ENABLED
Default: `False`
NetBox can be configured to sync remote user groups by inferring user authentication from an HTTP header set by the HTTP reverse proxy (e.g. nginx or Apache). Set this to `True` to enable this functionality. (Local authentication will still take effect as a fallback.) (Requires `REMOTE_AUTH_ENABLED`.)
---
## REMOTE_AUTH_HEADER
Default: `'HTTP_REMOTE_USER'`
When remote user authentication is in use, this is the name of the HTTP header which informs NetBox of the currently authenticated user. For example, to use the request header `X-Remote-User` it needs to be set to `HTTP_X_REMOTE_USER`. (Requires `REMOTE_AUTH_ENABLED`.)
---
## REMOTE_AUTH_GROUP_HEADER
Default: `'HTTP_REMOTE_USER_GROUP'`
When remote user authentication is in use, this is the name of the HTTP header which informs NetBox of the currently authenticated user. For example, to use the request header `X-Remote-User-Groups` it needs to be set to `HTTP_X_REMOTE_USER_GROUPS`. (Requires `REMOTE_AUTH_ENABLED` and `REMOTE_AUTH_GROUP_SYNC_ENABLED` )
---
## REMOTE_AUTH_SUPERUSER_GROUPS
Default: `[]` (Empty list)
The list of groups that promote an remote User to Superuser on Login. If group isn't present on next Login, the Role gets revoked. (Requires `REMOTE_AUTH_ENABLED` and `REMOTE_AUTH_GROUP_SYNC_ENABLED` )
---
## REMOTE_AUTH_SUPERUSERS
Default: `[]` (Empty list)
The list of users that get promoted to Superuser on Login. If user isn't present in list on next Login, the Role gets revoked. (Requires `REMOTE_AUTH_ENABLED` and `REMOTE_AUTH_GROUP_SYNC_ENABLED` )
---
## REMOTE_AUTH_STAFF_GROUPS
Default: `[]` (Empty list)
The list of groups that promote an remote User to Staff on Login. If group isn't present on next Login, the Role gets revoked. (Requires `REMOTE_AUTH_ENABLED` and `REMOTE_AUTH_GROUP_SYNC_ENABLED` )
---
## REMOTE_AUTH_STAFF_USERS
Default: `[]` (Empty list)
The list of users that get promoted to Staff on Login. If user isn't present in list on next Login, the Role gets revoked. (Requires `REMOTE_AUTH_ENABLED` and `REMOTE_AUTH_GROUP_SYNC_ENABLED` )
---
## REMOTE_AUTH_GROUP_SEPARATOR
Default: `|` (Pipe)
The Seperator upon which `REMOTE_AUTH_GROUP_HEADER` gets split into individual Groups. This needs to be coordinated with your authentication Proxy. (Requires `REMOTE_AUTH_ENABLED` and `REMOTE_AUTH_GROUP_SYNC_ENABLED` )
This is a list of valid fully-qualified domain names (FQDNs) and/or IP addresses that can be used to reach the NetBox service. Usually this is the same as the hostname for the NetBox server, but can also be different; for example, when using a reverse proxy serving the NetBox website under a different FQDN than the hostname of the NetBox server. To help guard against [HTTP Host header attackes](https://docs.djangoproject.com/en/3.0/topics/security/#host-headers-virtual-hosting), NetBox will not permit access to the server via any other hostnames (or IPs).
!!! note
This parameter must always be defined as a list or tuple, even if only a single value is provided.
The value of this option is also used to set `CSRF_TRUSTED_ORIGINS`, which restricts POST requests to the same set of hosts (more about this [here](https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-CSRF_TRUSTED_ORIGINS)). Keep in mind that NetBox, by default, sets `USE_X_FORWARDED_HOST` to true, which means that if you're using a reverse proxy, it's the FQDN used to reach that reverse proxy which needs to be in this list (more about this [here](https://docs.djangoproject.com/en/stable/ref/settings/#allowed-hosts)).
If you are not yet sure what the domain name and/or IP address of the NetBox installation will be, and are comfortable accepting the risks in doing so, you can set this to a wildcard (asterisk) to allow all host values:
```
ALLOWED_HOSTS = ['*']
```
---
## DATABASE
NetBox requires access to a PostgreSQL 10 or later database service to store data. This service can run locally on the NetBox server or on a remote system. The following parameters must be defined within the `DATABASE` dictionary:
*`NAME` - Database name
*`USER` - PostgreSQL username
*`PASSWORD` - PostgreSQL password
*`HOST` - Name or IP address of the database server (use `localhost` if running locally)
*`PORT` - TCP port of the PostgreSQL service; leave blank for default port (TCP/5432)
*`CONN_MAX_AGE` - Lifetime of a [persistent database connection](https://docs.djangoproject.com/en/stable/ref/databases/#persistent-connections), in seconds (300 is the default)
'PORT':'',# Database port (leave blank for default)
'CONN_MAX_AGE':300,# Max database connection age
}
```
!!! note
NetBox supports all PostgreSQL database options supported by the underlying Django framework. For a complete list of available parameters, please see [the Django documentation](https://docs.djangoproject.com/en/stable/ref/settings/#databases).
---
## REDIS
[Redis](https://redis.io/) is an in-memory data store similar to memcached. While Redis has been an optional component of
NetBox since the introduction of webhooks in version 2.4, it is required starting in 2.6 to support NetBox's caching
functionality (as well as other planned features). In 2.7, the connection settings were broken down into two sections for
task queuing and caching, allowing the user to connect to different Redis instances/databases per feature.
Redis is configured using a configuration setting similar to `DATABASE` and these settings are the same for both of the `tasks` and `caching` subsections:
*`HOST` - Name or IP address of the Redis server (use `localhost` if running locally)
*`PORT` - TCP port of the Redis service; leave blank for default port (6379)
*`PASSWORD` - Redis password (if set)
*`DATABASE` - Numeric database ID
*`SSL` - Use SSL connection to Redis
*`INSECURE_SKIP_TLS_VERIFY` - Set to `True` to **disable** TLS certificate verification (not recommended)
An example configuration is provided below:
```python
REDIS={
'tasks':{
'HOST':'redis.example.com',
'PORT':1234,
'PASSWORD':'foobar',
'DATABASE':0,
'SSL':False,
},
'caching':{
'HOST':'localhost',
'PORT':6379,
'PASSWORD':'',
'DATABASE':1,
'SSL':False,
}
}
```
!!! note
If you are upgrading from a NetBox release older than v2.7.0, please note that the Redis connection configuration
settings have changed. Manual modification to bring the `REDIS` section inline with the above specification is
necessary
!!! warning
It is highly recommended to keep the task and cache databases separate. Using the same database number on the
same Redis instance for both may result in queued background tasks being lost during cache flushing events.
### Using Redis Sentinel
If you are using [Redis Sentinel](https://redis.io/topics/sentinel) for high-availability purposes, there is minimal
configuration necessary to convert NetBox to recognize it. It requires the removal of the `HOST` and `PORT` keys from
above and the addition of three new keys.
*`SENTINELS`: List of tuples or tuple of tuples with each inner tuple containing the name or IP address
of the Redis server and port for each sentinel instance to connect to
*`SENTINEL_SERVICE`: Name of the master / service to connect to
*`SENTINEL_TIMEOUT`: Connection timeout, in seconds
It is permissible to use Sentinel for only one database and not the other.
---
## SECRET_KEY
This is a secret, random string used to assist in the creation new cryptographic hashes for passwords and HTTP cookies. The key defined here should not be shared outside of the configuration file. `SECRET_KEY` can be changed at any time, however be aware that doing so will invalidate all existing sessions.
Please note that this key is **not** used directly for hashing user passwords or for the encrypted storage of secret data in NetBox.
`SECRET_KEY` should be at least 50 characters in length and contain a random mix of letters, digits, and symbols. The script located at `$INSTALL_ROOT/netbox/generate_secret_key.py` may be used to generate a suitable key.
Each device type is assigned a number of component templates which define the physical components within a device. These are:
* Console ports
* Console server ports
* Power ports
* Power outlets
* Network interfaces
* Front ports
* Rear ports
* Device bays (which house child devices)
Whenever a new device is created, its components are automatically created per the templates assigned to its device type. For example, a Juniper EX4300-48T device type might have the following component templates defined:
* One template for a console port ("Console")
* Two templates for power ports ("PSU0" and "PSU1")
* 48 templates for 1GE interfaces ("ge-0/0/0" through "ge-0/0/47")
* Four templates for 10GE interfaces ("xe-0/2/0" through "xe-0/2/3")
Once component templates have been created, every new device that you create as an instance of this type will automatically be assigned each of the components listed above.
!!! note
Assignment of components from templates occurs only at the time of device creation. If you modify the templates of a device type, it will not affect devices which have already been created. However, you always have the option of adding, modifying, or deleting components on existing devices.
Several features within NetBox, such as export templates and webhooks, utilize Jinja2 templating. For convenience, objects which support custom field assignment expose custom field data through the `cf` property. This is a bit cleaner than accessing custom field data through the actual field (`custom_field_data`).
For example, a custom field named `foo123` on the Site model is accessible on an instance as `{{ site.cf.foo123 }}`.
## Custom Fields and the REST API
When retrieving an object via the REST API, all of its custom data will be included within the `custom_fields` attribute. For example, below is the partial output of a site with two custom fields defined:
Custom scripting was introduced to provide a way for users to execute custom logic from within the NetBox UI. Custom scripts enable the user to directly and conveniently manipulate NetBox data in a prescribed fashion. They can be used to accomplish myriad tasks, such as:
* Automatically populate new devices and cables in preparation for a new site deployment
* Create a range of new reserved prefixes or IP addresses
* Fetch data from an external source and import it to NetBox
Custom scripts are Python code and exist outside of the official NetBox code base, so they can be updated and changed without interfering with the core NetBox installation. And because they're completely custom, there is no inherent limitation on what a script can accomplish.
## Writing Custom Scripts
All custom scripts must inherit from the `extras.scripts.Script` base class. This class provides the functionality necessary to generate forms and log activity.
```python
fromextras.scriptsimportScript
classMyScript(Script):
...
```
Scripts comprise two core components: a set of variables and a `run()` method. Variables allow your script to accept user input via the NetBox UI, but they are optional: If your script does not require any user input, there is no need to define any variables.
The `run()` method is where your script's execution logic lives. (Note that your script can have as many methods as needed: this is merely the point of invocation for NetBox.)
```python
classMyScript(Script):
var1=StringVar(...)
var2=IntegerVar(...)
var3=ObjectVar(...)
defrun(self,data,commit):
...
```
The `run()` method should accept two arguments:
*`data` - A dictionary containing all of the variable data passed via the web form.
*`commit` - A boolean indicating whether database changes will be committed.
!!! note
The `commit` argument was introduced in NetBox v2.7.8. Backward compatibility is maintained for scripts which accept only the `data` argument, however beginning with v2.10 NetBox will require the `run()` method of every script to accept both arguments. (Either argument may still be ignored within the method.)
Defining script variables is optional: You may create a script with only a `run()` method if no user input is needed.
Any output generated by the script during its execution will be displayed under the "output" tab in the UI.
By default, scripts within a module are ordered alphabetically in the scripts list page. To return scripts in a specific order, you can define the `script_order` variable at the end of your module. The `script_order` variable is a tuple which contains each Script class in the desired order. Any scripts that are omitted from this list will be listed last.
```python
fromextras.scriptsimportScript
classMyCustomScript(Script):
...
classAnotherCustomScript(Script):
...
script_order=(MyCustomScript,AnotherCustomScript)
```
## Module Attributes
### `name`
You can define `name` within a script module (the Python file which contains one or more scripts) to set the module name. If `name` is not defined, the module's file name will be used.
## Script Attributes
Script attributes are defined under a class named `Meta` within the script. These are optional, but encouraged.
### `name`
This is the human-friendly names of your script. If omitted, the class name will be used.
### `description`
A human-friendly description of what your script does.
### `field_order`
By default, script variables will be ordered in the form as they are defined in the script. `field_order` may be defined as an iterable of field names to determine the order in which variables are rendered. Any fields not included in this iterable be listed last.
### `commit_default`
The checkbox to commit database changes when executing a script is checked by default. Set `commit_default` to False under the script's Meta class to leave this option unchecked by default.
```python
commit_default=False
```
## Accessing Request Data
Details of the current HTTP request (the one being made to execute the script) are available as the instance attribute `self.request`. This can be used to infer, for example, the user executing the script and the client IP address:
self.log_info(f"Running as user {username} (IP: {ip_address})...")
```
For a complete list of available request parameters, please see the [Django documentation](https://docs.djangoproject.com/en/stable/ref/request-response/).
## Reading Data from Files
The Script class provides two convenience methods for reading data from files:
*`load_yaml`
*`load_json`
These two methods will load data in YAML or JSON format, respectively, from files within the local path (i.e. `SCRIPTS_ROOT`).
## Logging
The Script object provides a set of convenient functions for recording messages at different severity levels:
*`log_debug`
*`log_success`
*`log_info`
*`log_warning`
*`log_failure`
Log messages are returned to the user upon execution of the script. Markdown rendering is supported for log messages.
## Variable Reference
### Default Options
All custom script variables support the following default options:
*`default` - The field's default value
*`description` - A brief user-friendly description of the field
*`label` - The field name to be displayed in the rendered form
*`required` - Indicates whether the field is mandatory (all fields are required by default)
*`widget` - The class of form widget to use (see the [Django documentation](https://docs.djangoproject.com/en/stable/ref/forms/widgets/))
### StringVar
Stores a string of characters (i.e. text). Options include:
*`min_length` - Minimum number of characters
*`max_length` - Maximum number of characters
*`regex` - A regular expression against which the provided value must match
Note that `min_length` and `max_length` can be set to the same number to effect a fixed-length field.
### TextVar
Arbitrary text of any length. Renders as a multi-line text input field.
### IntegerVar
Stores a numeric integer. Options include:
*`min_value` - Minimum value
*`max_value` - Maximum value
### BooleanVar
A true/false flag. This field has no options beyond the defaults listed above.
### ChoiceVar
A set of choices from which the user can select one.
*`choices` - A list of `(value, label)` tuples representing the available choices. For example:
```python
CHOICES=(
('n','North'),
('s','South'),
('e','East'),
('w','West')
)
direction=ChoiceVar(choices=CHOICES)
```
In the example above, selecting the choice labeled "North" will submit the value `n`.
### MultiChoiceVar
Similar to `ChoiceVar`, but allows for the selection of multiple choices.
### ObjectVar
A particular object within NetBox. Each ObjectVar must specify a particular model, and allows the user to select one of the available instances. ObjectVar accepts several arguments, listed below.
*`model` - The model class
*`query_params` - A dictionary of query parameters to use when retrieving available options (optional)
*`null_option` - A label representing a "null" or empty choice (optional)
To limit the selections available within the list, additional query parameters can be passed as the `query_params` dictionary. For example, to show only devices with an "active" status:
```python
device=ObjectVar(
model=Device,
query_params={
'status':'active'
}
)
```
Multiple values can be specified by assigning a list to the dictionary key. It is also possible to reference the value of other fields in the form by prepending a dollar sign (`$`) to the variable's name.
```python
region=ObjectVar(
model=Region
)
site=ObjectVar(
model=Site,
query_params={
'region_id':'$region'
}
)
```
### MultiObjectVar
Similar to `ObjectVar`, but allows for the selection of multiple objects.
### FileVar
An uploaded file. Note that uploaded files are present in memory only for the duration of the script's execution: They will not be automatically saved for future use. The script is responsible for writing file contents to disk where necessary.
### IPAddressVar
An IPv4 or IPv6 address, without a mask. Returns a `netaddr.IPAddress` object.
### IPAddressWithMaskVar
An IPv4 or IPv6 address with a mask. Returns a `netaddr.IPNetwork` object which includes the mask.
### IPNetworkVar
An IPv4 or IPv6 network with a mask. Returns a `netaddr.IPNetwork` object. Two attributes are available to validate the provided mask:
*`min_prefix_length` - Minimum length of the mask
*`max_prefix_length` - Maximum length of the mask
## Running Custom Scripts
!!! note
To run a custom script, a user must be assigned the `extras.run_script` permission. This is achieved by assigning the user (or group) a permission on the Script object and specifying the `run` action in the admin UI as shown below.

### Via the Web UI
Custom scripts can be run via the web UI by navigating to the script, completing any required form data, and clicking the "run script" button.
### Via the API
To run a script via the REST API, issue a POST request to the script's endpoint specifying the form data and commitment. For example, to run a script named `example.MyReport`, we would make a request such as the following:
The required ``<module>.<script>`` argument is the script to run where ``<module>`` is the name of the python file in the ``scripts`` directory without the ``.py`` extension and ``<script>`` is the name of the script class in the ``<module>`` to run.
The optional ``--data "<data>"`` argument is the data to send to the script
The optional ``--loglevel`` argument is the desired logging level to output to the console.
The optional ``--commit`` argument will commit any changes in the script to the database.
## Example
Below is an example script that creates new objects for a planned site. The user is prompted for three variables:
* The name of the new site
* The device model (a filtered list of defined device types)
* The number of access switches to create
These variables are presented as a web form to be completed by the user. Once submitted, the script's `run()` method is called to create the appropriate objects.
```python
from django.utils.text import slugify
from dcim.choices import DeviceStatusChoices, SiteStatusChoices
from dcim.models import Device, DeviceRole, DeviceType, Manufacturer, Site
NetBox validates every object prior to it being written to the database to ensure data integrity. This validation includes things like checking for proper formatting and that references to related objects are valid. However, you may wish to supplement this validation with some rules of your own. For example, perhaps you require that every site's name conforms to a specific pattern. This can be done using custom validation rules.
## Custom Validation Rules
Custom validation rules are expressed as a mapping of model attributes to a set of rules to which that attribute must conform. For example:
```json
{
"name":{
"min_length":5,
"max_length":30
}
}
```
This defines a custom validator which checks that the length of the `name` attribute for an object is at least five characters long, and no longer than 30 characters. This validation is executed _after_ NetBox has performed its own internal validation.
The `CustomValidator` class supports several validation types:
*`min`: Minimum value
*`max`: Maximum value
*`min_length`: Minimum string length
*`max_length`: Maximum string length
*`regex`: Application of a [regular expression](https://en.wikipedia.org/wiki/Regular_expression)
*`required`: A value must be specified
*`prohibited`: A value must _not_ be specified
The `min` and `max` types should be defined for numeric values, whereas `min_length`, `max_length`, and `regex` are suitable for character strings (text values). The `required` and `prohibited` validators may be used for any field, and should be passed a value of `True`.
!!! warning
Bear in mind that these validators merely supplement NetBox's own validation: They will not override it. For example, if a certain model field is required by NetBox, setting a validator for it with `{'prohibited': True}` will not work.
### Custom Validation Logic
There may be instances where the provided validation types are insufficient. NetBox provides a `CustomValidator` class which can be extended to enforce arbitrary validation logic by overriding its `validate()` method, and calling `fail()` when an unsatisfactory condition is detected.
self.fail("Active sites must have a description set!",field='status')
```
The `fail()` method may optionally specify a field with which to associate the supplied error message. If specified, the error message will appear to the user as associated with this field. If omitted, the error message will not be associated with any field.
## Assigning Custom Validators
Custom validators are associated with specific NetBox models under the [CUSTOM_VALIDATORS](../configuration/dynamic-settings.md#custom_validators) configuration parameter. There are three manners by which custom validation rules can be defined:
1. Plain JSON mapping (no custom logic)
2. Dotted path to a custom validator class
3. Direct reference to a custom validator class
### Plain Data
For cases where custom logic is not needed, it is sufficient to pass validation rules as plain JSON-compatible objects. This approach typically affords the most portability for your configuration. For instance:
```python
CUSTOM_VALIDATORS={
"dcim.site":[
{
"name":{
"min_length":5,
"max_length":30,
}
}
],
"dcim.device":[
{
"platform":{
"required":True,
}
}
]
}
```
### Dotted Path
In instances where a custom validator class is needed, it can be referenced by its Python path (relative to NetBox's working directory):
```python
CUSTOM_VALIDATORS={
'dcim.site':(
'my_validators.Validator1',
'my_validators.Validator2',
),
'dcim.device':(
'my_validators.Validator3',
)
}
```
### Direct Class Reference
This approach requires each class being instantiated to be imported directly within the Python configuration file.
When it is necessary to provide authentication credentials (such as when [`LOGIN_REQUIRED`](../configuration/optional-settings.md#login_required) has been enabled), it is recommended to render export templates via the REST API. This allows the client to specify an authentication token. To render an export template via the REST API, make a `GET` request to the model's list endpoint and append the `export` parameter specifying the export template name. For example:
```
GET /api/dcim/sites/?export=MyTemplateName
```
Note that the body of the response will contain only the rendered export template content, as opposed to a JSON object or list.
## Example
Here's an example device export template that will generate a simple Nagios configuration from a list of devices.
```
{% for device in queryset %}{% if device.status and device.primary_ip %}define host{
use generic-switch
host_name {{ device.name }}
address {{ device.primary_ip.address.ip }}
}
{% endif %}{% endfor %}
```
The generated output will look something like this:
A NetBox report is a mechanism for validating the integrity of data within NetBox. Running a report allows the user to verify that the objects defined within NetBox meet certain arbitrary conditions. For example, you can write reports to check that:
* All top-of-rack switches have a console connection
* Every router has a loopback interface with an IP address assigned
* Each interface description conforms to a standard format
* Every site has a minimum set of VLANs defined
* All IP addresses have a parent prefix
...and so on. Reports are completely customizable, so there's practically no limit to what you can test for.
## Writing Reports
Reports must be saved as files in the [`REPORTS_ROOT`](../configuration/optional-settings.md#reports_root) path (which defaults to `netbox/reports/`). Each file created within this path is considered a separate module. Each module holds one or more reports (Python classes), each of which performs a certain function. The logic of each report is broken into discrete test methods, each of which applies a small portion of the logic comprising the overall test.
!!! warning
The reports path includes a file named `__init__.py`, which registers the path as a Python module. Do not delete this file.
For example, we can create a module named `devices.py` to hold all of our reports which pertain to devices in NetBox. Within that module, we might define several reports. Each report is defined as a Python class inheriting from `extras.reports.Report`.
```
from extras.reports import Report
class DeviceConnectionsReport(Report):
description = "Validate the minimum physical connections for each device"
class DeviceIPsReport(Report):
description = "Check that every device has a primary IP address assigned"
```
Within each report class, we'll create a number of test methods to execute our report's logic. In DeviceConnectionsReport, for instance, we want to ensure that every live device has a console connection, an out-of-band management connection, and two power connections.
```
from dcim.choices import DeviceStatusChoices
from dcim.models import ConsolePort, Device, PowerPort
from extras.reports import Report
class DeviceConnectionsReport(Report):
description = "Validate the minimum physical connections for each device"
def test_console_connection(self):
# Check that every console port for every active device has a connection defined.
active = DeviceStatusChoices.STATUS_ACTIVE
for console_port in ConsolePort.objects.prefetch_related('device').filter(device__status=active):
if console_port.connected_endpoint is None:
self.log_failure(
console_port.device,
"No console connection defined for {}".format(console_port.name)
)
elif not console_port.connection_status:
self.log_warning(
console_port.device,
"Console connection for {} marked as planned".format(console_port.name)
)
else:
self.log_success(console_port.device)
def test_power_connections(self):
# Check that every active device has at least two connected power supplies.
for device in Device.objects.filter(status=DeviceStatusChoices.STATUS_ACTIVE):
connected_ports = 0
for power_port in PowerPort.objects.filter(device=device):
if power_port.connected_endpoint is not None:
connected_ports += 1
if not power_port.path.is_active:
self.log_warning(
device,
"Power connection for {} marked as planned".format(power_port.name)
)
if connected_ports < 2:
self.log_failure(
device,
"{} connected power supplies found (2 needed)".format(connected_ports)
)
else:
self.log_success(device)
```
As you can see, reports are completely customizable. Validation logic can be as simple or as complex as needed. Also note that the `description` attribute support markdown syntax. It will be rendered in the report list page.
!!! warning
Reports should never alter data: If you find yourself using the `create()`, `save()`, `update()`, or `delete()` methods on objects within reports, stop and re-evaluate what you're trying to accomplish. Note that there are no safeguards against the accidental alteration or destruction of data.
The following methods are available to log results within a report:
* log(message)
* log_success(object, message=None)
* log_info(object, message)
* log_warning(object, message)
* log_failure(object, message)
The recording of one or more failure messages will automatically flag a report as failed. It is advised to log a success for each object that is evaluated so that the results will reflect how many objects are being reported on. (The inclusion of a log message is optional for successes.) Messages recorded with `log()` will appear in a report's results but are not associated with a particular object or status. Log messages also support using markdown syntax and will be rendered on the report result page.
To perform additional tasks, such as sending an email or calling a webhook, before or after a report is run, extend the `pre_run()` and/or `post_run()` methods, respectively. The status of a completed report is available as `self.failed` and the results object is `self.result`.
By default, reports within a module are ordered alphabetically in the reports list page. To return reports in a specific order, you can define the `report_order` variable at the end of your module. The `report_order` variable is a tuple which contains each Report class in the desired order. Any reports that are omitted from this list will be listed last.
Once you have created a report, it will appear in the reports list. Initially, reports will have no results associated with them. To generate results, run the report.
## Running Reports
!!! note
To run a report, a user must be assigned the `extras.run_report` permission. This is achieved by assigning the user (or group) a permission on the Report object and specifying the `run` action in the admin UI as shown below.

### Via the Web UI
Reports can be run via the web UI by navigating to the report and clicking the "run report" button at top right. Once a report has been run, its associated results will be included in the report view.
### Via the API
To run a report via the API, simply issue a POST request to its `run` endpoint. Reports are identified by their module and class name.
```
POST /api/extras/reports/<module>.<name>/run/
```
Our example report above would be called as:
```
POST /api/extras/reports/devices.DeviceConnectionsReport/run/
```
### Via the CLI
Reports can be run on the CLI by invoking the management command:
```
python3 manage.py runreport <module>
```
where ``<module>`` is the name of the python file in the ``reports`` directory without the ``.py`` extension. One or more report modules may be specified.
The circuits component of NetBox deals with the management of long-haul Internet and private transit links and providers.
# Providers
A provider is any entity which provides some form of connectivity. While this obviously includes carriers which offer Internet and private transit service, it might also include Internet exchange (IX) points and even organizations with whom you peer directly.
Each provider may be assigned an autonomous system number (ASN), an account number, and contact information.
---
# Circuits
A circuit represents a single physical data link connecting two endpoints. Each circuit belongs to a provider and must be assigned a circuit ID which is unique to that provider.
### Circuit Types
Circuits are classified by type. For example, you might define circuit types for:
* Internet transit
* Out-of-band connectivity
* Peering
* Private backhaul
Circuit types are fully customizable.
### Circuit Terminations
A circuit may have one or two terminations, annotated as the "A" and "Z" sides of the circuit. A single-termination circuit can be used when you don't know (or care) about the far end of a circuit (for example, an Internet access circuit which connects to a transit provider). A dual-termination circuit is useful for tracking circuits which connect two sites.
Each circuit termination is tied to a site, and optionally to a specific device and interface within that site. Each termination can be assigned a separate downstream and upstream speed independent from one another. Fields are also available to track cross-connect and patch panel details.
!!! note
A circuit represents a physical link, and cannot have more than two endpoints. When modeling a multi-point topology, each leg of the topology must be defined as a discrete circuit.
Data center infrastructure management (DCIM) entails all physical assets: sites, racks, devices, cabling, etc.
# Sites
How you choose to use sites will depend on the nature of your organization, but typically a site will equate to a building or campus. For example, a chain of banks might create a site to represent each of its branches, a site for its corporate headquarters, and two additional sites for its presence in two colocation facilities.
Sites can be assigned an optional facility ID to identify the actual facility housing colocated equipment, and an Autonomous System (AS) number.
### Regions
Sites can be arranged geographically using regions. A region might represent a continent, country, city, campus, or other area depending on your use case. Regions can be nested recursively to construct a hierarchy. For example, you might define several country regions, and within each of those several state or city regions to which sites are assigned.
---
# Racks
The rack model represents a physical two- or four-post equipment rack in which equipment is mounted. Each rack is assigned to a site. Rack height is measured in *rack units* (U); racks are commonly between 42U and 48U, but NetBox allows you to define racks of arbitrary height. Each rack has two faces (front and rear) on which devices can be mounted.
Each rack is assigned a name and (optionally) a separate facility ID. This is helpful when leasing space in a data center your organization does not own: The facility will often assign a seemingly arbitrary ID to a rack (for example, "M204.313") whereas internally you refer to is simply as "R113." The facility ID can alternatively be used to store a rack's serial number.
The available rack types include 2- and 4-post frames, 4-post cabinet, and wall-mounted frame and cabinet. Rail-to-rail width may be 19 or 23 inches.
### Rack Groups
Racks can be arranged into groups. As with sites, how you choose to designate rack groups will depend on the nature of your organization. For example, if each site represents a campus, each group might represent a building within a campus. If each site represents a building, each rack group might equate to a floor or room.
Each group is assigned to a parent site for easy navigation. Hierarchical recursion of rack groups is not supported.
### Rack Roles
Each rack can optionally be assigned a functional role. For example, you might designate a rack for compute or storage resources, or to house colocated customer devices. Rack roles are fully customizable.
### Rack Space Reservations
Users can reserve units within a rack for future use. Multiple non-contiguous rack units can be associated with a single reservation (but reservations cannot span multiple racks).
---
# Device Types
A device type represents a particular hardware model that exists in the real world. Device types describe the physical attributes of a device (rack height and depth), its class (e.g. console server, PDU, etc.), and its individual components (console, power, and data).
Device types are instantiated as devices installed within racks. For example, you might define a device type to represent a Juniper EX4300-48T network switch with 48 Ethernet interfaces. You can then create multiple devices of this type named "switch1," "switch2," and so on. Each device will inherit the components (such as interfaces) of its device type.
### Manufacturers
Each device type belongs to one manufacturer; e.g. Cisco, Opengear, or APC. The model number of a device type must be unique to its manufacturer.
### Component Templates
Each device type is assigned a number of component templates which define the physical interfaces a device has. These are:
* Console ports
* Console server ports
* Power ports
* Power outlets
* Interfaces
* Device bays
Whenever a new device is created, it is automatically assigned components per the templates assigned to its device type. For example, a Juniper EX4300-48T device type might have the following component templates:
* One template for a console port ("Console")
* Two templates for power ports ("PSU0" and "PSU1")
* 48 templates for 1GE interfaces ("ge-0/0/0" through "ge-0/0/47")
* Four templates for 10GE interfaces ("xe-0/2/0" through "xe-0/2/3")
Once component templates have been created, every new device that you create as an instance of this type will automatically be assigned each of the components listed above.
!!! note
Assignment of components from templates occurs only at the time of device creation. If you modify the templates of a device type, it will not affect devices which have already been created. However, you always have the option of adding, modifying, or deleting components of existing devices individually.
---
# Devices
Every piece of hardware which is installed within a rack exists in NetBox as a device. Devices are measured in rack units (U) and depth. 0U devices which can be installed in a rack but don't consume vertical rack space (such as a vertically-mounted power distribution unit) can also be defined.
When assigning a multi-U device to a rack, it is considered to be mounted in the lowest-numbered rack unit which it occupies. For example, a 3U device which occupies U8 through U10 shows as being mounted in U8. This logic applies to racks with both ascending and descending unit numbering.
A device is said to be "full depth" if its installation on one rack face prevents the installation of any other device on the opposite face within the same rack unit(s). This could be either because the device is physically too deep to allow a device behind it, or because the installation of an opposing device would impede air flow.
### Roles
NetBox allows for the definition of arbitrary device roles by which devices can be organized. For example, you might create roles for core switches, distribution switches, and access switches. In the interest of simplicity, a device can belong to only one role.
### Platforms
A device's platform is used to denote the type of software running on it. This can be helpful when it is necessary to distinguish between, for instance, different feature sets. Note that two devices of same type may be assigned different platforms: for example, one Juniper MX240 running Junos 14 and another running Junos 15.
The assignment of platforms to devices is an optional feature, and may be disregarded if not desired.
### Inventory Items
Inventory items represent hardware components installed within a device, such as a power supply or CPU. Currently, these are used merely for inventory tracking, although future development might see their functionality expand. Each item can optionally be assigned a manufacturer.
!!! note
Prior to version 2.0, inventory items were called modules.
### Components
There are six types of device components which comprise all of the interconnection logic with NetBox:
* Console ports
* Console server ports
* Power ports
* Power outlets
* Interfaces
* Device bays
Console ports connect only to console server ports, and power ports connect only to power outlets. Interfaces connect to one another in a symmetric manner: If interface A connects to interface B, interface B therefore connects to interface A. (The relationship between two interfaces is actually represented in the database by an InterfaceConnection object, but this is transparent to the user.) Each type of connection can be classified as either *planned* or *connected*. This allows for easily denoting connections which have not yet been installed.
Each interface is a assigned a form factor denoting its physical properties. Two special form factors exist: the "virtual" form factor can be used to designate logical interfaces (such as SVIs), and the "LAG" form factor can be used to desinate link aggregation groups to which physical interfaces can be assigned. Each interface can also be designated as management-only (for out-of-band management) and assigned a short description.
Device bays represent the ability of a device to house child devices. For example, you might install four blade servers into a 2U chassis. The chassis would appear in the rack elevation as a 2U device with four device bays. Each server within it would be defined as a 0U device installed in one of the device bays. Child devices do not appear on rack elevations, but they are included in the "Non-Racked Devices" list within the rack view.
This section entails features of NetBox which are not crucial to its primary functions, but provide additional value.
# Custom Fields
Each object in NetBox is represented in the database as a discrete table, and each attribute of an object exists as a column within its table. For example, sites are stored in the `dcim_site` table, which has columns named `name`, `facility`, `physical_address`, and so on. As new attributes are added to objects throughout the development of NetBox, tables are expanded to include new rows.
However, some users might want to associate with objects attributes that are somewhat esoteric in nature, and that would not make sense to include in the core NetBox database schema. For instance, suppose your organization needs to associate each device with a ticket number pointing to the support ticket that was opened to have it installed. This is certainly a legitimate use for NetBox, but it's perhaps not a common enough need to warrant expanding the internal data schema. Instead, you can create a custom field to hold this data.
Custom fields must be created through the admin UI under Extras > Custom Fields. To create a new custom field, select the object(s) to which you want it to apply, and the type of field it will be. NetBox supports six field types:
* Free-form text (up to 255 characters)
* Integer
* Boolean (true/false)
* Date
* URL
* Selection
Assign the field a name. This should be a simple database-friendly string, e.g. `tps_report`. You may optionally assign the field a human-friendly label (e.g. "TPS report") as well; the label will be displayed on forms. If a description is provided, it will appear beneath the field in a form.
Marking the field as required will require the user to provide a value for the field when creating a new object or when saving an existing object. A default value for the field may also be provided. Use "true" or "false" for boolean fields. (The default value has no effect for selection fields.)
When creating a selection field, you should create at least two choices. These choices will be arranged first by weight, with lower weights appearing higher in the list, and then alphabetically.
## Using Custom Fields
When a single object is edited, the form will include any custom fields which have been defined for the object type. These fields are included in the "Custom Fields" panel. On the backend, each custom field value is saved separately from the core object as an independent database call, so it's best to avoid adding too many custom fields per object.
When editing multiple objects, custom field values are saved in bulk. There is no significant difference in overhead when saving a custom field value for 100 objects versus one object. However, the bulk operation must be performed separately for each custom field.
# Export Templates
NetBox allows users to define custom templates that can be used when exporting objects. To create an export template, navigate to Extras > Export Templates under the admin interface.
Each export template is associated with a certain type of object. For instance, if you create an export template for VLANs, your custom template will appear under the "Export" button on the VLANs list.
Export templates are written in [Django's template language](https://docs.djangoproject.com/en/1.9/ref/templates/language/), which is very similar to Jinja2. The list of objects returned from the database is stored in the `queryset` variable, which you'll typically want to iterate through using a `for` loop. Object properties can be access by name. For example:
```
{% for rack in queryset %}
Rack: {{ rack.name }}
Site: {{ rack.site.name }}
Height: {{ rack.u_height }}U
{% endfor %}
```
To access custom fields of an object within a template, use the `cf` attribute. For example, `{{ obj.cf.color }}` will return the value (if any) for a custom field named `color` on `obj`.
A MIME type and file extension can optionally be defined for each export template. The default MIME type is `text/plain`.
## Example
Here's an example device export template that will generate a simple Nagios configuration from a list of devices.
```
{% for device in queryset %}{% if device.status and device.primary_ip %}define host{
use generic-switch
host_name {{ device.name }}
address {{ device.primary_ip.address.ip }}
}
{% endif %}{% endfor %}
```
The generated output will look something like this:
```
define host{
use generic-switch
host_name switch1
address 192.0.2.1
}
define host{
use generic-switch
host_name switch2
address 192.0.2.2
}
define host{
use generic-switch
host_name switch3
address 192.0.2.3
}
```
# Graphs
NetBox does not have the ability to generate graphs natively, but this feature allows you to embed contextual graphs from an external resources (such as a monitoring system) inside the site, provider, and interface views. Each embedded graph must be defined with the following parameters:
* **Type:** Site, provider, or interface. This determines in which view the graph will be displayed.
* **Weight:** Determines the order in which graphs are displayed (lower weights are displayed first). Graphs with equal weights will be ordered alphabetically by name.
* **Name:** The title to display above the graph.
* **Source URL:** The source of the image to be embedded. The associated object will be available as a template variable named `obj`.
* **Link URL (optional):** A URL to which the graph will be linked. The associated object will be available as a template variable named `obj`.
## Examples
You only need to define one graph object for each graph you want to include when viewing an object. For example, if you want to include a graph of traffic through an interface over the past five minutes, your graph source might looks like this:
NetBox can generate simple topology maps from the physical network connections recorded in its database. First, you'll need to create a topology map definition under the admin UI at Extras > Topology Maps.
Each topology map is associated with a site. A site can have multiple topology maps, which might each illustrate a different aspect of its infrastructure (for example, production versus backend infrastructure).
To define the scope of a topology map, decide which devices you want to include. The map will only include interface connections with both points terminated on an included device. Specify the devices to include in the **device patterns** field by entering a list of [regular expressions](https://en.wikipedia.org/wiki/Regular_expression) matching device names. For example, if you wanted to include "mgmt-switch1" through "mgmt-switch99", you might use the regex `mgmt-switch\d+`.
Each line of the **device patterns** field represents a hierarchical layer within the topology map. For example, you might map a traditional network with core, distribution, and access tiers like this:
```
core-switch-[abcd]
dist-switch\d
access-switch\d+;oob-switch\d+
```
Note that you can combine multiple regexes onto one line using semicolons. The order in which regexes are listed on a line is significant: devices matching the first regex will be rendered first, and subsequent groups will be rendered to the right of those.
# Image Attachments
Certain objects within NetBox (namely sites, racks, and devices) can have photos or other images attached to them. (Note that _only_ image files are supported.) Each attachment may optionally be assigned a name; if omitted, the attachment will be represented by its file name.
!!! note
If you experience a server error while attempting to upload an image attachment, verify that the system user NetBox runs as has write permission to the media root directory (`netbox/media/`).
IP address management (IPAM) entails the allocation of IP networks, addresses, and related numeric resources.
# VRFs
A VRF object in NetBox represents a virtual routing and forwarding (VRF) domain within a network. Each VRF is essentially a separate routing table: the same IP prefix or address can exist in multiple VRFs. VRFs are commonly used to isolate customers or organizations from one another within a network.
Each VRF is assigned a name and a unique route distinguisher (RD). VRFs are an optional feature of NetBox: Any IP prefix or address not assigned to a VRF is said to belong to the "global" table.
!!! note
By default, NetBox allows for overlapping IP space both in the global table and within each VRF. Unique space enforcement can be toggled per-VRF as well as in the global table using the `ENFORCE_GLOBAL_UNIQUE` configuration setting.
---
# Aggregates
IP address space is organized as a hierarchy, with more-specific (smaller) prefixes arranged as child nodes under less-specific (larger) prefixes. For example:
* 10.0.0.0/8
* 10.1.0.0/16
* 10.1.2.0/24
The root of the IPv4 hierarchy is 0.0.0.0/0, which encompasses all possible IPv4 addresses (and similarly, ::/0 for IPv6). However, even the largest organizations use only a small fraction of the global address space. Therefore, it makes sense to track in NetBox only the address space which is of interest to your organization.
Aggregates serve as arbitrary top-level nodes in the IP space hierarchy. They allow you to easily construct your IP scheme without any clutter of unused address space. For instance, most organizations utilize some portion of the private IPv4 space set aside in RFC 1918. So, you might define three aggregates for this space:
* 10.0.0.0/8
* 172.16.0.0/12
* 192.168.0.0/16
Additionally, you might define an aggregate for each large swath of public IPv4 space your organization uses. You'd also create aggregates for both globally routable and unique local IPv6 space. (Most organizations will not have a need to track IPv6 link local space.)
Prefixes you create in NetBox (discussed below) will be automatically organized under their respective aggregates. Any space within an aggregate which is not covered by an existing prefix will be annotated as available for allocation. Total utilization for each aggregate is displayed in the aggregates list.
Aggregates cannot overlap with one another; they can only exist in parallel. For instance, you cannot define both 10.0.0.0/8 and 10.16.0.0/16 as aggregates, because they overlap. 10.16.0.0/16 in this example would be created as a prefix and automatically grouped under 10.0.0.0/8.
### RIRs
Regional Internet Registries (RIRs) are responsible for the allocation of global address space. The five RIRs are ARIN, RIPE, APNIC, LACNIC, and AFRINIC. However, some address space has been set aside for private or internal use only, such as defined in RFCs 1918 and 6598. NetBox considers these RFCs as a sort of RIR as well; that is, an authority which "owns" certain address space.
Each aggregate must be assigned to one RIR. You are free to define whichever RIRs you choose (or create your own). Each RIR can be annotated as representing only private space.
---
# Prefixes
A prefix is an IPv4 or IPv6 network and mask expressed in CIDR notation (e.g. 192.0.2.0/24). A prefix entails only the "network portion" of an IP address; all bits in the address not covered by the mask must be zero.
Each prefix may be assigned to one VRF; prefixes not assigned to a VRF are assigned to the "global" table. Prefixes are also organized under their respective aggregates, irrespective of VRF assignment.
A prefix may optionally be assigned to one VLAN; a VLAN may have multiple prefixes assigned to it. Each prefix may also be assigned a short description.
### Statuses
Each prefix is assigned an operational status. This is one of the following:
* Container - A summary of child prefixes
* Active - Provisioned and in use
* Reserved - Designated for future use
* Deprecated - No longer in use
### Roles
Whereas a status describes a prefix's operational state, a role describes its function. For example, roles might include:
* Access segment
* Infrastructure
* NAT
* Lab
* Out-of-band
Role assignment is optional and roles are fully customizable.
---
# IP Addresses
An IP address comprises a single address (either IPv4 or IPv6) and its subnet mask. Its mask should match exactly how the IP address is configured on an interface in the real world.
Like prefixes, an IP address can optionally be assigned to a VRF (or it will appear in the "global" table). IP addresses are automatically organized under parent prefixes within their respective VRFs. Each IP address can also be assigned a short description.
An IP address can be assigned to a device's interface; an interface may have multiple IP addresses assigned to it. Further, each device may have one of its interface IPs designated as its primary IP address (for both IPv4 and IPv6).
One IP address can be designated as the network address translation (NAT) IP address for exactly one other IP address. This is useful primarily to denote the public address for a private internal IP. Tracking one-to-many NAT (or PAT) assignments is not supported.
---
# VLANs
A VLAN represents an isolated layer two domain, identified by a name and a numeric ID (1-4094) as defined in [IEEE 802.1Q](https://en.wikipedia.org/wiki/IEEE_802.1Q). Each VLAN may be assigned to a site and/or VLAN group. Like prefixes, each VLAN is assigned an operational status and (optionally) a functional role, and may include a short description.
### VLAN Groups
VLAN groups can be employed for administrative organization within NetBox. Each VLAN within a group must have a unique ID and name. VLANs which are not assigned to a group may have overlapping names and IDs, including within a site.
---
# Services
A service represents a TCP or UDP service available on a device. Each service must be defined with a name, protocol, and port number; for example, "SSH (TCP/22)." A service may optionally be bound to one or more specific IP addresses belonging to a device. (If no IP addresses are bound, the service is assumed to be reachable via any assigned IP address.)
"Secrets" are small amounts of data that must be kept confidential; for example, passwords and SNMP community strings. NetBox provides encrypted storage of secret data.
# Secrets
A secret represents a single credential or other string which must be stored securely. Each secret is assigned to a device within NetBox. The plaintext value of a secret is encrypted to a ciphertext immediately prior to storage within the database using a 256-bit AES master key. A SHA256 hash of the plaintext is also stored along with each ciphertext to validate the decrypted plaintext.
Each secret can also store an optional name parameter, which is not encrypted. This may be useful for storing user names.
### Roles
Each secret is assigned a functional role which indicates what it is used for. Typical roles might include:
* Login credentials
* SNMP community strings
* RADIUS/TACACS+ keys
* IKE key strings
* Routing protocol shared secrets
Roles are also used to control access to secrets. Each role is assigned an arbitrary number of groups and/or users. Only the users associated with a role have permission to decrypt the secrets assigned to that role. (A superuser has permission to decrypt all secrets, provided they have an active user key.)
---
# User Keys
Each user within NetBox can associate his or her account with an RSA public key. If activated by an administrator, this user key will contain a unique, encrypted copy of the AES master key needed to retrieve secret data.
User keys may be created by users individually, however they are of no use until they have been activated by a user who already possesses an active user key.
## Creating the First User Key
When NetBox is first installed, it contains no encryption keys. Before it can store secrets, a user (typically the superuser) must create a user key. This can be done by navigating to Profile > User Key.
To create a user key, you can either generate a new RSA key pair, or upload the public key belonging to a pair you already have. If generating a new key pair, **you must save the private key** locally before saving your new user key. Once your user key has been created, its public key will be displayed under your profile.
When the first user key is created in NetBox, a random master encryption key is generated automatically. This key is then encrypted using the public key provided and stored as part of your user key. **The master key cannot be recovered** without your private key.
Once a user key has been assigned an encrypted copy of the master key, it is considered activated and can now be used to encrypt and decrypt secrets.
## Creating Additional User Keys
Any user can create his or her user key by generating or uploading a public RSA key. However, a user key cannot be used to encrypt or decrypt secrets until it has been activated with an encrypted copy of the master key.
Only an administrator with an active user key can activate other user keys. To do so, access the NetBox admin UI and navigate to Secrets > User Keys. Select the user key(s) to be activated, and select "activate selected user keys" from the actions dropdown. You will need to provide your private key in order to decrypt the master key. A copy of the master key is then encrypted using the public key associated with the user key being activated.
NetBox supports the assignment of resources to tenant organizations. Typically, these are used to represent individual customers of or internal departments within the organization using NetBox.
# Tenants
A tenant represents a discrete organization. The following objects can be assigned to tenants:
* Sites
* Racks
* Devices
* VRFs
* Prefixes
* IP addresses
* VLANs
* Circuits
If a prefix or IP address is not assigned to a tenant, it will appear to inherit the tenant to which its parent VRF is assigned, if any.
### Tenant Groups
Tenants can be grouped by type. For instance, you might create one group called "Customers" and one called "Acquisitions." The assignment of tenants to groups is optional.
Models within each app are stored in either `models.py` or within a submodule under the `models/` directory. When creating a model, be sure to subclass the [appropriate base model](models.md) from `netbox.models`. This will typically be NetBoxModel or OrganizationalModel. Remember to add the model class to the `__all__` listing for the module.
Each model should define, at a minimum:
* A `Meta` class specifying a deterministic ordering (if ordered by fields other than the primary ID)
* A `__str__()` method returning a user-friendly string representation of the instance
* A `get_absolute_url()` method returning an instance's direct URL (using `reverse()`)
## 2. Define field choices
If the model has one or more fields with static choices, define those choices in `choices.py` by subclassing `utilities.choices.ChoiceSet`.
## 3. Generate database migrations
Once your model definition is complete, generate database migrations by running `manage.py makemigrations -n $NAME --no-header`. Always specify a short unique name when generating migrations.
!!! info "Configuration Required"
Set `DEVELOPER = True` in your NetBox configuration to enable the creation of new migrations.
## 4. Add all standard views
Most models will need view classes created in `views.py` to serve the following operations:
* List view
* Detail view
* Edit view
* Delete view
* Bulk import
* Bulk edit
* Bulk delete
## 5. Add URL paths
Add the relevant URL path for each view created in the previous step to `urls.py`.
## 6. Add relevant forms
Depending on the type of model being added, you may need to define several types of form classes. These include:
* A base model form (for creating/editing individual objects)
* A bulk edit form
* A bulk import form (for CSV-based import)
* A filterset form (for filtering the object list view)
## 7. Create the FilterSet
Each model should have a corresponding FilterSet class defined. This is used to filter UI and API queries. Subclass the appropriate class from `netbox.filtersets` that matches the model's parent class.
## 8. Create the table class
Create a table class for the model in `tables.py` by subclassing `utilities.tables.BaseTable`. Under the table's `Meta` class, be sure to list both the fields and default columns.
## 9. Create the object template
Create the HTML template for the object view. (The other views each typically employ a generic template.) This template should extend `generic/object.html`.
## 10. Add the model to the navigation menu
Add the relevant navigation menu items in `netbox/netbox/navigation_menu.py`.
## 11. REST API components
Create the following for each model:
* Detailed (full) model serializer in `api/serializers.py`
* Nested serializer in `api/nested_serializers.py`
* API view in `api/views.py`
* Endpoint route in `api/urls.py`
## 12. GraphQL API components
Create a Graphene object type for the model in `graphql/types.py` by subclassing the appropriate class from `netbox.graphql.types`.
Also extend the schema class defined in `graphql/schema.py` with the individual object and object list fields per the established convention.
## 13. Add tests
Add tests for the following:
* UI views
* API views
* Filter sets
## 14. Documentation
Create a new documentation page for the model in `docs/models/<app_label>/<model_name>.md`. Include this file under the "features" documentation where appropriate.
Also add your model to the index in `docs/development/models.md`.
The registry is an in-memory data structure which houses various application-wide parameters, such as the list of enabled plugins. It is not exposed to the user and is not intended to be modified by any code outside of NetBox core.
The registry behaves essentially like a Python dictionary, with the notable exception that once a store (key) has been declared, it cannot be deleted or overwritten. The value of a store can, however, be modified; e.g. by appending a value to a list. Store values generally do not change once the application has been initialized.
The registry can be inspected by importing `registry` from `extras.registry`.
## Stores
### `model_features`
A dictionary of particular features (e.g. custom fields) mapped to the NetBox models which support them, arranged by app. For example:
```python
{
'custom_fields':{
'circuits':['provider','circuit'],
'dcim':['site','rack','devicetype',...],
...
},
'webhooks':{
...
},
...
}
```
### `plugin_menu_items`
Navigation menu items provided by NetBox plugins. Each plugin is registered as a key with the list of menu items it provides. An example:
```python
{
'Plugin A':(
<MenuItem>,<MenuItem>,<MenuItem>,
),
'Plugin B':(
<MenuItem>,<MenuItem>,<MenuItem>,
),
}
```
### `plugin_template_extensions`
Plugin content that gets embedded into core NetBox templates. The store comprises NetBox models registered as dictionary keys, each pointing to a list of applicable template extension classes that exist. An example:
Below is a list of tasks to consider when adding a new field to a core model.
## 1. Generate and run database migrations
[Django migrations](https://docs.djangoproject.com/en/stable/topics/migrations/) are used to express changes to the database schema. In most cases, Django can generate these automatically, however very complex changes may require manual intervention. Always remember to specify a short but descriptive name when generating a new migration.
```
./manage.py makemigrations <app> -n <name>
./manage.py migrate
```
Where possible, try to merge related changes into a single migration. For example, if three new fields are being added to different models within an app, these can be expressed in a single migration. You can merge a newly generated migration with an existing one by combining their `operations` lists.
!!! warning "Do not alter existing migrations"
Migrations can only be merged within a release. Once a new release has been published, its migrations cannot be altered (other than for the purpose of correcting a bug).
## 2. Add validation logic to `clean()`
If the new field introduces additional validation requirements (beyond what's included with the field itself), implement them in the model's `clean()` method. Remember to call the model's original method using `super()` before or after your custom validation as appropriate:
```
class Foo(models.Model):
def clean(self):
super().clean()
# Custom validation goes here
if self.bar is None:
raise ValidationError()
```
## 3. Update relevant querysets
If you're adding a relational field (e.g. `ForeignKey`) and intend to include the data when retrieving a list of objects, be sure to include the field using `prefetch_related()` as appropriate. This will optimize the view and avoid extraneous database queries.
## 4. Update API serializer
Extend the model's API serializer in `<app>.api.serializers` to include the new field. In most cases, it will not be necessary to also extend the nested serializer, which produces a minimal representation of the model.
## 5. Add fields to forms
Extend any forms to include the new field(s) as appropriate. These are found under the `forms/` directory within each app. Common forms include:
* **Credit/edit** - Manipulating a single object
* **Bulk edit** - Performing a change on many objects at once
* **CSV import** - The form used when bulk importing objects in CSV format
* **Filter** - Displays the options available for filtering a list of objects (both UI and API)
## 6. Extend object filter set
If the new field should be filterable, add it to the `FilterSet` for the model. If the field should be searchable, remember to query it in the FilterSet's `search()` method.
## 7. Add column to object table
If the new field will be included in the object list view, add a column to the model's table. For simple fields, adding the field name to `Meta.fields` will be sufficient. More complex fields may require declaring a custom column. Also add the field name to `default_columns` if the column should be present in the table by default.
## 8. Update the UI templates
Edit the object's view template to display the new field. There may also be a custom add/edit form template that needs to be updated.
## 9. Create/extend test cases
Create or extend the relevant test cases to verify that the new field and any accompanying validation logic perform as expected. This is especially important for relational fields. NetBox incorporates various test suites, including:
* API serializer/view tests
* Filter tests
* Form tests
* Model tests
* View tests
Be diligent to ensure all of the relevant test suites are adapted or extended as necessary to test any new functionality.
## 10. Update the model's documentation
Each model has a dedicated page in the documentation, at `models/<app>/<model>.md`. Update this file to include any relevant information about the new field.
Getting started with NetBox development is pretty straightforward, and should feel very familiar to anyone with Django development experience. There are a few things you'll need:
* A Linux system or environment
* A PostgreSQL server, which can be installed locally [per the documentation](../installation/1-postgresql.md)
* A Redis server, which can also be [installed locally](../installation/2-redis.md)
* A supported version of Python
### Fork the Repo
Assuming you'll be working on your own fork, your first step will be to fork the [official git repository](https://github.com/netbox-community/netbox). (If you're a maintainer who's going to be working directly with the official repo, skip this step.) Click the "fork" button at top right (be sure that you've logged into GitHub first).
The NetBox project utilizes three persistent git branches to track work:
* `master` - Serves as a snapshot of the current stable release
* `develop` - All development on the upcoming stable release occurs here
* `feature` - Tracks work on an upcoming major release
Typically, you'll base pull requests off of the `develop` branch, or off of `feature` if you're working on a new major release. **Never** merge pull requests into the `master` branch: This branch only ever merges pull requests from the `develop` branch, to effect a new release.
For example, assume that the current NetBox release is v3.1.1. Work applied to the `develop` branch will appear in v3.1.2, and work done under the `feature` branch will be included in the next minor release (v3.2.0).
### Enable Pre-Commit Hooks
NetBox ships with a [git pre-commit hook](https://githooks.com/) script that automatically checks for style compliance and missing database migrations prior to committing changes. This helps avoid erroneous commits that result in CI test failures. You are encouraged to enable it by creating a link to `scripts/git-hooks/pre-commit`:
```no-highlight
$ cd .git/hooks/
$ ln -s ../../scripts/git-hooks/pre-commit
```
### Create a Python Virtual Environment
A [virtual environment](https://docs.python.org/3/tutorial/venv.html) (or "venv" for short) is like a container for a set of Python packages. These allow you to build environments suited to specific projects without interfering with system packages or other projects. When installed per the documentation, NetBox uses a virtual environment in production.
Create a virtual environment using the `venv` Python module:
```no-highlight
$ mkdir ~/.venv
$ python3 -m venv ~/.venv/netbox
```
This will create a directory named `.venv/netbox/` in your home directory, which houses a virtual copy of the Python executable and its related libraries and tooling. When running NetBox for development, it will be run using the Python binary at `~/.venv/netbox/bin/python`.
!!! info "Where to Create Your Virtual Environments"
Keeping virtual environments in `~/.venv/` is a common convention but entirely optional: Virtual environments can be created almost wherever you please. Also consider using [`virtualenvwrapper`](https://virtualenvwrapper.readthedocs.io/en/stable/) to simplify the management of multiple venvs.
Once created, activate the virtual environment:
```no-highlight
$ source ~/.venv/netbox/bin/activate
(netbox) $
```
Notice that the console prompt changes to indicate the active environment. This updates the necessary system environment variables to ensure that any Python scripts are run within the virtual environment.
### Install Dependencies
With the virtual environment activated, install the project's required Python packages using the `pip` module:
* `REDIS`: Redis configuration, if different from the defaults
* `SECRET_KEY`: Set to a random string (use `generate_secret_key.py` in the parent directory to generate a suitable key)
* `DEBUG`: Set to `True`
* `DEVELOPER`: Set to `True` (this enables the creation of new database migrations)
### Start the Development Server
Django provides a lightweight, auto-updating HTTP/WSGI server for development use. It is started with the `runserver` management command:
```no-highlight
$ ./manage.py runserver
Watching for file changes with StatReloader
Performing system checks...
System check identified no issues (0 silenced).
February 18, 2022 - 20:29:57
Django version 4.0.2, using settings 'netbox.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.
```
This ensures that your development environment is now complete and operational. Any changes you make to the code base will be automatically adapted by the development server.
!!! info "IDE Integration"
Some IDEs, such as PyCharm, will integrate with Django's development server and allow you to run it directly within the IDE. This is strongly encouraged as it makes for a much more convenient development environment.
## Populating Demo Data
Once you have your development environment up and running, it might be helpful to populate some "dummy" data to make interacting with the UI and APIs more convenient. Check out the [netbox-demo-data](https://github.com/netbox-community/netbox-demo-data) repo on GitHub, which houses a collection of sample data that can be easily imported to any new NetBox deployment. (This sample data is used to populate the public demo instance at <https://demo.netbox.dev>.)
The demo data is provided in JSON format and loaded into an empty database using Django's `loaddata` management command. Consult the demo data repo's `README` file for complete instructions on populating the data.
## Running Tests
Prior to committing any substantial changes to the code base, be sure to run NetBox's test suite to catch any potential errors. Tests are run using the `test` management command, which employs Python's [`unittest`](https://docs.python.org/3/library/unittest.html#module-unittest) library. Remember to ensure the Python virtual environment is active before running this command. Also keep in mind that these commands are executed in the `netbox/` directory, not the root directory of the repository.
To avoid potential issues with your local configuration file, set the `NETBOX_CONFIGURATION` to point to the packaged test configuration at `netbox/configuration_testing.py`. This will handle things like ensuring that the dummy plugin is enabled for comprehensive testing.
In cases where you haven't made any changes to the database schema (which is typical), you can append the `--keepdb` argument to this command to reuse the test database between runs. This cuts down on the time it takes to run the test suite since the database doesn't have to be rebuilt each time. (Note that this argument will cause errors if you've modified any model fields since the previous test run.)
```no-highlight
$ python manage.py test --keepdb
```
You can also reduce testing time by enabling parallel test execution with the `--parallel` flag. (By default, this will run as many parallel tests as you have processors. To avoid sluggishness, it's a good idea to specify a lower number of parallel tests.) This flag can be combined with `--keepdb`, although if you encounter any strange errors, try running the test suite again with parallelization disabled.
```no-highlight
$ python manage.py test --parallel <n>
```
Finally, it's possible to limit the run to a specific set of tests, specified by their Python path. For example, to run only IPAM and DCIM view tests:
```no-highlight
$ python manage.py test dcim.tests.test_views ipam.tests.test_views
```
This is handy for instances where just a few tests are failing and you want to re-run them individually.
## Submitting Pull Requests
Once you're happy with your work and have verified that all tests pass, commit your changes and push it upstream to your fork. Always provide descriptive (but not excessively verbose) commit messages. When working on a specific issue, be sure to prefix your commit message with the word "Fixes" or "Closes" and the issue number (with a hash mark). This tells GitHub to automatically close the referenced issue once the commit has been merged.
```no-highlight
$ git commit -m "Closes #1234: Add IPv5 support"
$ git push origin
```
Once your fork has the new commit, submit a [pull request](https://github.com/netbox-community/netbox/compare) to the NetBox repo to propose the changes. Be sure to provide a detailed accounting of the changes being made and the reasons for doing so.
Once submitted, a maintainer will review your pull request and either merge it or request changes. If changes are needed, you can make them via new commits to your fork: The pull request will update automatically.
!!! note "Remember to Open an Issue First"
Remember, pull requests are permitted only for **accepted** issues. If an issue you want to work on hasn't been approved by a maintainer yet, it's best to avoid risking your time and effort on a change that might not be accepted. (The one exception to this is trivial changes to the documentation or other non-critical resources.)
NetBox is maintained as a [GitHub project](https://github.com/netbox-community/netbox) under the Apache 2 license. Users are encouraged to submit GitHub issues for feature requests and bug reports, however we are very selective about pull requests. Each pull request must be preceded by an **approved** issue. Please see the `CONTRIBUTING` guide for more direction on contributing to NetBox.
## Communication
There are several official forums for communication among the developers and community members:
* [GitHub issues](https://github.com/netbox-community/netbox/issues) - All feature requests, bug reports, and other substantial changes to the code base **must** be documented in a GitHub issue.
* [GitHub discussions](https://github.com/netbox-community/netbox/discussions) - The preferred forum for general discussion and support issues. Ideal for shaping a feature request prior to submitting an issue.
* [#netbox on NetDev Community Slack](https://netdev.chat/) - Good for quick chats. Avoid any discussion that might need to be referenced later on, as the chat history is not retained long.
## Governance
NetBox follows the [benevolent dictator](http://oss-watch.ac.uk/resources/benevolentdictatorgovernancemodel) model of governance, with [Jeremy Stretch](https://github.com/jeremystretch) ultimately responsible for all changes to the code base. While community contributions are welcomed and encouraged, the lead maintainer's primary role is to ensure the project's long-term maintainability and continued focus on its primary functions.
## Project Structure
All development of the current NetBox release occurs in the `develop` branch; releases are packaged from the `master` branch. The `master` branch should _always_ represent the current stable release in its entirety, such that installing NetBox by either downloading a packaged release or cloning the `master` branch provides the same code base. Only pull requests representing new releases should be merged into `master`.
NetBox components are arranged into Django apps. Each app holds the models, views, and other resources relevant to a particular function:
*`circuits`: Communications circuits and providers (not to be confused with power circuits)
*`dcim`: Datacenter infrastructure management (sites, racks, and devices)
*`extras`: Additional features not considered part of the core data model
*`ipam`: IP address management (VRFs, prefixes, IP addresses, and VLANs)
*`tenancy`: Tenants (such as customers) to which NetBox objects may be assigned
*`users`: Authentication and user preferences
*`utilities`: Resources which are not user-facing (extendable classes, etc.)
*`virtualization`: Virtual machines and clusters
*`wireless`: Wireless links and LANs
All core functionality is stored within the `netbox/` subdirectory. HTML templates are stored in a common `templates/` directory, with model- and view-specific templates arranged by app. Documentation is kept in the `docs/` root directory.
A NetBox model represents a discrete object type such as a device or IP address. Each model is defined as a Python class and has its own SQL table. All NetBox data models can be categorized by type.
The Django [content types](https://docs.djangoproject.com/en/stable/ref/contrib/contenttypes/) framework can be used to reference models within the database. A ContentType instance references a model by its `app_label` and `name`: For example, the Site model is referred to as `dcim.site`. The content type combined with an object's primary key form a globally unique identifier for the object (e.g. `dcim.site:123`).
### Features Matrix
* [Change logging](../additional-features/change-logging.md) - Changes to these objects are automatically recorded in the change log
* [Webhooks](../additional-features/webhooks.md) - NetBox is capable of generating outgoing webhooks for these objects
* [Custom fields](../customization/custom-fields.md) - These models support the addition of user-defined fields
* [Export templates](../customization/export-templates.md) - Users can create custom export templates for these models
* [Tagging](../models/extras/tag.md) - The models can be tagged with user-defined tags
* [Journaling](../additional-features/journaling.md) - These models support persistent historical commentary
* Nesting - These models can be nested recursively to create a hierarchy
Check `base_requirements.txt` for any dependencies pinned to a specific version, and upgrade them to their most stable release (where possible).
### Link to the Release Notes Page
Add the release notes (`/docs/release-notes/X.Y.md`) to the table of contents within `mkdocs.yml`, and add a summary of the major changes to `index.md`.
### Manually Perform a New Install
Install `mkdocs` in your local environment, then start the documentation server:
```no-highlight
$ pip install -r docs/requirements.txt
$ mkdocs serve
```
Follow these instructions to perform a new installation of NetBox. This process must _not_ be automated: The goal of this step is to catch any errors or omissions in the documentation, and ensure that it is kept up-to-date for each release. Make any necessary changes to the documentation before proceeding with the release.
### Close the Release Milestone
Close the release milestone on GitHub after ensuring there are no remaining open issues associated with it.
### Merge the Release Branch
Submit a pull request to merge the `feature` branch into the `develop` branch in preparation for its release.
---
## All Releases
### Update Requirements
Required Python packages are maintained in two files. `base_requirements.txt` contains a list of all the packages required by NetBox. Some of them may be pinned to a specific version of the package due to a known issue. For example:
The other file is `requirements.txt`, which lists each of the required packages pinned to its current stable version. When NetBox is installed, the Python environment is configured to match this file. This helps ensure that a new release of a dependency doesn't break NetBox.
Every release should refresh `requirements.txt` so that it lists the most recent stable release of each package. To do this:
1. Create a new virtual environment.
2. Install the latest version of all required packages `pip install -U -r base_requirements.txt`).
3. Run all tests and check that the UI and API function as expected.
4. Review each requirement's release notes for any breaking or otherwise noteworthy changes.
5. Update the package versions in `requirements.txt` as appropriate.
In cases where upgrading a dependency to its most recent release is breaking, it should be pinned to its current minor version in `base_requirements.txt` (with an explanatory comment) and revisited for the next major NetBox release.
### Verify CI Build Status
Ensure that continuous integration testing on the `develop` branch is completing successfully.
### Update Version and Changelog
* Update the `VERSION` constant in `settings.py` to the new release version.
* Update the example version numbers in the feature request and bug report templates under `.github/ISSUE_TEMPLATES/`.
* Replace the "FUTURE" placeholder in the release notes with the current date.
Commit these changes to the `develop` branch.
### Submit a Pull Request
Submit a pull request title **"Release vX.Y.Z"** to merge the `develop` branch into `master`. Copy the documented release notes into the pull request's body.
Once CI has completed on the PR, merge it.
### Create a New Release
Draft a [new release](https://github.com/netbox-community/netbox/releases/new) with the following parameters.
* **Tag:** Current version (e.g. `v2.9.9`)
* **Target:** `master`
* **Title:** Version and date (e.g. `v2.9.9 - 2020-11-09`)
Copy the description from the pull request to the release.
### Update the Development Version
On the `develop` branch, update `VERSION` in `settings.py` to point to the next release. For example, if you just released v2.9.9, set:
NetBox generally follows the [Django style guide](https://docs.djangoproject.com/en/stable/internals/contributing/writing-code/coding-style/), which is itself based on [PEP 8](https://www.python.org/dev/peps/pep-0008/). [Pycodestyle](https://github.com/pycqa/pycodestyle) is used to validate code formatting, ignoring certain violations. See `scripts/cibuild.sh` for details.
## PEP 8 Exceptions
* Wildcard imports (for example, `from .constants import *`) are acceptable under any of the following conditions:
* The library being import contains only constant declarations (e.g. `constants.py`)
* The library being imported explicitly defines `__all__`
* Maximum line length is 120 characters (E501)
* This does not apply to HTML templates or to automatically generated code (e.g. database migrations).
* Line breaks are permitted following binary operators (W504)
## Enforcing Code Style
The `pycodestyle` utility (previously `pep8`) is used by the CI process to enforce code style. It is strongly recommended to include as part of your commit process. A git commit hook is provided in the source at `scripts/git-hooks/pre-commit`. Linking to this script from `.git/hooks/` will invoke `pycodestyle` prior to every commit attempt and abort if the validation fails.
```
$ cd .git/hooks/
$ ln -s ../../scripts/git-hooks/pre-commit
```
To invoke `pycodestyle` manually, run:
```
pycodestyle --ignore=W504,E501 netbox/
```
## Introducing New Dependencies
The introduction of a new dependency is best avoided unless it is absolutely necessary. For small features, it's generally preferable to replicate functionality within the NetBox code base rather than to introduce reliance on an external project. This reduces both the burden of tracking new releases and our exposure to outside bugs and supply chain attacks.
If there's a strong case for introducing a new dependency, it must meet the following criteria:
* Its complete source code must be published and freely accessible without registration.
* Its license must be conducive to inclusion in an open source project.
* It must be actively maintained, with no longer than one year between releases.
* It must be available via the [Python Package Index](https://pypi.org/) (PyPI).
When adding a new dependency, a short description of the package and the URL of its code repository must be added to `base_requirements.txt`. Additionally, a line specifying the package name pinned to the current stable release must be added to `requirements.txt`. This ensures that NetBox will install only the known-good release and simplify support efforts.
## General Guidance
* When in doubt, remain consistent: It is better to be consistently incorrect than inconsistently correct. If you notice in the course of unrelated work a pattern that should be corrected, continue to follow the pattern for now and submit a separate bug report so that the entire code base can be evaluated at a later point.
* Prioritize readability over concision. Python is a very flexible language that typically offers several options for expressing a given piece of logic, but some may be more friendly to the reader than others. (List comprehensions are particularly vulnerable to over-optimization.) Always remain considerate of the future reader who may need to interpret your code without the benefit of the context within which you are writing it.
* No easter eggs. While they can be fun, NetBox must be considered as a business-critical tool. The potential, however minor, for introducing a bug caused by unnecessary logic is best avoided entirely.
* Constants (variables which generally do not change) should be declared in `constants.py` within each app. Wildcard imports from the file are acceptable.
* Every model should have a docstring. Every custom method should include an explanation of its function.
* Nested API serializers generate minimal representations of an object. These are stored separately from the primary serializers to avoid circular dependencies. Always import nested serializers from other apps directly. For example, from within the DCIM app you would write `from ipam.api.nested_serializers import NestedIPAddressSerializer`.
## Branding
* When referring to NetBox in writing, use the proper form "NetBox," with the letters N and B capitalized. The lowercase form "netbox" should be used in code, filenames, etc. But never "Netbox" or any other deviation.
* There is an SVG form of the NetBox logo at [docs/netbox_logo.svg](../netbox_logo.svg). It is preferred to use this logo for all purposes as it scales to arbitrary sizes without loss of resolution. If a raster image is required, the SVG logo should be converted to a PNG image of the prescribed size.
The `users.UserConfig` model holds individual preferences for each user in the form of JSON data. This page serves as a manifest of all recognized user preferences in NetBox.
The NetBox UI is built on languages and frameworks:
### Styling & HTML Elements
#### [Bootstrap](https://getbootstrap.com/) 5
The majority of the NetBox UI is made up of stock Bootstrap components, with some styling modifications and custom components added on an as-needed basis. Bootstrap uses [Sass](https://sass-lang.com/), and NetBox extends Bootstrap's core Sass files for theming and customization.
All client-side scripting is transpiled from TypeScript to JavaScript and served by Django. In development, TypeScript is an _extremely_ effective tool for accurately describing and checking the code, which leads to significantly fewer bugs, a better development experience, and more predictable/readable code.
As part of the [bundling](#bundling) process, Bootstrap's JavaScript plugins are imported and bundled alongside NetBox's front-end code.
!!! danger "NetBox is jQuery-free"
Following the Bootstrap team's deprecation of jQuery in Bootstrap 5, NetBox also no longer uses jQuery in front-end code.
## Guidance
NetBox generally follows the following guidelines for front-end code:
- Bootstrap utility classes may be used to solve one-off issues or to implement singular components, as long as the class list does not exceed 4-5 classes. If an element needs more than 5 utility classes, a custom SCSS class should be added that contains the required style properties.
- Custom classes must be commented, explaining the general purpose of the class and where it is used.
- Reuse SCSS variables whenever possible. CSS values should (almost) never be hard-coded.
- All TypeScript functions must have, at a minimum, a basic [JSDoc](https://jsdoc.app/) description of what the function is for and where it is used. If possible, document all function arguments via [`@param` JSDoc block tags](https://jsdoc.app/tags-param.html).
- Expanding on NetBox's [dependency policy](style-guide.md#introducing-new-dependencies), new front-end dependencies should be avoided unless absolutely necessary. Every new front-end dependency adds to the CSS/JavaScript file size that must be loaded by the client and this should be minimized as much as possible. If adding a new dependency is unavoidable, use a tool like [Bundlephobia](https://bundlephobia.com/) to ensure the smallest possible library is used.
- All UI elements must be usable on all common screen sizes, including mobile devices. Be sure to test newly implemented solutions (JavaScript included) on as many screen sizes and device types as possible.
- NetBox aligns with Bootstrap's [supported Browsers and Devices](https://getbootstrap.com/docs/5.1/getting-started/browsers-devices/) list.
## UI Development
To contribute to the NetBox UI, you'll need to review the main [Getting Started guide](getting-started.md) in order to set up your base environment.
### Tools
Once you have a working NetBox development environment, you'll need to install a few more tools to work with the NetBox UI:
- [NodeJS](https://nodejs.org/en/download/) (the LTS release should suffice)
After Node and Yarn are installed on your system, you'll need to install all the NetBox UI dependencies:
```console
$cd netbox/project-static
$ yarn
```
!!! warning "Check Your Working Directory"
You need to be in the `netbox/project-static` directory to run the below `yarn` commands.
### Bundling
In order for the TypeScript and Sass (SCSS) source files to be usable by a browser, they must first be transpiled (TypeScript → JavaScript, Sass → CSS), bundled, and minified. After making changes to TypeScript or Sass source files, run `yarn bundle`.
`yarn bundle` is a wrapper around the following subcommands, any of which can be run individually:
All output files will be written to `netbox/project-static/dist`, where Django will pick them up when `manage.py collectstatic` is run.
!!! info "Remember to re-run `manage.py collectstatic`"
If you're running the development web server — `manage.py runserver` — you'll need to run `manage.py collectstatic` to see your changes.
### Linting, Formatting & Type Checking
Before committing any changes to TypeScript files, and periodically throughout the development process, you should run `yarn validate` to catch formatting, code quality, or type errors.
!!! tip "IDE Integrations"
If you're using an IDE, it is strongly recommended to install [ESLint](https://eslint.org/docs/user-guide/integrations), [TypeScript](https://github.com/Microsoft/TypeScript/wiki/TypeScript-Editor-Support), and [Prettier](https://prettier.io/docs/en/editors.html) integrations, if available. Most of them will automatically check and/or correct issues in the code as you develop, which can significantly increase your productivity as a contributor.
`yarn validate` is a wrapper around the following subcommands, any of which can be run individually:
NetBox provides a read-only [GraphQL](https://graphql.org/) API to complement its REST API. This API is powered by the [Graphene](https://graphene-python.org/) library and [Graphene-Django](https://docs.graphene-python.org/projects/django/en/latest/).
## Queries
GraphQL enables the client to specify an arbitrary nested list of fields to include in the response. All queries are made to the root `/graphql` API endpoint. For example, to return the circuit ID and provider name of each circuit with an active status, you can issue a request such as the following:
The response will include the requested data formatted as JSON:
```json
{
"data":{
"circuits":[
{
"cid":"1002840283",
"provider":{
"name":"CenturyLink"
}
},
{
"cid":"1002840457",
"provider":{
"name":"CenturyLink"
}
}
]
}
}
```
!!! note
It's recommended to pass the return data through a JSON parser such as `jq` for better readability.
NetBox provides both a singular and plural query field for each object type:
*`$OBJECT`: Returns a single object. Must specify the object's unique ID as `(id: 123)`.
*`$OBJECT_list`: Returns a list of objects, optionally filtered by given parameters.
For example, query `device(id:123)` to fetch a specific device (identified by its unique ID), and query `device_list` (with an optional set of filters) to fetch all devices.
For more detail on constructing GraphQL queries, see the [Graphene documentation](https://docs.graphene-python.org/en/latest/).
## Filtering
The GraphQL API employs the same filtering logic as the UI and REST API. Filters can be specified as key-value pairs within parentheses immediately following the query name. For example, the following will return only sites within the North Carolina region with a status of active:
NetBox's GraphQL API uses the same API authentication tokens as its REST API. Authentication tokens are included with requests by attaching an `Authorization` HTTP header in the following form:
```
Authorization: Token $TOKEN
```
## Disabling the GraphQL API
If not needed, the GraphQL API can be disabled by setting the [`GRAPHQL_ENABLED`](../configuration/dynamic-settings.md#graphql_enabled) configuration parameter to False and restarting NetBox.
NetBox is an open source web application designed to help manage and document computer networks. Initially conceived by the network engineering team at [DigitalOcean](https://www.digitalocean.com/), NetBox was developed specifically to address the needs of network and infrastructure engineers. It encompasses the following aspects of network management:
NetBox is an infrastructure resource modeling (IRM) application designed to empower network automation. Initially conceived by the network engineering team at [DigitalOcean](https://www.digitalocean.com/), NetBox was developed specifically to address the needs of network and infrastructure engineers. NetBox is made available as open source under the Apache 2 license. It encompasses the following aspects of network management:
* **IP address management (IPAM)** - IP networks and addresses, VRFs, and VLANs
* **Equipment racks** - Organized by group and site
* **Devices** - Types of devices and where they are installed
* **Connections** - Network, console, and power connections among devices
* **Virtualization** - Virtual machines and clusters
* **Data circuits** - Long-haul communications circuits and providers
* **Secrets** - Encrypted storage of sensitive credentials
# What NetBox Isn't
## What NetBox Is Not
While NetBox strives to cover many areas of network management, the scope of its feature set is necessarily limited. This ensures that development focuses on core functionality and that scope creep is reasonably contained. To that end, it might help to provide some examples of functionality that NetBox **does not** provide:
@@ -21,33 +23,41 @@ While NetBox strives to cover many areas of network management, the scope of its
That said, NetBox _can_ be used to great effect in populating external tools with the data they need to perform these functions.
# Design Philosophy
## Design Philosophy
NetBox was designed with the following tenets foremost in mind.
## Replicate the Real World
### Replicate the Real World
Careful consideration has been given to the data model to ensure that it can accurately reflect a real-world network. For instance, IP addresses are assigned not to devices, but to specific interfaces attached to a device, and an interface may have multiple IP addresses assigned to it.
## Serve as a "Source of Truth"
### Serve as a "Source of Truth"
NetBox intends to represent the _desired_ state of a network versus its _operational_ state. As such, automated import of live network state is strongly discouraged. All data created in NetBox should first be vetted by a human to ensure its integrity. NetBox can then be used to populate monitoring and provisioning systems with a high degree of confidence.
## Keep it Simple
### Keep it Simple
When given a choice between a relatively simple [80% solution](https://en.wikipedia.org/wiki/Pareto_principle) and a much more complex complete solution, the former will typically be favored. This ensures a lean codebase with a low learning curve.
# Application Stack
## Application Stack
NetBox is built on the [Django](https://djangoproject.com/) Python framework and utilizes a [PostgreSQL](https://www.postgresql.org/) database. It runs as a WSGI service behind your choice of HTTP server.
| Function | Component |
|--------------|-------------------|
| HTTP Service | nginx or Apache |
| WSGI Service | gunicorn or uWSGI |
| Application | Django/Python |
| Database | PostgreSQL |
| Function | Component |
|--------------------|-------------------|
| HTTP service | nginx or Apache |
| WSGI service | gunicorn or uWSGI |
| Application | Django/Python |
| Database | PostgreSQL 10+ |
| Task queuing | Redis/django-rq |
| Live device access | NAPALM (optional) |
# Getting Started
## Supported Python Versions
See the [installation guide](installation/postgresql.md) for help getting NetBox up and running quickly.
NetBox supports Python 3.8, 3.9, and 3.10 environments.
## Getting Started
Minor NetBox releases (e.g. v3.1) are published three times a year; in April, August, and December. These typically introduce major new features and may contain breaking API changes. Patch releases are published roughly every one to two weeks to resolve bugs and fulfill minor feature requests. These are backward-compatible with previous releases unless otherwise noted. The NetBox maintainers strongly recommend running the latest stable release whenever possible.
Please see the [official installation guide](installation/index.md) for detailed instructions on obtaining and installing NetBox.
This section entails the installation and configuration of a local PostgreSQL database. If you already have a PostgreSQL database service in place, skip to [the next section](2-redis.md).
!!! warning "PostgreSQL 10 or later required"
NetBox requires PostgreSQL 10 or later. Please note that MySQL and other relational databases are **not** supported.
## Installation
=== "Ubuntu"
```no-highlight
sudo apt update
sudo apt install -y postgresql
```
=== "CentOS"
```no-highlight
sudo yum install -y postgresql-server
sudo postgresql-setup --initdb
```
CentOS configures ident host-based authentication for PostgreSQL by default. Because NetBox will need to authenticate using a username and password, modify `/var/lib/pgsql/data/pg_hba.conf` to support MD5 authentication by changing `ident` to `md5` for the lines below:
```no-highlight
host all all 127.0.0.1/32 md5
host all all ::1/128 md5
```
Once PostgreSQL has been installed, start the service and enable it to run at boot:
```no-highlight
sudo systemctl start postgresql
sudo systemctl enable postgresql
```
Before continuing, verify that you have installed PostgreSQL 10 or later:
```no-highlight
psql -V
```
## Database Creation
At a minimum, we need to create a database for NetBox and assign it a username and password for authentication. Start by invoking the PostgreSQL shell as the system Postgres user.
```no-highlight
sudo -u postgres psql
```
Within the shell, enter the following commands to create the database and user (role), substituting your own value for the password:
```postgresql
CREATE DATABASE netbox;
CREATE USER netbox WITH PASSWORD 'J5brHrAXFLQSif0K';
GRANT ALL PRIVILEGES ON DATABASE netbox TO netbox;
```
!!! danger "Use a strong password"
**Do not use the password from the example.** Choose a strong, random password to ensure secure database authentication for your NetBox installation.
Once complete, enter `\q` to exit the PostgreSQL shell.
## Verify Service Status
You can verify that authentication works by executing the `psql` command and passing the configured username and password. (Replace `localhost` with your database server if using a remote database.)
[Redis](https://redis.io/) is an in-memory key-value store which NetBox employs for caching and queuing. This section entails the installation and configuration of a local Redis instance. If you already have a Redis service in place, skip to [the next section](3-netbox.md).
!!! warning "Redis v4.0 or later required"
NetBox v2.9.0 and later require Redis v4.0 or higher. If your distribution does not offer a recent enough release, you will need to build Redis from source. Please see [the Redis installation documentation](https://github.com/redis/redis) for further details.
=== "Ubuntu"
```no-highlight
sudo apt install -y redis-server
```
=== "CentOS"
```no-highlight
sudo yum install -y redis
sudo systemctl start redis
sudo systemctl enable redis
```
Before continuing, verify that your installed version of Redis is at least v4.0:
```no-highlight
redis-server -v
```
You may wish to modify the Redis configuration at `/etc/redis.conf` or `/etc/redis/redis.conf`, however in most cases the default configuration is sufficient.
## Verify Service Status
Use the `redis-cli` utility to ensure the Redis service is functional:
```no-highlight
redis-cli ping
```
If successful, you should receive a `PONG` response from the server.
Before continuing, check that your installed Python version is at least 3.8:
```no-highlight
python3 -V
```
## Download NetBox
This documentation provides two options for installing NetBox: from a downloadable archive, or from the git repository. Installing from a package (option A below) requires manually fetching and extracting the archive for every future update, whereas installation via git (option B) allows for seamless upgrades by re-pulling the `master` branch.
### Option A: Download a Release Archive
Download the [latest stable release](https://github.com/netbox-community/netbox/releases) from GitHub as a tarball or ZIP archive and extract it to your desired path. In this example, we'll use `/opt/netbox` as the NetBox root.
It is recommended to install NetBox in a directory named for its version number. For example, NetBox v3.0.0 would be installed into `/opt/netbox-3.0.0`, and a symlink from `/opt/netbox/` would point to this location. (You can verify this configuration with the command `ls -l /opt | grep netbox`.) This allows for future releases to be installed in parallel without interrupting the current installation. When changing to the new release, only the symlink needs to be updated.
### Option B: Clone the Git Repository
Create the base directory for the NetBox installation. For this guide, we'll use `/opt/netbox`.
```no-highlight
sudo mkdir -p /opt/netbox/
cd /opt/netbox/
```
If `git` is not already installed, install it:
=== "Ubuntu"
```no-highlight
sudo apt install -y git
```
=== "CentOS"
```no-highlight
sudo yum install -y git
```
Next, clone the **master** branch of the NetBox GitHub repository into the current directory. (This branch always holds the current stable release.)
The `git clone` command above utilizes a "shallow clone" to retrieve only the most recent commit. If you need to download the entire history, omit the `--depth 1` argument.
The `git clone` command should generate output similar to the following:
Installation via git also allows you to easily try out different versions of NetBox. To check out a [specific NetBox release](https://github.com/netbox-community/netbox/releases), use the `git checkout` command with the desired release tag. For example, `git checkout v3.0.8`.
## Create the NetBox System User
Create a system user account named `netbox`. We'll configure the WSGI and HTTP services to run under this account. We'll also assign this user ownership of the media directory. This ensures that NetBox will be able to save uploaded files.
Move into the NetBox configuration directory and make a copy of `configuration_example.py` named `configuration.py`. This file will hold all of your local configuration parameters.
```no-highlight
cd /opt/netbox/netbox/netbox/
sudo cp configuration_example.py configuration.py
```
Open `configuration.py` with your preferred editor to begin configuring NetBox. NetBox offers [many configuration parameters](../configuration/index.md), but only the following four are required for new installations:
* `ALLOWED_HOSTS`
* `DATABASE`
* `REDIS`
* `SECRET_KEY`
### ALLOWED_HOSTS
This is a list of the valid hostnames and IP addresses by which this server can be reached. You must specify at least one name or IP address. (Note that this does not restrict the locations from which NetBox may be accessed: It is merely for [HTTP host header validation](https://docs.djangoproject.com/en/3.0/topics/security/#host-headers-virtual-hosting).)
If you are not yet sure what the domain name and/or IP address of the NetBox installation will be, you can set this to a wildcard (asterisk) to allow all host values:
```python
ALLOWED_HOSTS = ['*']
```
### DATABASE
This parameter holds the database configuration details. You must define the username and password used when you configured PostgreSQL. If the service is running on a remote host, update the `HOST` and `PORT` parameters accordingly. See the [configuration documentation](../configuration/required-settings.md#database) for more detail on individual parameters.
'PORT': '', # Database port (leave blank for default)
'CONN_MAX_AGE': 300, # Max database connection age (seconds)
}
```
### REDIS
Redis is a in-memory key-value store used by NetBox for caching and background task queuing. Redis typically requires minimal configuration; the values below should suffice for most installations. See the [configuration documentation](../configuration/required-settings.md#redis) for more detail on individual parameters.
Note that NetBox requires the specification of two separate Redis databases: `tasks` and `caching`. These may both be provided by the same Redis service, however each should have a unique numeric database ID.
```python
REDIS = {
'tasks': {
'HOST': 'localhost', # Redis server
'PORT': 6379, # Redis port
'PASSWORD': '', # Redis password (optional)
'DATABASE': 0, # Database ID
'SSL': False, # Use SSL (optional)
},
'caching': {
'HOST': 'localhost',
'PORT': 6379,
'PASSWORD': '',
'DATABASE': 1, # Unique ID for second database
'SSL': False,
}
}
```
### SECRET_KEY
This parameter must be assigned a randomly-generated key employed as a salt for hashing and related cryptographic functions. (Note, however, that it is _never_ directly used in the encryption of secret data.) This key must be unique to this installation and is recommended to be at least 50 characters long. It should not be shared outside the local system.
A simple Python script named `generate_secret_key.py` is provided in the parent directory to assist in generating a suitable key:
```no-highlight
python3 ../generate_secret_key.py
```
!!! warning "SECRET_KEY values must match"
In the case of a highly available installation with multiple web servers, `SECRET_KEY` must be identical among all servers in order to maintain a persistent user session state.
When you have finished modifying the configuration, remember to save the file.
## Optional Requirements
All Python packages required by NetBox are listed in `requirements.txt` and will be installed automatically. NetBox also supports some optional packages. If desired, these packages must be listed in `local_requirements.txt` within the NetBox root directory.
### NAPALM
Integration with the [NAPALM automation](../additional-features/napalm.md) library allows NetBox to fetch live data from devices and return it to a requester via its REST API. The `NAPALM_USERNAME` and `NAPALM_PASSWORD` configuration parameters define the credentials to be used when connecting to a device.
```no-highlight
sudo sh -c "echo 'napalm' >> /opt/netbox/local_requirements.txt"
```
### Remote File Storage
By default, NetBox will use the local filesystem to store uploaded files. To use a remote filesystem, install the [`django-storages`](https://django-storages.readthedocs.io/en/stable/) library and configure your [desired storage backend](../configuration/optional-settings.md#storage_backend) in `configuration.py`.
```no-highlight
sudo sh -c "echo 'django-storages' >> /opt/netbox/local_requirements.txt"
```
## Run the Upgrade Script
Once NetBox has been configured, we're ready to proceed with the actual installation. We'll run the packaged upgrade script (`upgrade.sh`) to perform the following actions:
* Create a Python virtual environment
* Installs all required Python packages
* Run database schema migrations
* Builds the documentation locally (for offline use)
* Aggregate static resource files on disk
```no-highlight
sudo /opt/netbox/upgrade.sh
```
Note that **Python 3.8 or later is required** for NetBox v3.2 and later releases. If the default Python installation on your server is set to a lesser version, pass the path to the supported installation as an environment variable named `PYTHON`. (Note that the environment variable must be passed _after_ the `sudo` command.)
Upon completion, the upgrade script may warn that no existing virtual environment was detected. As this is a new installation, this warning can be safely ignored.
## Create a Super User
NetBox does not come with any predefined user accounts. You'll need to create a super user (administrative account) to be able to log into NetBox. First, enter the Python virtual environment created by the upgrade script:
```no-highlight
source /opt/netbox/venv/bin/activate
```
Once the virtual environment has been activated, you should notice the string `(venv)` prepended to your console prompt.
Next, we'll create a superuser account using the `createsuperuser` Django management command (via `manage.py`). Specifying an email address for the user is not required, but be sure to use a very strong password.
```no-highlight
cd /opt/netbox/netbox
python3 manage.py createsuperuser
```
## Schedule the Housekeeping Task
NetBox includes a `housekeeping` management command that handles some recurring cleanup tasks, such as clearing out old sessions and expired change records. Although this command may be run manually, it is recommended to configure a scheduled job using the system's `cron` daemon or a similar utility.
A shell script which invokes this command is included at `contrib/netbox-housekeeping.sh`. It can be copied to or linked from your system's daily cron task directory, or included within the crontab directly. (If installing NetBox into a nonstandard path, be sure to update the system paths within this script first.)
If successful, you should see output similar to the following:
```no-highlight
Watching for file changes with StatReloader
Performing system checks...
System check identified no issues (0 silenced).
August 30, 2021 - 18:02:23
Django version 3.2.6, using settings 'netbox.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.
```
Next, connect to the name or IP of the server (as defined in `ALLOWED_HOSTS`) on port 8000; for example, <http://127.0.0.1:8000/>. You should be greeted with the NetBox home page. Try logging in using the username and password specified when creating a superuser.
!!! note
By default RHEL based distros will likely block your testing attempts with firewalld. The development server port can be opened with `firewall-cmd` (add `--permanent` if you want the rule to survive server restarts):
```no-highlight
firewall-cmd --zone=public --add-port=8000/tcp
```
!!! danger "Not for production use"
The development server is for development and testing purposes only. It is neither performant nor secure enough for production use. **Do not use it in production.**
!!! warning
If the test service does not run, or you cannot reach the NetBox home page, something has gone wrong. Do not proceed with the rest of this guide until the installation has been corrected.
Like most Django applications, NetBox runs as a [WSGI application](https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface) behind an HTTP server. This documentation shows how to install and configure [gunicorn](http://gunicorn.org/) (which is automatically installed with NetBox) for this role, however other WSGI servers are available and should work similarly well. [uWSGI](https://uwsgi-docs.readthedocs.io/en/latest/) is a popular alternative.
## Configuration
NetBox ships with a default configuration file for gunicorn. To use it, copy `/opt/netbox/contrib/gunicorn.py` to `/opt/netbox/gunicorn.py`. (We make a copy of this file rather than pointing to it directly to ensure that any local changes to it do not get overwritten by a future upgrade.)
While the provided configuration should suffice for most initial installations, you may wish to edit this file to change the bound IP address and/or port number, or to make performance-related adjustments. See [the Gunicorn documentation](https://docs.gunicorn.org/en/stable/configure.html) for the available configuration parameters.
## systemd Setup
We'll use systemd to control both gunicorn and NetBox's background worker process. First, copy `contrib/netbox.service` and `contrib/netbox-rq.service` to the `/etc/systemd/system/` directory and reload the systemd daemon:
This documentation provides example configurations for both [nginx](https://www.nginx.com/resources/wiki/) and [Apache](https://httpd.apache.org/docs/current/), though any HTTP server which supports WSGI should be compatible.
!!! info
For the sake of brevity, only Ubuntu 20.04 instructions are provided here. These tasks are not unique to NetBox and should carry over to other distributions with minimal changes. Please consult your distribution's documentation for assistance if needed.
## Obtain an SSL Certificate
To enable HTTPS access to NetBox, you'll need a valid SSL certificate. You can purchase one from a trusted commercial provider, obtain one for free from [Let's Encrypt](https://letsencrypt.org/getting-started/), or generate your own (although self-signed certificates are generally untrusted). Both the public certificate and private key files need to be installed on your NetBox server in a location that is readable by the `netbox` user.
The command below can be used to generate a self-signed certificate for testing purposes, however it is strongly recommended to use a certificate from a trusted authority in production. Two files will be created: the public certificate (`netbox.crt`) and the private key (`netbox.key`). The certificate is published to the world, whereas the private key must be kept secret at all times.
The above command will prompt you for additional details of the certificate; all of these are optional.
## HTTP Server Installation
### Option A: nginx
Begin by installing nginx:
```no-highlight
sudo apt install -y nginx
```
Once nginx is installed, copy the nginx configuration file provided by NetBox to `/etc/nginx/sites-available/netbox`. Be sure to replace `netbox.example.com` with the domain name or IP address of your installation. (This should match the value configured for `ALLOWED_HOSTS` in `configuration.py`.)
Finally, ensure that the required Apache modules are enabled, enable the `netbox` site, and reload Apache:
```no-highlight
sudo a2enmod ssl proxy proxy_http headers
sudo a2ensite netbox
sudo systemctl restart apache2
```
## Confirm Connectivity
At this point, you should be able to connect to the HTTPS service at the server name or IP address you provided.
!!! info
Please keep in mind that the configurations provided here are bare minimums required to get NetBox up and running. You may want to make adjustments to better suit your production environment.
!!! warning
Certain components of NetBox (such as the display of rack elevation diagrams) rely on the use of embedded objects. Ensure that your HTTP server configuration does not override the `X-Frame-Options` response header set by NetBox.
## Troubleshooting
If you are unable to connect to the HTTP server, check that:
* Nginx/Apache is running and configured to listen on the correct port.
* Access is not being blocked by a firewall somewhere along the path. (Try connecting locally from the server itself.)
If you are able to connect but receive a 502 (bad gateway) error, check the following:
* The WSGI worker processes (gunicorn) are running (`systemctl status netbox` should show a status of "active (running)")
* Nginx/Apache is configured to connect to the port on which gunicorn is listening (default is 8001).
* SELinux is not preventing the reverse proxy connection. You may need to allow HTTP network connections with the command `setsebool -P httpd_can_network_connect 1`
This guide explains how to implement LDAP authentication using an external server. User authentication will fall back to built-in Django users in the event of a failure.
Activate the Python virtual environment and install the `django-auth-ldap` package using pip:
```no-highlight
sudo pip install django-auth-ldap
source /opt/netbox/venv/bin/activate
pip3 install django-auth-ldap
```
# Configuration
Once installed, add the package to `local_requirements.txt` to ensure it is re-installed during future rebuilds of the virtual environment:
Create a file in the same directory as `configuration.py` (typically `netbox/netbox/`) named `ldap_config.py`. Define all of the parameters required below in `ldap_config.py`.
```no-highlight
sudo sh -c "echo 'django-auth-ldap' >> /opt/netbox/local_requirements.txt"
```
## General Server Configuration
## Configuration
First, enable the LDAP authentication backend in `configuration.py`. (Be sure to overwrite this definition if it is already set to `RemoteUserBackend`.)
Next, create a file in the same directory as `configuration.py` (typically `/opt/netbox/netbox/netbox/`) named `ldap_config.py`. Define all of the parameters required below in `ldap_config.py`. Complete documentation of all `django-auth-ldap` configuration options is included in the project's [official documentation](https://django-auth-ldap.readthedocs.io/).
### General Server Configuration
!!! info
When using Windows Server 2012 you may need to specify a port on `AUTH_LDAP_SERVER_URI`. Use `3269` for secure, or `3268` for non-secure.
STARTTLS can be configured by setting `AUTH_LDAP_START_TLS = True` and using the `ldap://` URI scheme.
### User Authentication
!!! info
When using Windows Server, `2012 AUTH_LDAP_USER_DN_TEMPLATE` should be set to None.
When using Windows Server 2012+, `AUTH_LDAP_USER_DN_TEMPLATE` should be set to None.
```python
from django_auth_ldap.config import LDAPSearch
@@ -77,13 +96,16 @@ AUTH_LDAP_USER_ATTR_MAP = {
}
```
# User Groups for Permissions
### User Groups for Permissions
!!! info
When using Microsoft Active Directory, support for nested groups can be activated by using `NestedGroupOfNamesType()` instead of `GroupOfNamesType()` for `AUTH_LDAP_GROUP_TYPE`. You will also need to modify the import line to use `NestedGroupOfNamesType` instead of `GroupOfNamesType` .
```python
from django_auth_ldap.config import LDAPSearch, GroupOfNamesType
# This search ought to return all groups to which the user belongs. django_auth_ldap uses this to determine group
# Cache groups for one hour to reduce LDAP traffic
AUTH_LDAP_CACHE_GROUPS = True
AUTH_LDAP_GROUP_CACHE_TIMEOUT = 3600
AUTH_LDAP_CACHE_TIMEOUT = 3600
```
* `is_active` - All users must be mapped to at least this group to enable authentication. Without this, users cannot log in.
* `is_staff` - Users mapped to this group are enabled for access to the administration tools; this is the equivalent of checking the "staff status" box on a manually created user. This doesn't grant any specific permissions.
* `is_superuser` - Users mapped to this group will be granted superuser status. Superusers are implicitly granted all permissions.
!!! warning
Authentication will fail if the groups (the distinguished names) do not exist in the LDAP directory.
## Troubleshooting LDAP
`systemctl restart netbox` restarts the NetBox service, and initiates any changes made to `ldap_config.py`. If there are syntax errors present, the NetBox process will not spawn an instance, and errors should be logged to `/var/log/messages`.
For troubleshooting LDAP user/group queries, add or merge the following [logging](../configuration/optional-settings.md#logging) configuration to `configuration.py`:
Ensure the file and path specified in logfile exist and are writable and executable by the application service account. Restart the netbox service and attempt to log into the site to trigger log entries to this file.
The installation instructions provided here have been tested to work on Ubuntu 20.04 and CentOS 8.3. The particular commands needed to install dependencies on other distributions may vary significantly. Unfortunately, this is outside the control of the NetBox maintainers. Please consult your distribution's documentation for assistance with any errors.
The following sections detail how to set up a new instance of NetBox:
1. [PostgreSQL database](1-postgresql.md)
1. [Redis](2-redis.md)
3. [NetBox components](3-netbox.md)
4. [Gunicorn](4-gunicorn.md)
5. [HTTP server](5-http-server.md)
6. [LDAP authentication](6-ldap.md) (optional)
## Requirements
| Dependency | Minimum Version |
|------------|-----------------|
| Python | 3.8 |
| PostgreSQL | 10 |
| Redis | 4.0 |
Below is a simplified overview of the NetBox application stack for reference:

## Upgrading
If you are upgrading from an existing installation, please consult the [upgrading guide](upgrading.md).
This document contains instructions for migrating from a legacy NetBox deployment using [supervisor](http://supervisord.org/) to a systemd-based approach.
## Ubuntu
### Uninstall supervisord
```no-highlight
# apt-get remove -y supervisor
```
### Configure systemd
!!! note
These instructions assume the presence of a Python virtual environment at `/opt/netbox/venv`. If you have not created this environment, please refer to the [installation instructions](3-netbox.md#set-up-python-environment) for direction.
We'll use systemd to control the daemonization of NetBox services. First, copy `contrib/netbox.service` and `contrib/netbox-rq.service` to the `/etc/systemd/system/` directory:
```no-highlight
# cp contrib/*.service /etc/systemd/system/
```
!!! note
You may need to modify the user that the systemd service runs as. Please verify the user for httpd on your specific release and edit both files to match your httpd service under user and group. The username could be "nobody", "nginx", "apache", "www-data", or something else.
Then, start the `netbox` and `netbox-rq` services and enable them to initiate at boot time:
```no-highlight
# systemctl daemon-reload
# systemctl start netbox netbox-rq
# systemctl enable netbox netbox-rq
```
You can use the command `systemctl status netbox` to verify that the WSGI service is running:
At this point, you should be able to connect to the HTTP service at the server name or IP address you provided. If you are unable to connect, check that the nginx service is running and properly configured. If you receive a 502 (bad gateway) error, this indicates that gunicorn is misconfigured or not running. Issue the command `journalctl -xe` to see why the services were unable to start.
!!! info
Please keep in mind that the configurations provided here are bare minimums required to get NetBox up and running. You may want to make adjustments to better suit your production environment.
You may opt to install NetBox either from a numbered release or by cloning the master branch of its repository on GitHub.
## Option A: Download a Release
Download the [latest stable release](https://github.com/digitalocean/netbox/releases) from GitHub as a tarball or ZIP archive and extract it to your desired path. In this example, we'll use `/opt/netbox`.
Install the required Python packages using pip. (If you encounter any compilation errors during this step, ensure that you've installed all of the system dependencies listed above.)
Python 3:
```no-highlight
# pip3 install -r requirements.txt
```
Python 2:
```no-highlight
# pip install -r requirements.txt
```
### NAPALM Automation
As of v2.1.0, NetBox supports integration with the [NAPALM automation](https://napalm-automation.net/) library. NAPALM allows NetBox to fetch live data from devices and return it to a requester via its REST API. Installation of NAPALM is optional. To enable it, install the `napalm` package using pip or pip3:
```no-highlight
# pip install napalm
```
# Configuration
Move into the NetBox configuration directory and make a copy of `configuration.example.py` named `configuration.py`.
```no-highlight
# cd netbox/netbox/
# cp configuration.example.py configuration.py
```
Open `configuration.py` with your preferred editor and set the following variables:
* ALLOWED_HOSTS
* DATABASE
* SECRET_KEY
## ALLOWED_HOSTS
This is a list of the valid hostnames by which this server can be reached. You must specify at least one name or IP address.
This parameter holds the database configuration details. You must define the username and password used when you configured PostgreSQL. If the service is running on a remote host, replace `localhost` with its address.
'PORT': '', # Database port (leave blank for default)
}
```
## SECRET_KEY
Generate a random secret key of at least 50 alphanumeric characters. This key must be unique to this installation and must not be shared outside the local system.
You may use the script located at `netbox/generate_secret_key.py` to generate a suitable key.
!!! note
In the case of a highly available installation with multiple web servers, `SECRET_KEY` must be identical among all servers in order to maintain a persistent user session state.
# Run Database Migrations
!!! warning
The examples on the rest of this page call the `python` executable, which will be Python2 on most systems. Replace this with `python3` if you're running NetBox on Python3.
Before NetBox can run, we need to install the database schema. This is done by running `python manage.py migrate` from the `netbox` directory (`/opt/netbox/netbox/` in our example):
If this step results in a PostgreSQL authentication error, ensure that the username and password created in the database match what has been specified in `configuration.py`
# Create a Super User
NetBox does not come with any predefined user accounts. You'll need to create a super user to be able to log into NetBox:
```no-highlight
# python manage.py createsuperuser
Username: admin
Email address: admin@example.com
Password:
Password (again):
Superuser created successfully.
```
# Collect Static Files
```no-highlight
# python manage.py collectstatic --no-input
You have requested to collect static files at the destination
location as specified in your settings:
/opt/netbox/netbox/static
This will overwrite existing files!
Are you sure you want to do this?
Type 'yes' to continue, or 'no' to cancel: yes
```
# Load Initial Data (Optional)
NetBox ships with some initial data to help you get started: RIR definitions, common devices roles, etc. You can delete any seed data that you don't want to keep.
!!! note
This step is optional. It's perfectly fine to start using NetBox without using this initial data if you'd rather create everything from scratch.
```no-highlight
# python manage.py loaddata initial_data
Installed 43 object(s) from 4 fixture(s)
```
# Test the Application
At this point, NetBox should be able to run. We can verify this by starting a development instance:
Django version 1.9.7, using settings 'netbox.settings'
Starting development server at http://0.0.0.0:8000/
Quit the server with CONTROL-C.
```
Now if we navigate to the name or IP of the server (as defined in `ALLOWED_HOSTS`) we should be greeted with the NetBox home page. Note that this built-in web service is for development and testing purposes only. **It is not suited for production use.**
!!! warning
If the test service does not run, or you cannot reach the NetBox home page, something has gone wrong. Do not proceed with the rest of this guide until the installation has been corrected.
NetBox requires a PostgreSQL database to store data. (Please note that MySQL is not supported, as NetBox leverages PostgreSQL's built-in [network address types](https://www.postgresql.org/docs/9.1/static/datatype-net-types.html).)
!!! note
The installation instructions provided here have been tested to work on Ubuntu 16.04 and CentOS 6.9. The particular commands needed to install dependencies on other distributions may vary significantly. Unfortunately, this is outside the control of the NetBox maintainers. Please consult your distribution's documentation for assistance with any errors.
CentOS users should modify the PostgreSQL configuration to accept password-based authentication by replacing `ident` with `md5` for all host entries within `/var/lib/pgsql/data/pg_hba.conf`. For example:
```no-highlight
host all all 127.0.0.1/32 md5
host all all ::1/128 md5
```
Then, start the service:
```no-highlight
# systemctl start postgresql
```
# Database Creation
At a minimum, we need to create a database for NetBox and assign it a username and password for authentication. This is done with the following commands.
!!! danger
DO NOT USE THE PASSWORD FROM THE EXAMPLE.
```no-highlight
# sudo -u postgres psql
psql (9.3.13)
Type "help" for help.
postgres=# CREATE DATABASE netbox;
CREATE DATABASE
postgres=# CREATE USER netbox WITH PASSWORD 'J5brHrAXFLQSif0K';
CREATE ROLE
postgres=# GRANT ALL PRIVILEGES ON DATABASE netbox TO netbox;
GRANT
postgres=# \q
```
You can verify that authentication works issuing the following command and providing the configured password:
```no-highlight
# psql -U netbox -h localhost -W
```
If successful, you will enter a `postgres` prompt. Type `\q` to exit.
Prior to upgrading your NetBox instance, be sure to carefully review all [release notes](../release-notes/index.md) that have been published since your current version was released. Although the upgrade process typically does not involve additional work, certain releases may introduce breaking or backward-incompatible changes. These are called out in the release notes under the release in which the change went into effect.
## Update Dependencies to Required Versions
NetBox v3.0 and later require the following:
| Dependency | Minimum Version |
|------------|-----------------|
| Python | 3.8 |
| PostgreSQL | 10 |
| Redis | 4.0 |
## Install the Latest Release
As with the initial installation, you can upgrade NetBox by either downloading the latest release package or by cloning the `master` branch of the git repository.
## Option A: Download a Release
### Option A: Download a Release
Download the [latest stable release](https://github.com/digitalocean/netbox/releases) from GitHub as a tarball or ZIP archive. Extract it to your desired path. In this example, we'll use `/opt/netbox`.
Download the [latest stable release](https://github.com/netbox-community/netbox/releases) from GitHub as a tarball or ZIP archive. Extract it to your desired path. In this example, we'll use `/opt/netbox`.
Be sure to replicate your uploaded media as well. (The exact action necessary will depend on where you choose to store your media, but in general moving or copying the media directory will suffice.)
Also make sure to copy or link any custom scripts and reports that you've made. Note that if these are stored outside the project root, you will not need to copy them. (Check the `SCRIPTS_ROOT` and `REPORTS_ROOT` parameters in the configuration file above if you're unsure.)
## Option B: Clone the Git Repository (latest master release)
### Option B: Clone the Git Repository
This guide assumes that NetBox is installed at `/opt/netbox`. Pull down the most recent iteration of the master branch:
```no-highlight
# cd /opt/netbox
# git checkout master
# git pull origin master
# git status
cd /opt/netbox
sudo git checkout master
sudo git pull origin master
```
# Run the Upgrade Script
!!! info "Checking out an older release"
If you need to upgrade to an older version rather than the current stable release, you can check out any valid [git tag](https://github.com/netbox-community/netbox/tags), each of which represents a release. For example, to checkout the code for NetBox v2.11.11, do:
Once the new code is in place, run the upgrade script (which may need to be run as root depending on how your environment is configured).
sudo git checkout v2.11.11
## Run the Upgrade Script
Once the new code is in place, verify that any optional Python packages required by your deployment (e.g. `napalm` or `django-auth-ldap`) are listed in `local_requirements.txt`. Then, run the upgrade script:
```no-highlight
# ./upgrade.sh
sudo ./upgrade.sh
```
!!! warning
The upgrade script will prefer Python3 and pip3 if both executables are available. To force it to use Python2 and pip, use the `-2` argument as below.
If the default version of Python is not at least 3.8, you'll need to pass the path to a supported Python version as an environment variable when calling the upgrade script. For example:
```no-highlight
# ./upgrade.sh -2
```
```no-highlight
sudo PYTHON=/usr/bin/python3.8 ./upgrade.sh
```
This script:
This script performs the following actions:
* Installs or upgrades any new required Python packages
* Destroys and rebuilds the Python virtual environment
* Installs all required Python packages (listed in `requirements.txt`)
* Installs any additional packages from `local_requirements.txt`
* Applies any database migrations that were included in the release
* Builds the documentation locally (for offline use)
* Collects all static files to be served by the HTTP service
* Deletes stale content types from the database
* Deletes all expired user sessions from the database
!!! note
It's possible that the upgrade script will display a notice warning of unreflected database migrations:
If the upgrade script prompts a warning about unreflected database migrations, this indicates that some change has
been made to your local codebase and should be investigated. Never attempt to create new migrations unless you are
intentionally modifying the database schema.
Your models have changes that are not yet reflected in a migration, and so won't be applied.
Run 'manage.py makemigrations' to make new migrations, and then re-run 'manage.py migrate' to apply them.
## Restart the NetBox Services
This may occur due to semantic differences in environment, and can be safely ignored. Never attempt to create new migrations unless you are intentionally modifying the database schema.
!!! warning
If you are upgrading from an installation that does not use a Python virtual environment (any release prior to v2.7.9), you'll need to update the systemd service files to reference the new Python and gunicorn executables before restarting the services. These are located in `/opt/netbox/venv/bin/`. See the example service files in `/opt/netbox/contrib/` for reference.
# Restart the WSGI Service
Finally, restart the WSGI service to run the new code. If you followed this guide for the initial installation, this is done using `supervisorctl`:
Finally, restart the gunicorn and RQ services:
```no-highlight
# sudo supervisorctl restart netbox
sudo systemctl restart netbox netbox-rq
```
## Verify Housekeeping Scheduling
If upgrading from a release prior to NetBox v3.0, check that a cron task (or similar scheduled process) has been configured to run NetBox's nightly housekeeping command. A shell script which invokes this command is included at `contrib/netbox-housekeeping.sh`. It can be linked from your system's daily cron task directory, or included within the crontab directly. (If NetBox has been installed in a nonstandard path, be sure to update the system paths within this script first.)
We'll set up a simple WSGI front end using [gunicorn](http://gunicorn.org/) for the purposes of this guide. For web servers, we provide example configurations for both [nginx](https://www.nginx.com/resources/wiki/) and [Apache](http://httpd.apache.org/docs/2.4). (You are of course free to use whichever combination of HTTP and WSGI services you'd like.) We'll also use [supervisord](http://supervisord.org/) to enable service persistence.
!!! info
For the sake of brevity, only Ubuntu 16.04 instructions are provided here, but this sort of web server and WSGI configuration is not unique to NetBox. Please consult your distribution's documentation for assistance if needed.
```no-highlight
# apt-get install -y gunicorn supervisor
```
## Option A: nginx
The following will serve as a minimal nginx configuration. Be sure to modify your server name and installation path appropriately.
```no-highlight
# apt-get install -y nginx
```
Once nginx is installed, save the following configuration to `/etc/nginx/sites-available/netbox`. Be sure to replace `netbox.example.com` with the domain name or IP address of your installation. (This should match the value configured for `ALLOWED_HOSTS` in `configuration.py`.)
```nginx
server {
listen 80;
server_name netbox.example.com;
client_max_body_size 25m;
location /static/ {
alias /opt/netbox/netbox/static/;
}
location / {
proxy_pass http://127.0.0.1:8001;
proxy_set_header X-Forwarded-Host $server_name;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-Proto $scheme;
add_header P3P 'CP="ALL DSP COR PSAa PSDa OUR NOR ONL UNI COM NAV"';
}
}
```
Then, delete `/etc/nginx/sites-enabled/default` and create a symlink in the `sites-enabled` directory to the configuration file you just created.
```no-highlight
# cd /etc/nginx/sites-enabled/
# rm default
# ln -s /etc/nginx/sites-available/netbox
```
Restart the nginx service to use the new configuration.
```no-highlight
# service nginx restart
```
To enable SSL, consider this guide on [securing nginx with Let's Encrypt](https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-with-let-s-encrypt-on-ubuntu-14-04).
## Option B: Apache
```no-highlight
# apt-get install -y apache2
```
Once Apache is installed, proceed with the following configuration (Be sure to modify the `ServerName` appropriately):
```apache
<VirtualHost *:80>
ProxyPreserveHost On
ServerName netbox.example.com
Alias /static /opt/netbox/netbox/static
# Needed to allow token-based API authentication
WSGIPassAuthorization on
<Directory /opt/netbox/netbox/static>
Options Indexes FollowSymLinks MultiViews
AllowOverride None
Require all granted
</Directory>
<Location /static>
ProxyPass !
</Location>
ProxyPass / http://127.0.0.1:8001/
ProxyPassReverse / http://127.0.0.1:8001/
</VirtualHost>
```
Save the contents of the above example in `/etc/apache2/sites-available/netbox.conf`, enable the `proxy` and `proxy_http` modules, and reload Apache:
```no-highlight
# a2enmod proxy
# a2enmod proxy_http
# a2ensite netbox
# service apache2 restart
```
To enable SSL, consider this guide on [securing Apache with Let's Encrypt](https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-let-s-encrypt-on-ubuntu-14-04).
# gunicorn Installation
Save the following configuration in the root netbox installation path as `gunicorn_config.py` (e.g. `/opt/netbox/gunicorn_config.py` per our example installation). Be sure to verify the location of the gunicorn executable on your server (e.g. `which gunicorn`) and to update the `pythonpath` variable if needed. If using CentOS/RHEL, change the username from `www-data` to `nginx` or `apache`.
```no-highlight
command = '/usr/bin/gunicorn'
pythonpath = '/opt/netbox/netbox'
bind = '127.0.0.1:8001'
workers = 3
user = 'www-data'
```
# supervisord Installation
Save the following as `/etc/supervisor/conf.d/netbox.conf`. Update the `command` and `directory` paths as needed. If using CentOS/RHEL, change the username from `www-data` to `nginx` or `apache`.
Then, restart the supervisor service to detect and run the gunicorn service:
```no-highlight
# service supervisor restart
```
At this point, you should be able to connect to the nginx HTTP service at the server name or IP address you provided. If you are unable to connect, check that the nginx service is running and properly configured. If you receive a 502 (bad gateway) error, this indicates that gunicorn is misconfigured or not running.
!!! info
Please keep in mind that the configurations provided here are bare minimums required to get NetBox up and running. You will almost certainly want to make some changes to better suit your production environment.
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.