fix incorrect assumption about when to run the group sync
Add documentation for new Settings
format to autopep8 compliance
add first set of basic testcases
format test to comply with pep8
rename SEPERATOR to SEPARATOR
remove accidentally carried over parameter
* Fixes#7035: Refactor APISelect query_param logic
* Add filter_fields to extras.ObjectVar & fix default value handling
* Update ObjectVar docs to reflect new filter_fields attribute
* Revert changes from 89b7f3f
* Maintain current `query_params` API for form fields, transform data structure in widget
* Revert changes from d0208d4
* Split object list and filters into tabs
* Use object_list template for connections, rack elevations
* Include custom field filters in grouped filter form
* Annotate number of applied filters on tab
* Rearrange table controls
* Incorporate local documentation build in upgrade script
* Add docs build to CI
* Include docs build path in revision control
* Update footer dcos link
* Changelog for #6328
* Clean up errant links
When users are authenticated with an API token not all permissions where
assigned to the session because the LDAP group memberships where not
available.
Now the information is loaded from the directory if the user is found.
If not the local group memberships are used.
This prevents a crash when the current user has authenticated himself
with an API token. In this case the user will not have the permissions
given to his LDAP groups.
When AUTH_LDAP_FIND_GROUP_PERMS is set to true the filter to find the
users permissions is extended to search for all permissions assigned to
groups in which the LDAP user is.
@jeremystretch:
> It'd be better to have the custom field return a date object than to
> accommodate string values in the template filter. Let's just omit custom
> field dates for now to keep this from getting any more complex.
This changes the text from: Updated 5 months, 1 week ago
to: Updated 2021-01-24 00:33 (5 months, 1 week ago)
Co-authored-by: Jeremy Stretch <jstretch@ns1.com>
With this commit all dates in the UI are now consistently displayed.
I changed the long date format as suggested by @xkilian and confirmed by my own
research.
* DATETIME_FORMAT
* Before July 20, 2020 4:52 p.m.
* Now 20th July, 2020 16:52
"20th July, 2020" would be spoken as "the 20th of July, 2020" but the "the" and
"of" are never written.
The only exception is `object_list.html`. I tried it but there it does not
work so easily because the dates are passed to Jinja as SafeString.
* Clean up & comment base templates
* Clean up login template & form
* Use SVG file for NetBox logo
* Simplify breadcrumbs
* Merge changelog.html into home.html
* Rename title_container block to header
* Move breadcrumbs block to object.html
* Attach names to endblock template tags
* Reorganize root-level templates into base/ and inc/
* Remove obsolete reference to Bootstrap 3.4.1
New validate_form method on ComponentCreateView handles validation generically, which any post() method on ComponentCreateView can use to validate the form but handle the response differently as needed.
There are situations in which it is convenient to be able to modify the name of the cookie that the application uses for storing the session token (conflicts with other cookies on the same domain, for example).
At present, a mix of link types are used in the Netbox
documentation from markdown file links to relative and
absolute anchor links.
Of the three types, linking to markdown files is the
most ideal because it allows navigation locally on disk,
as well as being translated into working links at render
time.
While not obvious, mkdocs handles converting markdown
links to valid URLs.
Signed-Off-by: Marcus Crane <marcu.crane@daimler.com>
* Initial work on #5892
* Add site group selection to object edit forms
* Add documentation for site groups
* Changelog for #5892
* Finish application of site groups to config context
* Initial work on #5913
* Provide per-line diff highlighting
* BulkDeteView should delete objects individually to secure a pre-change snapshot
* Add changelog tests for bulk operations
At least on ubuntu 20.04, the python3 package is now 3.8, but the package 'python3' points to the current best version of python available without needing to specialize a minor version and should require fewer changes to the document.
* Use HTTPS everywhere (mechanical edit using util from https-everywhere)
```Shell
node ~/src/EFForg/https-everywhere/utils/rewriter/rewriter.js .
git checkout netbox/project-static/
```
A few additional changes where reset manually before the commit.
* Use HTTPS everywhere (mechanical edit using util from opening_hours.js)
```Shell
make -f ~/src/opening-hours/opening_hours.js/Makefile qa-https-everywhere
git checkout netbox/project-static/
git checkout netbox/*/tests
```
* Convert circuits to use subqueries
* Convert dcim to use subqueries
* Convert extras to use subqueries
* Convert ipam to use subqueries
* Convert secrets to use subqueries
* Convert virtualization to use subqueries
* Update global search view to use subqueries where appropriate
* Remove extraneous order_by() calls
NetBox is an infrastructure resource modeling (IRM) tool designed to empower
network automation. Initially conceived by the network engineering team at
[DigitalOcean](https://www.digitalocean.com/), NetBox was developed specifically
to address the needs of network and infrastructure engineers. It is intended to
function as a domain-specific source of truth for network operations.
NetBox runs as a web application atop the [Django](https://www.djangoproject.com/)
Python framework with a [PostgreSQL](http://www.postgresql.org/) database. For a
Python framework with a [PostgreSQL](https://www.postgresql.org/) database. For a
complete list of requirements, see `requirements.txt`. The code is available [on GitHub](https://github.com/netbox-community/netbox).
The complete documentation for NetBox can be found at [Read the Docs](http://netbox.readthedocs.io/en/stable/).
The complete documentation for NetBox can be found at [Read the Docs](https://netbox.readthedocs.io/en/stable/). A public demo instance is available at https://demo.netbox.dev.
Questions? Comments? Please subscribe to [the netbox-discuss mailing list](https://groups.google.com/g/netbox-discuss),
or join us in the #netbox Slack channel on [NetworkToCode](https://networktocode.slack.com/)!

* [GitHub Discussions](https://github.com/netbox-community/netbox/discussions) - Discussion forum hosted by GitHub; ideal for Q&A and other structured discussions
* [Slack](https://netdev.chat/) - Real-time chat hosted by the NetDev Community; best for unstructured discussion or just hanging out
* [Google Group](https://groups.google.com/g/netbox-discuss) - Legacy mailing list; slowly being replaced by GitHub discussions
---
### Installation

Please see [the documentation](https://netbox.readthedocs.io/en/stable/) for
instructions on installing NetBox. To upgrade NetBox, please download the
[latest release](https://github.com/netbox-community/netbox/releases) and
run `upgrade.sh`.
---
### Providing Feedback

## Installation
Please see [the documentation](http://netbox.readthedocs.io/en/stable/) for
instructions on installing NetBox. To upgrade NetBox, please download the [latest release](https://github.com/netbox-community/netbox/releases)
and run `upgrade.sh`.
## Providing Feedback
Feature requests and bug reports must be submitted as GiHub issues. (Please be
sure to use the [appropriate template](https://github.com/netbox-community/netbox/issues/new/choose).)
For general discussion, please consider joining our [mailing list](https://groups.google.com/g/netbox-discuss).
The best platform for general feedback, assistance, and other discussion is our
NetBox supports database query caching using [django-cacheops](https://github.com/Suor/django-cacheops) and Redis. When a query is made, the results are cached in Redis for a short period of time, as defined by the [CACHE_TIMEOUT](../../configuration/optional-settings/#cache_timeout) parameter (15 minutes by default). Within that time, all recurrences of that specific query will return the pre-fetched results from the cache.
If a change is made to any of the objects returned by the query within that time, or if the timeout expires, the results are automatically invalidated and the next request for those results will be sent to the database.
## Invalidating Cached Data
Although caching is performed automatically and rarely requires administrative intervention, NetBox provides the `invalidate` management command to force invalidation of cached results. This command can reference a specific object my its type and numeric ID:
Every time an object in NetBox is created, updated, or deleted, a serialized copy of that object is saved to the database, along with meta data including the current time and the user associated with the change. These records form a persistent record of changes both for each individual object as well as NetBox as a whole. The global change log can be viewed by navigating to Other > Change Log.
Every time an object in NetBox is created, updated, or deleted, a serialized copy of that object taken both before and after the change is saved to the database, along with meta data including the current time and the user associated with the change. These records form a persistent record of changes both for each individual object as well as NetBox as a whole. The global change log can be viewed by navigating to Other > Change Log.
A serialized representation of the instance being modified is included in JSON format. This is similar to how objects are conveyed within the REST API, but does not include any nested representations. For instance, the `tenant` field of a site will record only the tenant's ID, not a representation of the tenant.
Each object in NetBox is represented in the database as a discrete table, and each attribute of an object exists as a column within its table. For example, sites are stored in the `dcim_site` table, which has columns named `name`, `facility`, `physical_address`, and so on. As new attributes are added to objects throughout the development of NetBox, tables are expanded to include new rows.
However, some users might want to associate with objects attributes that are somewhat esoteric in nature, and that would not make sense to include in the core NetBox database schema. For instance, suppose your organization needs to associate each device with a ticket number pointing to the support ticket that was opened to have it installed. This is certainly a legitimate use for NetBox, but it's perhaps not a common enough need to warrant expanding the internal data schema. Instead, you can create a custom field to hold this data.
Custom fields must be created through the admin UI under Extras > Custom Fields. To create a new custom field, select the object(s) to which you want it to apply, and the type of field it will be. NetBox supports six field types:
* Free-form text (up to 255 characters)
* Integer
* Boolean (true/false)
* Date
* URL
* Selection
Assign the field a name. This should be a simple database-friendly string, e.g. `tps_report`. You may optionally assign the field a human-friendly label (e.g. "TPS report") as well; the label will be displayed on forms. If a description is provided, it will appear beneath the field in a form.
Marking the field as required will require the user to provide a value for the field when creating a new object or when saving an existing object. A default value for the field may also be provided. Use "true" or "false" for boolean fields. (The default value has no effect for selection fields.)
When creating a selection field, you should create at least two choices. These choices will be arranged first by weight, with lower weights appearing higher in the list, and then alphabetically.
## Using Custom Fields
When a single object is edited, the form will include any custom fields which have been defined for the object type. These fields are included in the "Custom Fields" panel. On the backend, each custom field value is saved separately from the core object as an independent database call, so it's best to avoid adding too many custom fields per object.
When editing multiple objects, custom field values are saved in bulk. There is no significant difference in overhead when saving a custom field value for 100 objects versus one object. However, the bulk operation must be performed separately for each custom field.
Native support for embedded graphs is due to be removed in NetBox v2.10. It will likely be superseded by a plugin providing similar functionality.
NetBox does not have the ability to generate graphs natively, but this feature allows you to embed contextual graphs from an external resources (such as a monitoring system) inside the site, provider, and interface views. Each embedded graph must be defined with the following parameters:
* **Type:** Site, device, provider, or interface. This determines in which view the graph will be displayed.
* **Weight:** Determines the order in which graphs are displayed (lower weights are displayed first). Graphs with equal weights will be ordered alphabetically by name.
* **Name:** The title to display above the graph.
* **Source URL:** The source of the image to be embedded. The associated object will be available as a template variable named `obj`.
* **Link URL (optional):** A URL to which the graph will be linked. The associated object will be available as a template variable named `obj`.
Graph names and links can be rendered using Jinja2 or [Django's template language](https://docs.djangoproject.com/en/stable/ref/templates/language/).
## Examples
You only need to define one graph object for each graph you want to include when viewing an object. For example, if you want to include a graph of traffic through an interface over the past five minutes, your graph source might looks like this:
All primary objects in NetBox support journaling. A journal is a collection of human-generated notes and comments about an object maintained for historical context. It supplements NetBox's change log to provide additional information about why changes have been made or to convey events which occur outside NetBox. Unlike the change log, in which records typically expire after a configurable period of time, journal entries persist for the life of their associated object.
Each journal entry has a selectable kind (info, success, warning, or danger) and a user-populated `comments` field. Each entry automatically records the date, time, and associated user upon being created.
NetBox supports integration with the [NAPALM automation](https://napalm-automation.net/) library. NAPALM allows NetBox to serve a proxy for operational data, fetching live data from network devices and returning it to a requester via its REST API. Note that NetBox does not store any NAPALM data locally.
NetBox supports integration with the [NAPALM automation](https://github.com/napalm-automation/napalm) library. NAPALM allows NetBox to serve a proxy for operational data, fetching live data from network devices and returning it to a requester via its REST API. Note that NetBox does not store any NAPALM data locally.
The NetBox UI will display tabs for status, LLDP neighbors, and configuration under the device view if the following conditions are met:
* Device status is "Active"
* A primary IP has been assigned to the device
* A platform with a NAPALM driver has been assigned
* The authenticated user has the `dcim.napalm_read_device` permission
!!! note
To enable this integration, the NAPALM library must be installed. See [installation steps](../../installation/3-netbox/#napalm) for more information.
@@ -22,7 +29,7 @@ GET /api/dcim/devices/1/napalm/?method=get_environment
## Authentication
By default, the [`NAPALM_USERNAME`](../../configuration/optional-settings/#napalm_username) and [`NAPALM_PASSWORD`](../../configuration/optional-settings/#napalm_password) configuration parameters are used for NAPALM authentication. They can be overridden for an individual API call by specifying the `X-NAPALM-Username` and `X-NAPALM-Password` headers.
By default, the [`NAPALM_USERNAME`](../configuration/optional-settings.md#napalm_username) and [`NAPALM_PASSWORD`](../configuration/optional-settings.md#napalm_password) configuration parameters are used for NAPALM authentication. They can be overridden for an individual API call by specifying the `X-NAPALM-Username` and `X-NAPALM-Password` headers.
@@ -26,4 +26,4 @@ For the exhaustive list of exposed metrics, visit the `/metrics` endpoint on you
When deploying NetBox in a multiprocess manner (e.g. running multiple Gunicorn workers) the Prometheus client library requires the use of a shared directory to collect metrics from all worker processes. To configure this, first create or designate a local directory to which the worker processes have read and write access, and then configure your WSGI service (e.g. Gunicorn) to define this path as the `prometheus_multiproc_dir` environment variable.
!!! warning
If having accurate long-term metrics in a multiprocess environment is crucial to your deployment, it's recommended you use the `uwsgi` library instead of `gunicorn`. The issue lies in the way `gunicorn` tracks worker processes (vs `uwsgi`) which helps manage the metrics files created by the above configurations. If you're using Netbox with gunicorn in a containerized enviroment following the one-process-per-container methodology, then you will likely not need to change to `uwsgi`. More details can be found in [issue #3779](https://github.com/netbox-community/netbox/issues/3779#issuecomment-590547562).
If having accurate long-term metrics in a multiprocess environment is crucial to your deployment, it's recommended you use the `uwsgi` library instead of `gunicorn`. The issue lies in the way `gunicorn` tracks worker processes (vs `uwsgi`) which helps manage the metrics files created by the above configurations. If you're using NetBox with gunicorn in a containerized environment following the one-process-per-container methodology, then you will likely not need to change to `uwsgi`. More details can be found in [issue #3779](https://github.com/netbox-community/netbox/issues/3779#issuecomment-590547562).
A webhook is a mechanism for conveying to some external system a change that took place in NetBox. For example, you may want to notify a monitoring system whenever the status of a device is updated in NetBox. This can be done by creating a webhook for the device model in NetBox and identifying the webhook receiver. When NetBox detects a change to a device, an HTTP request containing the details of the change and who made it be sent to the specified receiver. Webhooks are configured in the admin UI under Extras > Webhooks.
A webhook is a mechanism for conveying to some external system a change that took place in NetBox. For example, you may want to notify a monitoring system whenever the status of a device is updated in NetBox. This can be done by creating a webhook for the device model in NetBox and identifying the webhook receiver. When NetBox detects a change to a device, an HTTP request containing the details of the change and who made it be sent to the specified receiver. Webhooks are managed under Logging > Webhooks.
!!! warning
Webhooks support the inclusion of user-submitted code to generate custom headers and payloads, which may pose security risks under certain conditions. Only grant permission to create or modify webhooks to trusted users.
## Configuration
@@ -38,7 +41,8 @@ The following data is available as context for Jinja2 templates:
*`timestamp` - The time at which the event occurred (in [ISO 8601](https://en.wikipedia.org/wiki/ISO_8601) format).
*`username` - The name of the user account associated with the change.
*`request_id` - The unique request ID. This may be used to correlate multiple changes associated with a single request.
*`data` - A serialized representation of the object _after_ the change was made. This is typically equivalent to the model's representation in NetBox's REST API.
*`data` - A detailed representation of the object in its current state. This is typically equivalent to the model's representation in NetBox's REST API.
*`snapshots` - Minimal "snapshots" of the object state both before and after the change was made; provided ass a dictionary with keys named `prechange` and `postchange`. These are not as extensive as the fully serialized representation, but contain enough information to convey what has changed.
### Default Request Body
@@ -47,7 +51,7 @@ If no body template is specified, the request body will be populated with a JSON
@@ -62,13 +66,24 @@ If no body template is specified, the request body will be populated with a JSON
},
"region": null,
...
},
"snapshots": {
"prechange": null,
"postchange": {
"created": "2021-03-09",
"last_updated": "2021-03-09T17:55:33.851Z",
"name": "Site 1",
"slug": "site-1",
"status": "active",
...
}
}
}
```
## Webhook Processing
When a change is detected, any resulting webhooks are placed into a Redis queue for processing. This allows the user's request to complete without needing to wait for the outgoing webhook(s) to be processed. The webhooks are then extracted from the queue by the `rqworker` process and HTTP requests are sent to their respective destinations. The current webhook queue and any failed webhooks can be inspected in the admin UI under Django RQ > Queues.
When a change is detected, any resulting webhooks are placed into a Redis queue for processing. This allows the user's request to complete without needing to wait for the outgoing webhook(s) to be processed. The webhooks are then extracted from the queue by the `rqworker` process and HTTP requests are sent to their respective destinations. The current webhook queue and any failed webhooks can be inspected in the admin UI under System > Background Tasks.
A request is considered successful if the response has a 2XX status code; otherwise, the request is marked as having failed. Failed requests may be retried manually via the admin UI.
NetBox includes a `housekeeping` management command that should be run nightly. This command handles:
* Clearing expired authentication sessions from the database
* Deleting changelog records older than the configured [retention time](../configuration/optional-settings.md#changelog_retention)
This command can be invoked directly, or by using the shell script provided at `/opt/netbox/contrib/netbox-housekeeping.sh`. This script can be copied into your cron scheduler's daily jobs directory (e.g. `/etc/cron.daily`) or referenced directly within the cron configuration file.
The `housekeeping` command can also be run manually at any time: Running the command outside of scheduled execution times will not interfere with its operation.
To delete multiple objects at once, call `delete()` on a filtered queryset. It's a good idea to always sanity-check the count of selected objects _before_ deleting them.
@@ -194,9 +194,9 @@ To delete multiple objects at once, call `delete()` on a filtered queryset. It's
NetBox v2.9 introduced a new object-based permissions framework, which replace's Django's built-in permissions model. Object-based permissions enable an administrator to grant users or groups the ability to perform an action on arbitrary subsets of objects in NetBox, rather than all objects of a certain type. For example, it is possible to grant a user permission to view only sites within a particular region, or to modify only VLANs with a numeric ID within a certain range.
{!docs/models/users/objectpermission.md!}
{!models/users/objectpermission.md!}
### Example Constraint Definitions
@@ -10,7 +10,7 @@ NetBox v2.9 introduced a new object-based permissions framework, which replace's
| ----------- | ----------- |
| `{"status": "active"}` | Status is active |
| `{"status__in": ["planned", "reserved"]}` | Status is active **OR** reserved |
| `{"status": "active", "role": "testing"}` | Status is active **OR** role is testing |
| `{"status": "active", "role": "testing"}` | Status is active **AND** role is testing |
| `{"name__startswith": "Foo"}` | Name starts with "Foo" (case-sensitive) |
| `{"name__iendswith": "bar"}` | Name ends with "bar" (case-insensitive) |
| `{"vid__gte": 100, "vid__lt": 200}` | VLAN ID is greater than or equal to 100 **AND** less than 200 |
You may need to change the username, host, and/or database in the command above to match your installation.
When replicating a production database for development purposes, you may find it convenient to exclude changelog data, which can easily account for the bulk of a database's size. To do this, exclude the `extras_objectchange` table data from the export. The table will still be included in the output file, but will not be populated with any data.
@@ -44,7 +44,7 @@ This defines custom content to be displayed on the login page above the login fo
Default: None
The base URL path to use when accessing NetBox. Do not include the scheme or domain name. For example, if installed at http://example.com/netbox/, set:
The base URL path to use when accessing NetBox. Do not include the scheme or domain name. For example, if installed at https://example.com/netbox/, set:
```python
BASE_PATH='netbox/'
@@ -52,14 +52,6 @@ BASE_PATH = 'netbox/'
---
## CACHE_TIMEOUT
Default: 900
The number of seconds to cache entries will be retained before expiring.
---
## CHANGELOG_RETENTION
Default: 90
@@ -96,6 +88,22 @@ CORS_ORIGIN_WHITELIST = [
---
## CUSTOM_VALIDATORS
This is a mapping of models to [custom validators](../customization/custom-validation.md) that have been defined locally to enforce custom validation logic. An example is provided below:
```python
CUSTOM_VALIDATORS={
'dcim.site':(
Validator1,
Validator2,
Validator3
)
}
```
---
## DEBUG
Default: False
@@ -144,7 +152,7 @@ In order to send email, NetBox needs an email server configured. The following i
!!! note
The `USE_SSL` and `USE_TLS` parameters are mutually exclusive.
Email is sent from NetBox only for critical events or if configured for [logging](#logging). If you would like to test the email server configuration, Django provides a convenient [send_mail()](https://docs.djangoproject.com/en/stable/topics/email/#send-mail) fuction accessible within the NetBox shell:
Email is sent from NetBox only for critical events or if configured for [logging](#logging). If you would like to test the email server configuration, Django provides a convenient [send_mail()](https://docs.djangoproject.com/en/stable/topics/email/#send-mail) function accessible within the NetBox shell:
Setting this to False will disable the GraphQL API.
---
## HTTP_PROXIES
Default: None
@@ -257,11 +273,21 @@ LOGGING = {
---
## LOGIN_PERSISTENCE
Default: False
If true, the lifetime of a user's authentication session will be automatically reset upon each valid request. For example, if [`LOGIN_TIMEOUT`](#login_timeout) is configured to 14 days (the default), and a user whose session is due to expire in five days makes a NetBox request (with a valid session cookie), the session's lifetime will be reset to 14 days.
Note that enabling this setting causes NetBox to update a user's session in the database (or file, as configured per [`SESSION_FILE_PATH`](#session_file_path)) with each request, which may introduce significant overhead in very active environments. It also permits an active user to remain authenticated to NetBox indefinitely.
---
## LOGIN_REQUIRED
Default: False
Setting this to True will permit only authenticated users to access any part of NetBox. By default, anonymous users are permitted to access most data in NetBox (excluding secrets) but not make any changes.
Setting this to True will permit only authenticated users to access any part of NetBox. By default, anonymous users are permitted to access most data in NetBox but not make any changes.
---
@@ -277,7 +303,15 @@ The lifetime (in seconds) of the authentication cookie issued to a NetBox user u
Default: False
Setting this to True will display a "maintenance mode" banner at the top of every page.
Setting this to True will display a "maintenance mode" banner at the top of every page. Additionally, NetBox will no longer update a user's "last active" time upon login. This is to allow new logins when the database is in a read-only state. Recording of login times will resume when maintenance mode is disabled.
This specifies the URL to use when presenting a map of a physical location by street address or GPS coordinates. The URL must accept either a free-form street address or a comma-separated pair of numeric coordinates appended to it.
---
@@ -301,7 +335,7 @@ The file path to the location where media files (such as image attachments) are
Default: False
Toggle the availability Prometheus-compatible metrics at `/metrics`. See the [Prometheus Metrics](../../additional-features/prometheus-metrics/) documentation for more details.
Toggle the availability Prometheus-compatible metrics at `/metrics`. See the [Prometheus Metrics](../additional-features/prometheus-metrics.md) documentation for more details.
---
@@ -309,7 +343,7 @@ Toggle the availability Prometheus-compatible metrics at `/metrics`. See the [Pr
## NAPALM_PASSWORD
NetBox will use these credentials when authenticating to remote devices via the [NAPALM library](https://napalm-automation.net/), if installed. Both parameters are optional.
NetBox will use these credentials when authenticating to remote devices via the supported [NAPALM integration](../additional-features/napalm.md), if installed. Both parameters are optional.
!!! note
If SSH public key authentication has been set up on the remote device(s) for the system account under which NetBox runs, these parameters are not needed.
@@ -318,7 +352,7 @@ NetBox will use these credentials when authenticating to remote devices via the
## NAPALM_ARGS
A dictionary of optional arguments to pass to NAPALM when instantiating a network driver. See the NAPALM documentation for a [complete list of optional arguments](http://napalm.readthedocs.io/en/latest/support/#optional-arguments). An example:
A dictionary of optional arguments to pass to NAPALM when instantiating a network driver. See the NAPALM documentation for a [complete list of optional arguments](https://napalm.readthedocs.io/en/latest/support/#optional-arguments). An example:
```python
NAPALM_ARGS = {
@@ -456,19 +490,67 @@ NetBox can be configured to support remote user authentication by inferring user
---
## REMOTE_AUTH_GROUP_SYNC_ENABLED
Default: `False`
NetBox can be configured to sync remote user groups by inferring user authentication from an HTTP header set by the HTTP reverse proxy (e.g. nginx or Apache). Set this to `True` to enable this functionality. (Local authentication will still take effect as a fallback.) (Requires `REMOTE_AUTH_ENABLED`.)
---
## REMOTE_AUTH_HEADER
Default: `'HTTP_REMOTE_USER'`
When remote user authentication is in use, this is the name of the HTTP header which informs NetBox of the currently authenticated user. (Requires `REMOTE_AUTH_ENABLED`.)
When remote user authentication is in use, this is the name of the HTTP header which informs NetBox of the currently authenticated user. For example, to use the request header `X-Remote-User` it needs to be set to `HTTP_X_REMOTE_USER`. (Requires `REMOTE_AUTH_ENABLED`.)
---
## RELEASE_CHECK_TIMEOUT
## REMOTE_AUTH_GROUP_HEADER
Default: 86,400 (24 hours)
Default: `'HTTP_REMOTE_USER_GROUP'`
The number of seconds to retain the latest version that is fetched from the GitHub API before automatically invalidating it and fetching it from the API again. This must be set to at least one hour (3600 seconds).
When remote user authentication is in use, this is the name of the HTTP header which informs NetBox of the currently authenticated user. For example, to use the request header `X-Remote-User-Groups` it needs to be set to `HTTP_X_REMOTE_USER_GROUPS`. (Requires `REMOTE_AUTH_ENABLED` and `REMOTE_AUTH_GROUP_SYNC_ENABLED` )
---
## REMOTE_AUTH_SUPERUSER_GROUPS
Default: `[]` (Empty list)
The list of groups that promote an remote User to Superuser on Login. If group isn't present on next Login, the Role gets revoked. (Requires `REMOTE_AUTH_ENABLED` and `REMOTE_AUTH_GROUP_SYNC_ENABLED` )
---
## REMOTE_AUTH_SUPERUSERS
Default: `[]` (Empty list)
The list of users that get promoted to Superuser on Login. If user isn't present in list on next Login, the Role gets revoked. (Requires `REMOTE_AUTH_ENABLED` and `REMOTE_AUTH_GROUP_SYNC_ENABLED` )
---
## REMOTE_AUTH_STAFF_GROUPS
Default: `[]` (Empty list)
The list of groups that promote an remote User to Staff on Login. If group isn't present on next Login, the Role gets revoked. (Requires `REMOTE_AUTH_ENABLED` and `REMOTE_AUTH_GROUP_SYNC_ENABLED` )
---
## REMOTE_AUTH_STAFF_USERS
Default: `[]` (Empty list)
The list of users that get promoted to Staff on Login. If user isn't present in list on next Login, the Role gets revoked. (Requires `REMOTE_AUTH_ENABLED` and `REMOTE_AUTH_GROUP_SYNC_ENABLED` )
---
## REMOTE_AUTH_GROUP_SEPARATOR
Default: `|` (Pipe)
The Seperator upon which `REMOTE_AUTH_GROUP_HEADER` gets split into individual Groups. This needs to be coordinated with your authentication Proxy. (Requires `REMOTE_AUTH_ENABLED` and `REMOTE_AUTH_GROUP_SYNC_ENABLED` )
---
@@ -476,7 +558,7 @@ The number of seconds to retain the latest version that is fetched from the GitH
Default: None (disabled)
This parameter defines the URL of the repository that will be checked periodically for new NetBox releases. When a new release is detected, a message will be displayed to administrative users on the home page. This can be set to the official repository (`'https://api.github.com/repos/netbox-community/netbox/releases'`) or a custom fork. Set this to `None` to disable automatic update checks.
This parameter defines the URL of the repository that will be checked for new NetBox releases. When a new release is detected, a message will be displayed to administrative users on the home page. This can be set to the official repository (`'https://api.github.com/repos/netbox-community/netbox/releases'`) or a custom fork. Set this to `None` to disable automatic update checks.
!!! note
The URL provided **must** be compatible with the [GitHub REST API](https://docs.github.com/en/rest).
@@ -487,7 +569,7 @@ This parameter defines the URL of the repository that will be checked periodical
Default: `$INSTALL_ROOT/netbox/reports/`
The file path to the location where custom reports will be kept. By default, this is the `netbox/reports/` directory within the base NetBox installation path.
The file path to the location where [custom reports](../customization/reports.md) will be kept. By default, this is the `netbox/reports/` directory within the base NetBox installation path.
---
@@ -503,7 +585,15 @@ The maximum execution time of a background task (such as running a custom script
Default: `$INSTALL_ROOT/netbox/scripts/`
The file path to the location where custom scripts will be kept. By default, this is the `netbox/scripts/` directory within the base NetBox installation path.
The file path to the location where [custom scripts](../customization/custom-scripts.md) will be kept. By default, this is the `netbox/scripts/` directory within the base NetBox installation path.
---
## SESSION_COOKIE_NAME
Default: `sessionid`
The name used for the session cookie. See the [Django documentation](https://docs.djangoproject.com/en/stable/ref/settings/#session-cookie-name) for more detail.
This is a list of valid fully-qualified domain names (FQDNs) and/or IP addresses that can be used to reach the NetBox service. Usually this is the same as the hostname for the NetBox server, but can also be different; for example, when using a reverse proxy serving the NetBox website under a different FQDN than the hostname of the NetBox server. To help guard against [HTTP Host header attackes](https://docs.djangoproject.com/en/3.0/topics/security/#host-headers-virtual-hosting), NetBox will not permit access to the server via any other hostnames (or IPs).
!!! note
This parameter must always be defined as a list or tuple, even if only value is provided.
This parameter must always be defined as a list or tuple, even if only a single value is provided.
The value of this option is also used to set `CSRF_TRUSTED_ORIGINS`, which restricts POST requests to the same set of hosts (more about this [here](https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-CSRF_TRUSTED_ORIGINS)). Keep in mind that NetBox, by default, sets `USE_X_FORWARDED_HOST` to true, which means that if you're using a reverse proxy, it's the FQDN used to reach that reverse proxy which needs to be in this list (more about this [here](https://docs.djangoproject.com/en/stable/ref/settings/#allowed-hosts)).
@@ -66,6 +66,7 @@ Redis is configured using a configuration setting similar to `DATABASE` and thes
*`PASSWORD` - Redis password (if set)
*`DATABASE` - Numeric database ID
*`SSL` - Use SSL connection to Redis
*`INSECURE_SKIP_TLS_VERIFY` - Set to `True` to **disable** TLS certificate verification (not recommended)
An example configuration is provided below:
@@ -101,7 +102,7 @@ REDIS = {
If you are using [Redis Sentinel](https://redis.io/topics/sentinel) for high-availability purposes, there is minimal
configuration necessary to convert NetBox to recognize it. It requires the removal of the `HOST` and `PORT` keys from
above and the addition of two new keys.
above and the addition of three new keys.
*`SENTINELS`: List of tuples or tuple of tuples with each inner tuple containing the name or IP address
of the Redis server and port for each sentinel instance to connect to
@@ -30,11 +30,11 @@ Once component templates have been created, every new device that you create as
!!! note
Assignment of components from templates occurs only at the time of device creation. If you modify the templates of a device type, it will not affect devices which have already been created. However, you always have the option of adding, modifying, or deleting components on existing devices.
Each model in NetBox is represented in the database as a discrete table, and each attribute of a model exists as a column within its table. For example, sites are stored in the `dcim_site` table, which has columns named `name`, `facility`, `physical_address`, and so on. As new attributes are added to objects throughout the development of NetBox, tables are expanded to include new rows.
However, some users might want to store additional object attributes that are somewhat esoteric in nature, and that would not make sense to include in the core NetBox database schema. For instance, suppose your organization needs to associate each device with a ticket number correlating it with an internal support system record. This is certainly a legitimate use for NetBox, but it's not a common enough need to warrant including a field for _every_ NetBox installation. Instead, you can create a custom field to hold this data.
Within the database, custom fields are stored as JSON data directly alongside each object. This alleviates the need for complex queries when retrieving objects.
## Creating Custom Fields
Custom fields may be created by navigating to Customization > Custom Fields. NetBox supports six types of custom field:
* Text: Free-form text (up to 255 characters)
* Integer: A whole number (positive or negative)
* Boolean: True or false
* Date: A date in ISO 8601 format (YYYY-MM-DD)
* URL: This will be presented as a link in the web UI
* Selection: A selection of one of several pre-defined custom choices
* Multiple selection: A selection field which supports the assignment of multiple values
Each custom field must have a name; this should be a simple database-friendly string, e.g. `tps_report`. You may also assign a corresponding human-friendly label (e.g. "TPS report"); the label will be displayed on web forms. A weight is also required: Higher-weight fields will be ordered lower within a form. (The default weight is 100.) If a description is provided, it will appear beneath the field in a form.
Marking a field as required will force the user to provide a value for the field when creating a new object or when saving an existing object. A default value for the field may also be provided. Use "true" or "false" for boolean fields, or the exact value of a choice for selection fields.
The filter logic controls how values are matched when filtering objects by the custom field. Loose filtering (the default) matches on a partial value, whereas exact matching requires a complete match of the given string to a field's value. For example, exact filtering with the string "red" will only match the exact value "red", whereas loose filtering will match on the values "red", "red-orange", or "bored". Setting the filter logic to "disabled" disables filtering by the field entirely.
A custom field must be assigned to one or more object types, or models, in NetBox. Once created, custom fields will automatically appear as part of these models in the web UI and REST API. Note that not all models support custom fields.
### Custom Field Validation
NetBox supports limited custom validation for custom field values. Following are the types of validation enforced for each field type:
* Text: Regular expression (optional)
* Integer: Minimum and/or maximum value (optional)
* Selection: Must exactly match one of the prescribed choices
### Custom Selection Fields
Each custom selection field must have at least two choices. These are specified as a comma-separated list. Choices appear in forms in the order they are listed. Note that choice values are saved exactly as they appear, so it's best to avoid superfluous punctuation or symbols where possible.
If a default value is specified for a selection field, it must exactly match one of the provided choices. The value of a multiple selection field will always return a list, even if only one value is selected.
## Custom Fields in Templates
Several features within NetBox, such as export templates and webhooks, utilize Jinja2 templating. For convenience, objects which support custom field assignment expose custom field data through the `cf` property. This is a bit cleaner than accessing custom field data through the actual field (`custom_field_data`).
For example, a custom field named `foo123` on the Site model is accessible on an instance as `{{ site.cf.foo123 }}`.
## Custom Fields and the REST API
When retrieving an object via the REST API, all of its custom data will be included within the `custom_fields` attribute. For example, below is the partial output of a site with two custom fields defined:
Custom links allow users to display arbitrary hyperlinks to external content within NetBox object views. These are helpful for cross-referencing related records in systems outside of NetBox. For example, you might create a custom link on the device view which links to the current device in a network monitoring system.
Custom links allow users to display arbitrary hyperlinks to external content within NetBox object views. These are helpful for cross-referencing related records in systems outside NetBox. For example, you might create a custom link on the device view which links to the current device in a network monitoring system.
Custom links are created under the admin UI. Each link is associated with a particular NetBox object type (site, device, prefix, etc.) and will be displayed on relevant views. Each link is assigned text and a URL, both of which support Jinja2 templating. The text and URL are rendered with the context variable `obj` representing the current object.
Custom links are created by navigating to Customization > Custom Links. Each link is associated with a particular NetBox object type (site, device, prefix, etc.) and will be displayed on relevant views. Each link is assigned text and a URL, both of which support Jinja2 templating. The text and URL are rendered with the context variable `obj` representing the current object.
For example, you might define a link like this:
@@ -15,7 +15,10 @@ When viewing a device named Router4, this link would render as:
Custom links appear as buttons at the top right corner of the page. Numeric weighting can be used to influence the ordering of links.
Custom links appear as buttons in the top right corner of the page. Numeric weighting can be used to influence the ordering of links.
!!! warning
Custom links rely on user-created code to generate arbitrary HTML output, which may be dangerous. Only grant permission to create or modify custom links to trusted users.
@@ -170,19 +170,9 @@ Similar to `ChoiceVar`, but allows for the selection of multiple choices.
A particular object within NetBox. Each ObjectVar must specify a particular model, and allows the user to select one of the available instances. ObjectVar accepts several arguments, listed below.
* `model` - The model class
* `display_field` - The name of the REST API object field to display in the selection list (default: `'name'`)
* `query_params` - A dictionary of query parameters to use when retrieving available options (optional)
* `null_option` - A label representing a "null" or empty choice (optional)
The `display_field` argument is useful when referencing a model which does not have a `name` field. For example, when displaying a list of device types, you would likely use the `model` field:
```python
device_type = ObjectVar(
model=DeviceType,
display_field='model'
)
```
To limit the selections available within the list, additional query parameters can be passed as the `query_params` dictionary. For example, to show only devices with an "active" status:
```python
@@ -236,7 +226,7 @@ An IPv4 or IPv6 network with a mask. Returns a `netaddr.IPNetwork` object. Two a
!!! note
To run a custom script, a user must be assigned the `extras.run_script` permission. This is achieved by assigning the user (or group) a permission on the Script object and specifying the `run` action in the admin UI as shown below.


### Via the Web UI
@@ -293,7 +283,6 @@ class NewBranchScript(Script):
NetBox validates every object prior to it being written to the database to ensure data integrity. This validation includes things like checking for proper formatting and that references to related objects are valid. However, you may wish to supplement this validation with some rules of your own. For example, perhaps you require that every site's name conforms to a specific pattern. This can be done using NetBox's `CustomValidator` class.
## CustomValidator
### Validation Rules
A custom validator can be instantiated by passing a mapping of attributes to a set of rules to which that attribute must conform. For example:
```python
fromextras.validatorsimportCustomValidator
CustomValidator({
'name':{
'min_length':5,
'max_length':30,
}
})
```
This defines a custom validator which checks that the length of the `name` attribute for an object is at least five characters long, and no longer than 30 characters. This validation is executed _after_ NetBox has performed its own internal validation.
The `CustomValidator` class supports several validation types:
*`min`: Minimum value
*`max`: Maximum value
*`min_length`: Minimum string length
*`max_length`: Maximum string length
*`regex`: Application of a [regular expression](https://en.wikipedia.org/wiki/Regular_expression)
*`required`: A value must be specified
*`prohibited`: A value must _not_ be specified
The `min` and `max` types should be defined for numeric values, whereas `min_length`, `max_length`, and `regex` are suitable for character strings (text values). The `required` and `prohibited` validators may be used for any field, and should be passed a value of `True`.
!!! warning
Bear in mind that these validators merely supplement NetBox's own validation: They will not override it. For example, if a certain model field is required by NetBox, setting a validator for it with `{'prohibited': True}` will not work.
### Custom Validation Logic
There may be instances where the provided validation types are insufficient. The `CustomValidator` class can be extended to enforce arbitrary validation logic by overriding its `validate()` method, and calling `fail()` when an unsatisfactory condition is detected.
self.fail("Active sites must have a description set!",field='status')
```
The `fail()` method may optionally specify a field with which to associate the supplied error message. If specified, the error message will appear to the user as associated with this field. If omitted, the error message will not be associated with any field.
## Assigning Custom Validators
Custom validators are associated with specific NetBox models under the [CUSTOM_VALIDATORS](../configuration/optional-settings.md#custom_validators) configuration parameter, as such:
```python
CUSTOM_VALIDATORS={
'dcim.site':(
Validator1,
Validator2,
Validator3
)
}
```
!!! note
Even if defining only a single validator, it must be passed as an iterable.
When it is not necessary to define a custom `validate()` method, you may opt to pass a `CustomValidator` instance directly:
NetBox allows users to define custom templates that can be used when exporting objects. To create an export template, navigate to Extras > Export Templates under the admin interface.
NetBox allows users to define custom templates that can be used when exporting objects. To create an export template, navigate to Customization > Export Templates.
Each export template is associated with a certain type of object. For instance, if you create an export template for VLANs, your custom template will appear under the "Export" button on the VLANs list.
Each export template is associated with a certain type of object. For instance, if you create an export template for VLANs, your custom template will appear under the "Export" button on the VLANs list. Each export template must have a name, and may optionally designate a specific export [MIME type](https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types) and/or file extension.
Export templates may be written in Jinja2 or [Django's template language](https://docs.djangoproject.com/en/stable/ref/templates/language/), which is very similar to Jinja2.
Export templates must be written in [Jinja2](https://jinja.palletsprojects.com/).
!!! note
The name `table` is reserved for internal use.
!!! warning
Support for Django's native templating logic will be removed in NetBox v2.10.
Export templates are rendered using user-submitted code, which may pose security risks under certain conditions. Only grant permission to create or modify export templates to trusted users.
The list of objects returned from the database when rendering an export template is stored in the `queryset` variable, which you'll typically want to iterate through using a `for` loop. Object properties can be access by name. For example:
@@ -21,8 +24,28 @@ Height: {{ rack.u_height }}U
To access custom fields of an object within a template, use the `cf` attribute. For example, `{{ obj.cf.color }}` will return the value (if any) for a custom field named `color` on `obj`.
If you need to use the config context data in an export template, you'll should use the function `get_config_context` to get all the config context data. For example:
```
{% for server in queryset %}
{% set data = server.get_config_context() %}
{{ data.syslog }}
{% endfor %}
```
The `as_attachment` attribute of an export template controls its behavior when rendered. If true, the rendered content will be returned to the user as a downloadable file. If false, it will be displayed within the browser. (This may be handy e.g. for generating HTML content.)
A MIME type and file extension can optionally be defined for each export template. The default MIME type is `text/plain`.
## REST API Integration
When it is necessary to provide authentication credentials (such as when [`LOGIN_REQUIRED`](../configuration/optional-settings.md#login_required) has been enabled), it is recommended to render export templates via the REST API. This allows the client to specify an authentication token. To render an export template via the REST API, make a `GET` request to the model's list endpoint and append the `export` parameter specifying the export template name. For example:
```
GET /api/dcim/sites/?export=MyTemplateName
```
Note that the body of the response will contain only the rendered export template content, as opposed to a JSON object or list.
## Example
Here's an example device export template that will generate a simple Nagios configuration from a list of devices.
@@ -12,7 +12,7 @@ A NetBox report is a mechanism for validating the integrity of data within NetBo
## Writing Reports
Reports must be saved as files in the [`REPORTS_ROOT`](../../configuration/optional-settings/#reports_root) path (which defaults to `netbox/reports/`). Each file created within this path is considered a separate module. Each module holds one or more reports (Python classes), each of which performs a certain function. The logic of each report is broken into discrete test methods, each of which applies a small portion of the logic comprising the overall test.
Reports must be saved as files in the [`REPORTS_ROOT`](../configuration/optional-settings.md#reports_root) path (which defaults to `netbox/reports/`). Each file created within this path is considered a separate module. Each module holds one or more reports (Python classes), each of which performs a certain function. The logic of each report is broken into discrete test methods, each of which applies a small portion of the logic comprising the overall test.
!!! warning
The reports path includes a file named `__init__.py`, which registers the path as a Python module. Do not delete this file.
@@ -66,7 +66,7 @@ class DeviceConnectionsReport(Report):
for power_port in PowerPort.objects.filter(device=device):
if power_port.connected_endpoint is not None:
connected_ports += 1
if not power_port.connection_status:
if not power_port.path.is_active:
self.log_warning(
device,
"Power connection for {} marked as planned".format(power_port.name)
@@ -80,7 +80,7 @@ class DeviceConnectionsReport(Report):
self.log_success(device)
```
As you can see, reports are completely customizable. Validation logic can be as simple or as complex as needed.
As you can see, reports are completely customizable. Validation logic can be as simple or as complex as needed. Also note that the `description` attribute support markdown syntax. It will be rendered in the report list page.
!!! warning
Reports should never alter data: If you find yourself using the `create()`, `save()`, `update()`, or `delete()` methods on objects within reports, stop and re-evaluate what you're trying to accomplish. Note that there are no safeguards against the accidental alteration or destruction of data.
@@ -93,7 +93,7 @@ The following methods are available to log results within a report:
* log_warning(object, message)
* log_failure(object, message)
The recording of one or more failure messages will automatically flag a report as failed. It is advised to log a success for each object that is evaluated so that the results will reflect how many objects are being reported on. (The inclusion of a log message is optional for successes.) Messages recorded with `log()` will appear in a report's results but are not associated with a particular object or status.
The recording of one or more failure messages will automatically flag a report as failed. It is advised to log a success for each object that is evaluated so that the results will reflect how many objects are being reported on. (The inclusion of a log message is optional for successes.) Messages recorded with `log()` will appear in a report's results but are not associated with a particular object or status. Log messages also support using markdown syntax and will be rendered on the report result page.
To perform additional tasks, such as sending an email or calling a webhook, after a report has been run, extend the `post_run()` method. The status of the report is available as `self.failed` and the results object is `self.result`.
@@ -104,7 +104,7 @@ Once you have created a report, it will appear in the reports list. Initially, r
!!! note
To run a report, a user must be assigned the `extras.run_report` permission. This is achieved by assigning the user (or group) a permission on the Report object and specifying the `run` action in the admin UI as shown below.


Models within each app are stored in either `models.py` or within a submodule under the `models/` directory. When creating a model, be sure to subclass the [appropriate base model](models.md) from `netbox.models`. This will typically be PrimaryModel or OrganizationalModel. Remember to add the model class to the `__all__` listing for the module.
Each model should define, at a minimum:
* A `__str__()` method returning a user-friendly string representation of the instance
* A `get_absolute_url()` method returning an instance's direct URL (using `reverse()`)
* A `Meta` class specifying a deterministic ordering (if ordered by fields other than the primary ID)
## 2. Define field choices
If the model has one or more fields with static choices, define those choices in `choices.py` by subclassing `utilities.choices.ChoiceSet`.
## 3. Generate database migrations
Once your model definition is complete, generate database migrations by running `manage.py -n $NAME --no-header`. Always specify a short unique name when generating migrations.
!!! info
Set `DEVELOPER = True` in your NetBox configuration to enable the creation of new migrations.
## 4. Add all standard views
Most models will need view classes created in `views.py` to serve the following operations:
* List view
* Detail view
* Edit view
* Delete view
* Bulk import
* Bulk edit
* Bulk delete
## 5. Add URL paths
Add the relevant URL path for each view created in the previous step to `urls.py`.
## 6. Create the FilterSet
Each model should have a corresponding FilterSet class defined. This is used to filter UI and API queries. Subclass the appropriate class from `netbox.filtersets` that matches the model's parent class.
Every model FilterSet should define a `q` filter to support general search queries.
## 7. Create the table
Create a table class for the model in `tables.py` by subclassing `utilities.tables.BaseTable`. Under the table's `Meta` class, be sure to list both the fields and default columns.
## 8. Create the object template
Create the HTML template for the object view. (The other views each typically employ a generic template.) This template should extend `generic/object.html`.
## 9. Add the model to the navigation menu
For NetBox releases prior to v3.0, add the relevant link(s) to the navigation menu template. For later releases, add the relevant items in `netbox/netbox/navigation_menu.py`.
## 10. REST API components
Create the following for each model:
* Detailed (full) model serializer in `api/serializers.py`
* Nested serializer in `api/nested_serializers.py`
* API view in `api/views.py`
* Endpoint route in `api/urls.py`
## 11. GraphQL API components (v3.0+)
Create a Graphene object type for the model in `graphql/types.py` by subclassing the appropriate class from `netbox.graphql.types`.
Also extend the schema class defined in `graphql/schema.py` with the individual object and object list fields per the established convention.
## 12. Add tests
Add tests for the following:
* UI views
* API views
* Filter sets
## 13. Documentation
Create a new documentation page for the model in `docs/models/<app_label>/<model_name>.md`. Include this file under the "features" documentation where appropriate.
Also add your model to the index in `docs/development/models.md`.
The registry is an in-memory data structure which houses various miscellaneous application-wide parameters, such as installed plugins. It is not exposed to the user and is not intended to be modified by any code outside of NetBox core.
The registry is an in-memory data structure which houses various application-wide parameters, such as the list of enabled plugins. It is not exposed to the user and is not intended to be modified by any code outside of NetBox core.
The registry behaves essentially like a Python dictionary, with the notable exception that once a store (key) has been declared, it cannot be deleted or overwritten. The value of a store can, however, me modified; e.g. by appending a value to a list. Store values generally do not change once the application has been initialized.
The registry behaves essentially like a Python dictionary, with the notable exception that once a store (key) has been declared, it cannot be deleted or overwritten. The value of a store can, however, be modified; e.g. by appending a value to a list. Store values generally do not change once the application has been initialized.
The registry can be inspected by importing `registry` from `extras.registry`.
Below is a list of items to consider when adding a new field to a model:
Below is a list of tasks to consider when adding a new field to a core model.
## 1. Generate and run database migration
## 1. Generate and run database migrations
Django migrations are used to express changes to the database schema. In most cases, Django can generate these automatically, however very complex changes may require manual intervention. Always remember to specify a short but descriptive name when generating a new migration.
@@ -14,58 +14,54 @@ Django migrations are used to express changes to the database schema. In most ca
Where possible, try to merge related changes into a single migration. For example, if three new fields are being added to different models within an app, these can be expressed in the same migration. You can merge a new migration with an existing one by combining their `operations` lists.
!!! note
Migrations can only be merged within a release. Once a new release has been published, its migrations cannot be altered.
Migrations can only be merged within a release. Once a new release has been published, its migrations cannot be altered (other than for the purpose of correcting a bug).
## 2. Add validation logic to `clean()`
If the new field introduces additional validation requirements (beyond what's included with the field itself), implement them in the model's `clean()` method. Remember to call the model's original method using `super()` before or agter your custom validation as appropriate:
If the new field introduces additional validation requirements (beyond what's included with the field itself), implement them in the model's `clean()` method. Remember to call the model's original method using `super()` before or after your custom validation as appropriate:
```
class Foo(models.Model):
def clean(self):
super(DeviceCSVForm, self).clean()
super().clean()
# Custom validation goes here
if self.bar is None:
raise ValidationError()
```
## 3. Add CSV helpers
## 3. Update relevant querysets
Add the name of the new field to `csv_headers` and included a CSV-friendly representation of its data in the model's `to_csv()` method. These will be used when exporting objects in CSV format.
If you're adding a relational field (e.g. `ForeignKey`) and intend to include the data when retrieving a list of objects, be sure to include the field using `prefetch_related()` as appropriate. This will optimize the view and avoid extraneous database queries.
## 4. Update relevant querysets
## 4. Update API serializer
If you're adding a relational field (e.g. `ForeignKey`) and intend to include the data when retreiving a list of objects, be sure to include the field using `prefetch_related()` as appropriate. This will optimize the view and avoid excessive database lookups.
Extend the model's API serializer in `<app>.api.serializers` to include the new field. In most cases, it will not be necessary to also extend the nested serializer, which produces a minimal representation of the model.
## 5. Update API serializer
Extend the model's API serializer in `<app>.api.serializers` to include the new field. In most cases, it will not be necessary to also extend the nested serializer, which produces a minimal represenation of the model.
## 6. Add field to forms
## 5. Add field to forms
Extend any forms to include the new field as appropriate. Common forms include:
* **Credit/edit** - Manipulating a single object
* **Bulk edit** - Performing a change on mnay objects at once
* **Bulk edit** - Performing a change on many objects at once
* **CSV import** - The form used when bulk importing objects in CSV format
* **Filter** - Displays the options available for filtering a list of objects (both UI and API)
## 7. Extend object filter set
## 6. Extend object filter set
If the new field should be filterable, add it to the `FilterSet` for the model. If the field should be searchable, remember to reference it in the FilterSet's `search()` method.
## 8. Add column to object table
## 7. Add column to object table
If the new field will be included in the object list view, add a column to the model's table. For simple fields, adding the field name to `Meta.fields` will be sufficient. More complex fields may require explicitly declaring a new column.
If the new field will be included in the object list view, add a column to the model's table. For simple fields, adding the field name to `Meta.fields` will be sufficient. More complex fields may require declaring a custom column.
## 9. Update the UI templates
## 8. Update the UI templates
Edit the object's view template to display the new field. There may also be a custom add/edit form template that needs to be updated.
## 10. Create/extend test cases
## 9. Create/extend test cases
Create or extend the relevant test cases to verify that the new field and any accompanying validation logic perform as expected. This is especially important for relational fields. NetBox incorporates various test suites, including:
@@ -76,3 +72,7 @@ Create or extend the relevant test cases to verify that the new field and any ac
* View tests
Be diligent to ensure all of the relevant test suites are adapted or extended as necessary to test any new functionality.
## 10. Update the model's documentation
Each model has a dedicated page in the documentation, at `models/<app>/<model>.md`. Update this file to include any relevant information about the new field.
Getting started with NetBox development is pretty straightforward, and should feel very familiar to anyone with Django development experience. There are a few things you'll need:
* A Linux system or environment
* A PostgreSQL server, which can be installed locally [per the documentation](../installation/1-postgresql.md)
* A Redis server, which can also be [installed locally](../installation/2-redis.md)
* A supported version of Python
### Fork the Repo
Assuming you'll be working on your own fork, your first step will be to fork the [official git repository](https://github.com/netbox-community/netbox). (If you're a maintainer who's going to be working directly with the official repo, skip this step.) You can then clone your GitHub fork locally for development:
The NetBox project utilizes three persistent git branches to track work:
* `master` - Serves as a snapshot of the current stable release
* `develop` - All development on the upcoming stable release occurs here
* `feature` - Tracks work on an upcoming major release
Typically, you'll base pull requests off of the `develop` branch, or off of `feature` if you're working on a new major release. **Never** merge pull requests into the `master` branch, which receives merged only from the `develop` branch.
### Enable Pre-Commit Hooks
NetBox ships with a [git pre-commit hook](https://githooks.com/) script that automatically checks for style compliance and missing database migrations prior to committing changes. This helps avoid erroneous commits that result in CI test failures. You are encouraged to enable it by creating a link to `scripts/git-hooks/pre-commit`:
```no-highlight
$ cd .git/hooks/
$ ln -s ../../scripts/git-hooks/pre-commit
```
### Create a Python Virtual Environment
A [virtual environment](https://docs.python.org/3/tutorial/venv.html) is like a container for a set of Python packages. They allow you to build environments suited to specific projects without interfering with system packages or other projects. When installed per the documentation, NetBox uses a virtual environment in production.
Create a virtual environment using the `venv` Python module:
```no-highlight
$ mkdir ~/.venv
$ python3 -m venv ~/.venv/netbox
```
This will create a directory named `.venv/netbox/` in your home directory, which houses a virtual copy of the Python executable and its related libraries and tooling. When running NetBox for development, it will be run using the Python binary at `~/.venv/netbox/bin/python`.
!!! info
Keeping virtual environments in `~/.venv/` is a common convention but entirely optional: Virtual environments can be created wherever you please.
Once created, activate the virtual environment:
```no-highlight
$ source ~/.venv/netbox/bin/activate
(netbox) $
```
Notice that the console prompt changes to indicate the active environment. This updates the necessary system environment variables to ensure that any Python scripts are run within the virtual environment.
### Install Dependencies
With the virtual environment activated, install the project's required Python packages using the `pip` module:
* `REDIS`: Redis configuration, if different from the defaults
* `SECRET_KEY`: Set to a random string (use `generate_secret_key.py` in the parent directory to generate a suitable key)
* `DEBUG`: Set to `True`
* `DEVELOPER`: Set to `True` (this enables the creation of new database migrations)
### Start the Development Server
Django provides a lightweight, auto-updating HTTP/WSGI server for development use. NetBox extends this slightly to automatically import models and other utilities. Run the NetBox development server with the `nbshell` management command:
```no-highlight
$ python netbox/manage.py runserver
Performing system checks...
System check identified no issues (0 silenced).
November 18, 2020 - 15:52:31
Django version 3.1, using settings 'netbox.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.
```
This ensures that your development environment is now complete and operational. Any changes you make to the code base will be automatically adapted by the development server.
## Running Tests
Throughout the course of development, it's a good idea to occasionally run NetBox's test suite to catch any potential errors. Tests are run using the `test` management command:
```no-highlight
$ python netbox/manage.py test
```
In cases where you haven't made any changes to the database (which is most of the time), you can append the `--keepdb` argument to this command to reuse the test database between runs. This cuts down on the time it takes to run the test suite since the database doesn't have to be rebuilt each time. (Note that this argument will cause errors if you've modified any model fields since the previous test run.)
```no-highlight
$ python netbox/manage.py test --keepdb
```
## Submitting Pull Requests
Once you're happy with your work and have verified that all tests pass, commit your changes and push it upstream to your fork. Always provide descriptive (but not excessively verbose) commit messages. When working on a specific issue, be sure to reference it.
```no-highlight
$ git commit -m "Closes #1234: Add IPv5 support"
$ git push origin
```
Once your fork has the new commit, submit a [pull request](https://github.com/netbox-community/netbox/compare) to the NetBox repo to propose the changes. Be sure to provide a detailed accounting of the changes being made and the reasons for doing so.
Once submitted, a maintainer will review your pull request and either merge it or request changes. If changes are needed, you can make them via new commits to your fork: The pull request will update automatically.
!!! note
Remember, pull requests are entertained only for **accepted** issues. If an issue you want to work on hasn't been approved by a maintainer yet, it's best to avoid risking your time and effort on a change that might not be accepted.
@@ -4,11 +4,12 @@ NetBox is maintained as a [GitHub project](https://github.com/netbox-community/n
## Communication
Communication among developers should always occur via public channels:
There are several official forums for communication among the developers and community members:
* [GitHub issues](https://github.com/netbox-community/netbox/issues) - All feature requests, bug reports, and other substantial changes to the code base **must** be documented in an issue.
* [The mailing list](https://groups.google.com/g/netbox-discuss) - The preferred forum for general discussion and support issues. Ideal for shaping a feature request prior to submitting an issue.
* [#netbox on NetworkToCode](http://slack.networktocode.com/) - Good for quick chats. Avoid any discussion that might need to be referenced later on, as the chat history is not retained long.
* [GitHub Discussions](https://github.com/netbox-community/netbox/discussions) - The preferred forum for general discussion and support issues. Ideal for shaping a feature request prior to submitting an issue.
* [#netbox on NetDev Community Slack](https://netdev.chat/) - Good for quick chats. Avoid any discussion that might need to be referenced later on, as the chat history is not retained long.
* [Google Group](https://groups.google.com/g/netbox-discuss) - Legacy mailing list; slowly being phased out in favor of GitHub discussions.
## Governance
@@ -18,13 +19,13 @@ NetBox follows the [benevolent dictator](http://oss-watch.ac.uk/resources/benevo
All development of the current NetBox release occurs in the `develop` branch; releases are packaged from the `master` branch. The `master` branch should _always_ represent the current stable release in its entirety, such that installing NetBox by either downloading a packaged release or cloning the `master` branch provides the same code base.
NetBox components are arranged into functional subsections called _apps_ (a carryover from Django verancular). Each app holds the models, views, and templates relevant to a particular function:
NetBox components are arranged into functional subsections called _apps_ (a carryover from Django vernacular). Each app holds the models, views, and templates relevant to a particular function:
*`circuits`: Communications circuits and providers (not to be confused with power circuits)
*`dcim`: Datacenter infrastructure management (sites, racks, and devices)
*`extras`: Additional features not considered part of the core data model
*`ipam`: IP address management (VRFs, prefixes, IP addresses, and VLANs)
*`secrets`: Encrypted storage of sensitive data (e.g. login credentials)
*`tenancy`: Tenants (such as customers) to which NetBox objects may be assigned
*`users`: Authentication and user preferences
*`utilities`: Resources which are not user-facing (extendable classes, etc.)
A NetBox model represents a discrete object type such as a device or IP address. Each model is defined as a Python class and has its own SQL table. All NetBox data models can be categorized by type.
The Django [content types](https://docs.djangoproject.com/en/stable/ref/contrib/contenttypes/) framework can be used to reference models within the database. A ContentType instance references a model by its `app_label` and `name`: For example, the Site model is referred to as `dcim.site`. The content type combined with an object's primary key form a globally unique identifier for the object (e.g. `dcim.site:123`).
### Features Matrix
* [Change logging](../additional-features/change-logging.md) - Changes to these objects are automatically recorded in the change log
* [Webhooks](../additional-features/webhooks.md) - NetBox is capable of generating outgoing webhooks for these objects
* [Custom fields](../customization/custom-fields.md) - These models support the addition of user-defined fields
* [Export templates](../customization/export-templates.md) - Users can create custom export templates for these models
* [Tagging](../models/extras/tag.md) - The models can be tagged with user-defined tags
* [Journaling](../additional-features/journaling.md) - These models support persistent historical commentary
* Nesting - These models can be nested recursively to create a hierarchy
Required Python packages are maintained in two files. `base_requirements.txt` contains a list of all the packages required by NetBox. Some of them may be pinned to a specific version of the package due to a known issue. For example:
Check `base_requirements.txt` for any dependencies pinned to a specific version, and upgrade them to their most stable release (where possible).
The other file is `requirements.txt`, which lists each of the required packages pinned to its current stable version. When NetBox is installed, the Python environment is configured to match this file. This helps ensure that a new release of a dependency doesn't break NetBox.
Every minor version release should refresh `requirements.txt` so that it lists the most recent stable release of each package. To do this:
1. Create a new virtual environment.
2. Install the latest version of all required packages via pip:
```
pip install -U -r base_requirements.txt
```
3. Run all tests and check that the UI and API function as expected.
4. Update the package versions in `requirements.txt` as appropriate.
### Update Static Libraries
Update the following static libraries to their most recent stable release:
* Bootstrap 3
* Font Awesome 4
* Select2
* jQuery
* jQuery UI
### Create a new Release Notes Page
Create a file at `/docs/release-notes/X.Y.md` to establish the release notes for the new release. Add the file to the table of contents within `mkdocs.yml`, and point `index.md` to the new file.
Add the release notes (`/docs/release-notes/X.Y.md`) to the table of contents within `mkdocs.yml`, and point `index.md` to the new file.
### Manually Perform a New Install
@@ -52,23 +23,52 @@ Follow these instructions to perform a new installation of NetBox. This process
### Close the Release Milestone
Close the release milestone on GitHub. Ensure that there are no remaining open issues associated with it.
Close the release milestone on GitHub after ensuring there are no remaining open issues associated with it.
### Merge the Release Branch
Submit a pull request to merge the `feature` branch into the `develop` branch in preparation for its release.
---
## All Releases
### Update Requirements
Required Python packages are maintained in two files. `base_requirements.txt` contains a list of all the packages required by NetBox. Some of them may be pinned to a specific version of the package due to a known issue. For example:
The other file is `requirements.txt`, which lists each of the required packages pinned to its current stable version. When NetBox is installed, the Python environment is configured to match this file. This helps ensure that a new release of a dependency doesn't break NetBox.
Every release should refresh `requirements.txt` so that it lists the most recent stable release of each package. To do this:
1. Create a new virtual environment.
2. Install the latest version of all required packages `pip install -U -r base_requirements.txt`).
3. Run all tests and check that the UI and API function as expected.
4. Review each requirement's release notes for any breaking or otherwise noteworthy changes.
5. Update the package versions in `requirements.txt` as appropriate.
In cases where upgrading a dependency to its most recent release is breaking, it should be pinned to its current minor version in `base_requirements.txt` (with an explanatory comment) and revisited for the next major NetBox release.
### Verify CI Build Status
Ensure that continuous integration testing on the `develop` branch is completing successfully.
### Update Version and Changelog
Update the `VERSION` constant in `settings.py` to the new release version and annotate the current data in the release notes for the new version.
* Update the `VERSION` constant in `settings.py` to the new release version.
* Update the example version numbers in the feature request and bug report templates under `.github/ISSUE_TEMPLATES/`.
* Replace the "FUTURE" placeholder in the release notes with the current date.
Commit these changes to the `develop` branch.
### Submit a Pull Request
Submit a pull request title **"Release vX.Y.Z"** to merge the `develop` branch into `master`. Include a brief change log listing the features, improvements, and/or bugs addressed in the release.
Submit a pull request title **"Release vX.Y.Z"** to merge the `develop` branch into `master`. Copy the documented release notes into the pull request's body.
Once CI has completed on the PR, merge it.
@@ -76,16 +76,16 @@ Once CI has completed on the PR, merge it.
Draft a [new release](https://github.com/netbox-community/netbox/releases/new) with the following parameters.
* **Tag:** Current version (e.g. `v2.3.4`)
* **Tag:** Current version (e.g. `v2.9.9`)
* **Target:** `master`
* **Title:** Version and date (e.g. `v2.3.4 - 2018-08-02`)
* **Title:** Version and date (e.g. `v2.9.9 - 2020-11-09`)
Copy the description from the pull request into the release notes.
Copy the description from the pull request to the release.
### Update the Development Version
On the `develop` branch, update `VERSION` in `settings.py` to point to the next release. For example, if you just released v2.3.4, set:
On the `develop` branch, update `VERSION` in `settings.py` to point to the next release. For example, if you just released v2.9.9, set:
@@ -5,8 +5,8 @@ NetBox generally follows the [Django style guide](https://docs.djangoproject.com
## PEP 8 Exceptions
* Wildcard imports (for example, `from .constants import *`) are acceptable under any of the following conditions:
* The library being import contains only constant declarations (`constants.py`)
* The library being imported explicitly defines `__all__` (e.g. `<app>.api.nested_serializers`)
* The library being import contains only constant declarations (e.g. `constants.py`)
* The library being imported explicitly defines `__all__`
* Maximum line length is 120 characters (E501)
* This does not apply to HTML templates or to automatically generated code (e.g. database migrations).
@@ -45,7 +45,7 @@ When adding a new dependency, a short description of the package and the URL of
* When in doubt, remain consistent: It is better to be consistently incorrect than inconsistently correct. If you notice in the course of unrelated work a pattern that should be corrected, continue to follow the pattern for now and open a bug so that the entire code base can be evaluated at a later point.
* Prioritize readability over concision. Python is a very flexible language that typically gives us several options for expressing a given piece of logic, but some may be more friendly to the reader than others. (List comprehensions are particularly vulnerable to over-optimization.) Always remain considerate of the future reader who may need to interpret your code without the benefit of the context within which you are writing it.
* Prioritize readability over concision. Python is a very flexible language that typically offers several options for expressing a given piece of logic, but some may be more friendly to the reader than others. (List comprehensions are particularly vulnerable to over-optimization.) Always remain considerate of the future reader who may need to interpret your code without the benefit of the context within which you are writing it.
* No easter eggs. While they can be fun, NetBox must be considered as a business-critical tool. The potential, however minor, for introducing a bug caused by unnecessary logic is best avoided entirely.
Utility views are reusable views that handle common CRUD tasks, such as listing and updating objects. Some views operate on individual objects, whereas others (referred to as "bulk" views) operate on multiple objects at once.
## Individual Views
### ObjectView
Retrieve and display a single object.
### ObjectListView
Generates a paginated table of objects from a given queryset, which may optionally be filtered.
### ObjectEditView
Updates an object identified by a primary key (PK) or slug. If no existing object is specified, a new object will be created.
### ObjectDeleteView
Deletes an object. The user is redirected to a confirmation page before the deletion is executed.
## Bulk Views
### BulkCreateView
Creates multiple objects at once based on a given pattern. Currently used only for IP addresses.
### BulkImportView
Accepts CSV-formatted data and creates a new object for each line. Creation is all-or-none.
### BulkEditView
Applies changes to multiple objects at once in a two-step operation. First, the list of PKs for selected objects is POSTed and an edit form is presented to the user. On submission of that form, the specified changes are made to all selected objects.
### BulkDeleteView
Deletes multiple objects. The user selects the objects to be deleted and confirms the deletion.
## Component Views
### ComponentCreateView
Create one or more component objects beloning to a parent object (e.g. interfaces attached to a device).
### ComponentEditView
A subclass of `ObjectEditView`: Updates an individual component object.
### ComponentDeleteView
A subclass of `ObjectDeleteView`: Deletes an individual component object.
### BulkComponentCreateView
Create a set of components objects for each of a selected set of parent objects. This view can be used e.g. to create multiple interfaces on multiple devices at once.
The NetBox UI is built on languages and frameworks:
### Styling & HTML Elements
#### [Bootstrap](https://getbootstrap.com/) 5
The majority of the NetBox UI is made up of stock Bootstrap components, with some styling modifications and custom components added on an as-needed basis. Bootstrap uses [Sass](https://sass-lang.com/), and NetBox extends Bootstrap's core Sass files for theming and customization.
All client-side scripting is transpiled from TypeScript to JavaScript and served by Django. In development, TypeScript is an _extremely_ effective tool for accurately describing and checking the code, which leads to significantly fewer bugs, a better development experience, and more predictable/readable code.
As part of the [bundling](#bundling) process, Bootstrap's JavaScript plugins are imported and bundled alongside NetBox's front-end code.
!!! danger "NetBox is jQuery-free"
Following the Bootstrap team's deprecation of jQuery in Bootstrap 5, NetBox also no longer uses jQuery in front-end code.
## Guidance
NetBox generally follows the following guidelines for front-end code:
- Bootstrap utility classes may be used to solve one-off issues or to implement singular components, as long as the class list does not exceed 4-5 classes. If an element needs more than 5 utility classes, a custom SCSS class should be added that contains the required style properties.
- Custom classes must be commented, explaining the general purpose of the class and where it is used.
- Reuse SCSS variables whenever possible. CSS values should (almost) never be hard-coded.
- All TypeScript functions must have, at a minimum, a basic [JSDoc](https://jsdoc.app/) description of what the function is for and where it is used. If possible, document all function arguments via [`@param` JSDoc block tags](https://jsdoc.app/tags-param.html).
- Expanding on NetBox's [dependency policy](style-guide.md#introducing-new-dependencies), new front-end dependencies should be avoided unless absolutely necessary. Every new front-end dependency adds to the CSS/JavaScript file size that must be loaded by the client and this should be minimized as much as possible. If adding a new dependency is unavoidable, use a tool like [Bundlephobia](https://bundlephobia.com/) to ensure the smallest possible library is used.
- All UI elements must be usable on all common screen sizes, including mobile devices. Be sure to test newly implemented solutions (JavaScript included) on as many screen sizes and device types as possible.
- NetBox aligns with Bootstrap's [supported Browsers and Devices](https://getbootstrap.com/docs/5.1/getting-started/browsers-devices/) list.
## UI Development
To contribute to the NetBox UI, you'll need to review the main [Getting Started guide](getting-started.md) in order to set up your base environment.
### Tools
Once you have a working NetBox development environment, you'll need to install a few more tools to work with the NetBox UI:
- [NodeJS](https://nodejs.org/en/download/) (the LTS release should suffice)
After Node and Yarn are installed on your system, you'll need to install all the NetBox UI dependencies:
```console
$cd netbox/project-static
$ yarn
```
!!! warning "Check Your Working Directory"
You need to be in the `netbox/project-static` directory to run the below `yarn` commands.
### Bundling
In order for the TypeScript and Sass (SCSS) source files to be usable by a browser, they must first be transpiled (TypeScript → JavaScript, Sass → CSS), bundled, and minified. After making changes to TypeScript or Sass source files, run `yarn bundle`.
`yarn bundle` is a wrapper around the following subcommands, any of which can be run individually:
All output files will be written to `netbox/project-static/dist`, where Django will pick them up when `manage.py collectstatic` is run.
!!! info "Remember to re-run `manage.py collectstatic`"
If you're running the development web server — `manage.py runserver` — you'll need to run `manage.py collectstatic` to see your changes.
### Linting, Formatting & Type Checking
Before committing any changes to TypeScript files, and periodically throughout the development process, you should run `yarn validate` to catch formatting, code quality, or type errors.
!!! tip "IDE Integrations"
If you're using an IDE, it is strongly recommended to install [ESLint](https://eslint.org/docs/user-guide/integrations), [TypeScript](https://github.com/Microsoft/TypeScript/wiki/TypeScript-Editor-Support), and [Prettier](https://prettier.io/docs/en/editors.html) integrations, if available. Most of them will automatically check and/or correct issues in the code as you develop, which can significantly increase your productivity as a contributor.
`yarn validate` is a wrapper around the following subcommands, any of which can be run individually:
NetBox provides a read-only [GraphQL](https://graphql.org/) API to complement its REST API. This API is powered by the [Graphene](https://graphene-python.org/) library and [Graphene-Django](https://docs.graphene-python.org/projects/django/en/latest/).
## Queries
GraphQL enables the client to specify an arbitrary nested list of fields to include in the response. All queries are made to the root `/graphql` API endpoint. For example, to return the circuit ID and provider name of each circuit with an active status, you can issue a request such as the following:
The response will include the requested data formatted as JSON:
```json
{
"data":{
"circuits":[
{
"cid":"1002840283",
"provider":{
"name":"CenturyLink"
}
},
{
"cid":"1002840457",
"provider":{
"name":"CenturyLink"
}
}
]
}
}
```
!!! note
It's recommended to pass the return data through a JSON parser such as `jq` for better readability.
NetBox provides both a singular and plural query field for each object type:
*`$OBJECT`: Returns a single object. Must specify the object's unique ID as `(id: 123)`.
*`$OBJECT_list`: Returns a list of objects, optionally filtered by given parameters.
For example, query `device(id:123)` to fetch a specific device (identified by its unique ID), and query `device_list` (with an optional set of filters) to fetch all devices.
For more detail on constructing GraphQL queries, see the [Graphene documentation](https://docs.graphene-python.org/en/latest/).
## Filtering
The GraphQL API employs the same filtering logic as the UI and REST API. Filters can be specified as key-value pairs within parentheses immediately following the query name. For example, the following will return only sites within the North Carolina region with a status of active:
NetBox's GraphQL API uses the same API authentication tokens as its REST API. Authentication tokens are included with requests by attaching an `Authorization` HTTP header in the following form:
```
Authorization: Token $TOKEN
```
## Disabling the GraphQL API
If not needed, the GraphQL API can be disabled by setting the [`GRAPHQL_ENABLED`](../configuration/optional-settings.md#graphql_enabled) configuration parameter to False and restarting NetBox.
NetBox is an open source web application designed to help manage and document computer networks. Initially conceived by the network engineering team at [DigitalOcean](https://www.digitalocean.com/), NetBox was developed specifically to address the needs of network and infrastructure engineers. It encompasses the following aspects of network management:
NetBox is an infrastructure resource modeling (IRM) application designed to empower network automation. Initially conceived by the network engineering team at [DigitalOcean](https://www.digitalocean.com/), NetBox was developed specifically to address the needs of network and infrastructure engineers. NetBox is made available as open source under the Apache 2 license. It encompasses the following aspects of network management:
* **IP address management (IPAM)** - IP networks and addresses, VRFs, and VLANs
* **Equipment racks** - Organized by group and site
@@ -10,7 +10,6 @@ NetBox is an open source web application designed to help manage and document co
* **Connections** - Network, console, and power connections among devices
* **Virtualization** - Virtual machines and clusters
* **Data circuits** - Long-haul communications circuits and providers
* **Secrets** - Encrypted storage of sensitive credentials
## What NetBox Is Not
@@ -55,7 +54,7 @@ NetBox is built on the [Django](https://djangoproject.com/) Python framework and
## Supported Python Versions
NetBox supports Python 3.6 and 3.7 environments currently. (Support for Python 3.5 was removed in NetBox v2.8.)
NetBox supports Python 3.7, 3.8, and 3.9 environments currently. (Support for Python 3.6 was removed in NetBox v3.0.)
@@ -5,76 +5,75 @@ This section entails the installation and configuration of a local PostgreSQL da
!!! warning
NetBox requires PostgreSQL 9.6 or higher. Please note that MySQL and other relational databases are **not** currently supported.
The installation instructions provided here have been tested to work on Ubuntu 18.04 and CentOS 7.5. The particular commands needed to install dependencies on other distributions may vary significantly. Unfortunately, this is outside the control of the NetBox maintainers. Please consult your distribution's documentation for assistance with any errors.
## Installation
#### Ubuntu
=== "Ubuntu"
If a recent enough version of PostgreSQL is not available through your distribution's package manager, you'll need to install it from an official [PostgreSQL repository](https://wiki.postgresql.org/wiki/Apt).
```no-highlight
sudo apt update
sudo apt install -y postgresql
```
=== "CentOS"
```no-highlight
sudo yum install -y postgresql-server
sudo postgresql-setup --initdb
```
!!! info
PostgreSQL 9.6 and later are available natively on CentOS 8.2. If using an earlier CentOS release, you may need to [install it from an RPM](https://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/).
CentOS configures ident host-based authentication for PostgreSQL by default. Because NetBox will need to authenticate using a username and password, modify `/var/lib/pgsql/data/pg_hba.conf` to support MD5 authentication by changing `ident` to `md5` for the lines below:
```no-highlight
host all all 127.0.0.1/32 md5
host all all ::1/128 md5
```
Once PostgreSQL has been installed, start the service and enable it to run at boot:
```no-highlight
# apt-get update
# apt-get install -y postgresql libpq-dev
```
#### CentOS
CentOS 7 does not ship with a recent enough version of PostgreSQL, so it will need to be installed from an external repository. The instructions below show the installation of PostgreSQL 9.6, however you may opt to install a more recent version.
CentOS users should modify the PostgreSQL configuration to accept password-based authentication by replacing `ident` with `md5` for all host entries within `/var/lib/pgsql/9.6/data/pg_hba.conf`. For example:
```no-highlight
host all all 127.0.0.1/32 md5
host all all ::1/128 md5
```
Then, start the service and enable it to run at boot:
```no-highlight
# systemctl start postgresql-9.6
# systemctl enable postgresql-9.6
sudo systemctl start postgresql
sudo systemctl enable postgresql
```
## Database Creation
At a minimum, we need to create a database for NetBox and assign it a username and password for authentication. This is done with the following commands.
At a minimum, we need to create a database for NetBox and assign it a username and password for authentication. Start by invoking the PostgreSQL shell as the system Postgres user.
```no-highlight
sudo -u postgres psql
```
Within the shell, enter the following commands to create the database and user (role), substituting your own value for the password:
```postgresql
CREATE DATABASE netbox;
CREATE USER netbox WITH PASSWORD 'J5brHrAXFLQSif0K';
GRANT ALL PRIVILEGES ON DATABASE netbox TO netbox;
```
!!! danger
**Do not use the password from the example.** Choose a strong, random password to ensure secure database authentication for your NetBox installation.
```no-highlight
# sudo -u postgres psql
psql (10.12 (Ubuntu 10.12-0ubuntu0.18.04.1))
Type "help" for help.
postgres=# CREATE DATABASE netbox;
CREATE DATABASE
postgres=# CREATE USER netbox WITH PASSWORD 'J5brHrAXFLQSif0K';
CREATE ROLE
postgres=# GRANT ALL PRIVILEGES ON DATABASE netbox TO netbox;
GRANT
postgres=# \q
```
Once complete, enter `\q` to exit the PostgreSQL shell.
## Verify Service Status
You can verify that authentication works issuing the following command and providing the configured password. (Replace `localhost` with your database server if using a remote database.)
You can verify that authentication works by executing the `psql` command and passing the configured username and password. (Replace `localhost` with your database server if using a remote database.)
NetBox v2.9.0 and later require Redis v4.0 or higher. If your distribution does not offer a recent enough release, you will need to build Redis from source. Please see [the Redis installation documentation](https://github.com/redis/redis) for further details.
### Ubuntu
=== "Ubuntu"
```no-highlight
# apt-get install -y redis-server
```
```no-highlight
sudo apt install -y redis-server
```
### CentOS
=== "CentOS"
```no-highlight
# yum install -y epel-release
# yum install -y redis
# systemctl start redis
# systemctl enable redis
```
```no-highlight
sudo yum install -y redis
sudo systemctl start redis
sudo systemctl enable redis
```
You may wish to modify the Redis configuration at `/etc/redis.conf` or `/etc/redis/redis.conf`, however in most cases the default configuration is sufficient.
@@ -29,6 +28,7 @@ You may wish to modify the Redis configuration at `/etc/redis.conf` or `/etc/red
Use the `redis-cli` utility to ensure the Redis service is functional:
```no-highlight
$ redis-cli ping
PONG
redis-cli ping
```
If successful, you should receive a `PONG` response from the server.
Before continuing with either platform, update pip (Python's package management tool) to its latest release:
```no-highlight
# pip3 install --upgrade pip
sudo pip3 install --upgrade pip
```
## Download NetBox
This documentation provides two options for installing NetBox: from a downloadable archive, or from the git repository. Installing from a package (option A below) requires manually fetching and decompressing the archive for every future update, whereas installation via git (option B) allows for seamless upgrades by re-pulling the `master` branch.
This documentation provides two options for installing NetBox: from a downloadable archive, or from the git repository. Installing from a package (option A below) requires manually fetching and extracting the archive for every future update, whereas installation via git (option B) allows for seamless upgrades by re-pulling the `master` branch.
### Option A: Download a Release Archive
Download the [latest stable release](https://github.com/netbox-community/netbox/releases) from GitHub as a tarball or ZIP archive and extract it to your desired path. In this example, we'll use `/opt/netbox` as the NetBox root.
It is recommended to install NetBox in a directory named for its version number. For example, NetBox v2.9.0 would be installed into `/opt/netbox-2.9.0`, and a symlink from `/opt/netbox/` would point to this location. This allows for future releases to be installed in parallel without interrupting the current installation. When changing to the new release, only the symlink needs to be updated.
It is recommended to install NetBox in a directory named for its version number. For example, NetBox v3.0.0 would be installed into `/opt/netbox-3.0.0`, and a symlink from `/opt/netbox/` would point to this location. (You can verify this configuration with the command `ls -l /opt | grep netbox`.) This allows for future releases to be installed in parallel without interrupting the current installation. When changing to the new release, only the symlink needs to be updated.
### Option B: Clone the Git Repository
Create the base directory for the NetBox installation. For this guide, we'll use `/opt/netbox`.
```no-highlight
# mkdir -p /opt/netbox/ && cd /opt/netbox/
sudo mkdir -p /opt/netbox/
cd /opt/netbox/
```
If `git` is not already installed, install it:
#### Ubuntu
=== "Ubuntu"
```no-highlight
# apt-get install -y git
```
```no-highlight
sudo apt install -y git
```
#### CentOS
=== "CentOS"
```no-highlight
# yum install -y git
```
```no-highlight
sudo yum install -y git
```
Next, clone the **master** branch of the NetBox GitHub repository into the current directory. (This branch always holds the current stable release.)
Installation via git also allows you to easily try out development versions of NetBox. The `develop` branch contains all work underway for the next minor release, and the `develop-x.y` branch (if present) tracks progress on the next major release.
The `git clone` command above utilizes a "shallow clone" to retrieve only the most recent commit. If you need to download the entire history, omit the `--depth 1` argument.
The `git clone` command should generate output similar to the following:
Installation via git also allows you to easily try out development versions of NetBox. The `develop` branch contains all work underway for the next minor release, and the `feature` branch tracks progress on the next major release.
## Create the NetBox System User
Create a system user account named `netbox`. We'll configure the WSGI and HTTP services to run under this account. We'll also assign this user ownership of the media directory. This ensures that NetBox will be able to save uploaded files.
Move into the NetBox configuration directory and make a copy of `configuration.example.py` named `configuration.py`. This file will hold all of your local configuration parameters.
```no-highlight
# cd /opt/netbox/netbox/netbox/
# cp configuration.example.py configuration.py
cd /opt/netbox/netbox/netbox/
sudo cp configuration.example.py configuration.py
```
Open `configuration.py` with your preferred editor to begin configuring NetBox. NetBox offers [many configuration parameters](/configuration/), but only the following four are required for new installations:
Open `configuration.py` with your preferred editor to begin configuring NetBox. NetBox offers [many configuration parameters](../configuration/index.md), but only the following four are required for new installations:
* `ALLOWED_HOSTS`
* `DATABASE`
@@ -137,7 +142,7 @@ ALLOWED_HOSTS = ['*']
### DATABASE
This parameter holds the database configuration details. You must define the username and password used when you configured PostgreSQL. If the service is running on a remote host, update the `HOST` and `PORT` parameters accordingly. See the [configuration documentation](/configuration/required-settings/#database) for more detail on individual parameters.
This parameter holds the database configuration details. You must define the username and password used when you configured PostgreSQL. If the service is running on a remote host, update the `HOST` and `PORT` parameters accordingly. See the [configuration documentation](../configuration/required-settings.md#database) for more detail on individual parameters.
```python
DATABASE = {
@@ -152,9 +157,9 @@ DATABASE = {
### REDIS
Redis is a in-memory key-value store used by NetBox for caching and background task queuing. Redis typically requires minimal configuration; the values below should suffice for most installations. See the [configuration documentation](/configuration/required-settings/#redis) for more detail on individual parameters.
Redis is a in-memory key-value store used by NetBox for caching and background task queuing. Redis typically requires minimal configuration; the values below should suffice for most installations. See the [configuration documentation](../configuration/required-settings.md#redis) for more detail on individual parameters.
Note that NetBox requires the specification of two separate Redis databases: `tasks` and `caching`. These may both be provided by the same Redis service, however each should have a unique database ID.
Note that NetBox requires the specification of two separate Redis databases: `tasks` and `caching`. These may both be provided by the same Redis service, however each should have a unique numeric database ID.
```python
REDIS = {
@@ -182,7 +187,7 @@ This parameter must be assigned a randomly-generated key employed as a salt for
A simple Python script named `generate_secret_key.py` is provided in the parent directory to assist in generating a suitable key:
```no-highlight
# python3 ../generate_secret_key.py
python3 ../generate_secret_key.py
```
!!! warning
@@ -196,18 +201,18 @@ All Python packages required by NetBox are listed in `requirements.txt` and will
### NAPALM
The [NAPALM automation](https://napalm-automation.net/) library allows NetBox to fetch live data from devices and return it to a requester via its REST API. The `NAPALM_USERNAME` and `NAPALM_PASSWORD` configuration parameters define the credentials to be used when connecting to a device.
Integration with the [NAPALM automation](../additional-features/napalm.md) library allows NetBox to fetch live data from devices and return it to a requester via its REST API. The `NAPALM_USERNAME` and `NAPALM_PASSWORD` configuration parameters define the credentials to be used when connecting to a device.
sudo sh -c "echo 'napalm' >> /opt/netbox/local_requirements.txt"
```
### Remote File Storage
By default, NetBox will use the local filesystem to store uploaded files. To use a remote filesystem, install the [`django-storages`](https://django-storages.readthedocs.io/en/stable/) library and configure your [desired storage backend](/configuration/optional-settings/#storage_backend) in `configuration.py`.
By default, NetBox will use the local filesystem to store uploaded files. To use a remote filesystem, install the [`django-storages`](https://django-storages.readthedocs.io/en/stable/) library and configure your [desired storage backend](../configuration/optional-settings.md#storage_backend) in `configuration.py`.
sudo sh -c "echo 'django-storages' >> /opt/netbox/local_requirements.txt"
```
## Run the Upgrade Script
@@ -215,12 +220,19 @@ By default, NetBox will use the local filesystem to store uploaded files. To use
Once NetBox has been configured, we're ready to proceed with the actual installation. We'll run the packaged upgrade script (`upgrade.sh`) to perform the following actions:
* Create a Python virtual environment
* Install all required Python packages
* Installs all required Python packages
* Run database schema migrations
* Builds the documentation locally (for offline use)
* Aggregate static resource files on disk
```no-highlight
# /opt/netbox/upgrade.sh
sudo /opt/netbox/upgrade.sh
```
Note that **Python 3.7 or later is required** for NetBox v3.0 and later releases. If the default Python installation on your server does not meet this requirement, you'll need to install Python 3.7 or later separately, and pass the path to the support installation as an environment variable named `PYTHON`. (Note that the environment variable must be passed _after_ the `sudo` command.)
@@ -231,7 +243,7 @@ Once NetBox has been configured, we're ready to proceed with the actual installa
NetBox does not come with any predefined user accounts. You'll need to create a super user (administrative account) to be able to log into NetBox. First, enter the Python virtual environment created by the upgrade script:
```no-highlight
# source /opt/netbox/venv/bin/activate
source /opt/netbox/venv/bin/activate
```
Once the virtual environment has been activated, you should notice the string `(venv)` prepended to your console prompt.
@@ -239,39 +251,56 @@ Once the virtual environment has been activated, you should notice the string `(
Next, we'll create a superuser account using the `createsuperuser` Django management command (via `manage.py`). Specifying an email address for the user is not required, but be sure to use a very strong password.
```no-highlight
(venv) # cd /opt/netbox/netbox
(venv) # python3 manage.py createsuperuser
Username: admin
Email address: admin@example.com
Password:
Password (again):
Superuser created successfully.
cd /opt/netbox/netbox
python3 manage.py createsuperuser
```
## Schedule the Housekeeping Task
NetBox includes a `housekeeping` management command that handles some recurring cleanup tasks, such as clearing out old sessions and expired change records. Although this command may be run manually, it is recommended to configure a scheduled job using the system's `cron` daemon or a similar utility.
A shell script which invokes this command is included at `contrib/netbox-housekeeping.sh`. It can be copied to your system's daily cron task directory, or included within the crontab directly. (If installing NetBox into a nonstandard path, be sure to update the system paths within this script first.)
If successful, you should see output similar to the following:
```no-highlight
Watching for file changes with StatReloader
Performing system checks...
System check identified no issues (0 silenced).
November 28, 2018 - 09:33:45
Django version 2.0.9, using settings 'netbox.settings'
Starting development server at http://0.0.0.0:8000/
August 30, 2021 - 18:02:23
Django version 3.2.6, using settings 'netbox.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.
```
Next, connect to the name or IP of the server (as defined in `ALLOWED_HOSTS`) on port 8000; for example, <http://127.0.0.1:8000/>. You should be greeted with the NetBox home page. Note that this built-in web service is for development and testing purposes only. **It is not suited for production use.**
Next, connect to the name or IP of the server (as defined in `ALLOWED_HOSTS`) on port 8000; for example, <http://127.0.0.1:8000/>. You should be greeted with the NetBox home page. Try logging in using the username and password specified when creating a superuser.
!!! note
By default RHEL based distros will likely block your testing attempts with firewalld. The development server port can be opened with `firewall-cmd` (add `--permanent` if you want the rule to survive server restarts):
```no-highlight
firewall-cmd --zone=public --add-port=8000/tcp
```
!!! danger
The development server is for development and testing purposes only. It is neither performant nor secure enough for production use. **Do not use it in production.**
!!! warning
If the test service does not run, or you cannot reach the NetBox home page, something has gone wrong. Do not proceed with the rest of this guide until the installation has been corrected.
Note that the initial UI will be locked down for non-authenticated users.

Try logging in as the super user we just created. Once authenticated, you'll be able to access all areas of the UI:

Like most Django applications, NetBox runs as a [WSGI application](https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface) behind an HTTP server. This documentation shows how to install and configure [gunicorn](http://gunicorn.org/) for this role, however other WSGIs are available and should work similarly well.
Like most Django applications, NetBox runs as a [WSGI application](https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface) behind an HTTP server. This documentation shows how to install and configure [gunicorn](http://gunicorn.org/) (which is automatically installed with NetBox) for this role, however other WSGI servers are available and should work similarly well. [uWSGI](https://uwsgi-docs.readthedocs.io/en/latest/) is a popular alternative.
## Configuration
NetBox ships with a default configuration file for gunicorn. To use it, copy `/opt/netbox/contrib/gunicorn.py` to `/opt/netbox/gunicorn.py`. (We make a copy of this file rather than pointing to it directly to ensure that any changes to it do not get overwritten by a future upgrade.)
NetBox ships with a default configuration file for gunicorn. To use it, copy `/opt/netbox/contrib/gunicorn.py` to `/opt/netbox/gunicorn.py`. (We make a copy of this file rather than pointing to it directly to ensure that any local changes to it do not get overwritten by a future upgrade.)
While this default configuration should suffice for most initial installations, you may wish to edit this file to change the bound IP address and/or port number, or to make performance-related adjustments. See [the Gunicorn documentation](https://docs.gunicorn.org/en/stable/configure.html) for the available configuration parameters.
While the provided configuration should suffice for most initial installations, you may wish to edit this file to change the bound IP address and/or port number, or to make performance-related adjustments. See [the Gunicorn documentation](https://docs.gunicorn.org/en/stable/configure.html) for the available configuration parameters.
## systemd Setup
We'll use systemd to control both gunicorn and NetBox's background worker process. First, copy `contrib/netbox.service` and `contrib/netbox-rq.service` to the `/etc/systemd/system/` directory and reload the systemd dameon:
We'll use systemd to control both gunicorn and NetBox's background worker process. First, copy `contrib/netbox.service` and `contrib/netbox-rq.service` to the `/etc/systemd/system/` directory and reload the systemd daemon:
This documentation provides example configurations for both [nginx](https://www.nginx.com/resources/wiki/) and [Apache](http://httpd.apache.org/docs/2.4), though any HTTP server which supports WSGI should be compatible.
This documentation provides example configurations for both [nginx](https://www.nginx.com/resources/wiki/) and [Apache](https://httpd.apache.org/docs/current/), though any HTTP server which supports WSGI should be compatible.
!!! info
For the sake of brevity, only Ubuntu 18.04 instructions are provided here, these tasks not unique to NetBox and should carry over to other distributions with mininal changes. Please consult your distribution's documentation for assistance if needed.
For the sake of brevity, only Ubuntu 20.04 instructions are provided here. These tasks are not unique to NetBox and should carry over to other distributions with minimal changes. Please consult your distribution's documentation for assistance if needed.
## Obtain an SSL Certificate
@@ -12,7 +12,7 @@ To enable HTTPS access to NetBox, you'll need a valid SSL certificate. You can p
The command below can be used to generate a self-signed certificate for testing purposes, however it is strongly recommended to use a certificate from a trusted authority in production. Two files will be created: the public certificate (`netbox.crt`) and the private key (`netbox.key`). The certificate is published to the world, whereas the private key must be kept secret at all times.
@@ -26,27 +26,26 @@ The above command will prompt you for additional details of the certificate; all
Begin by installing nginx:
```no-highlight
# apt-get install -y nginx
sudo apt install -y nginx
```
Once nginx is installed, copy the nginx configuration file provided by NetBox to `/etc/nginx/sites-available/netbox`. Be sure to replace `netbox.example.com` with the domain name or IP address of your installation. (This should match the value configured for `ALLOWED_HOSTS` in `configuration.py`.)
Finally, ensure that the required Apache modules are enabled, enable the `netbox` site, and reload Apache:
```no-highlight
# a2enmod ssl proxy proxy_http headers
# a2ensite netbox
# service apache2 restart
sudo a2enmod ssl proxy proxy_http headers
sudo a2ensite netbox
sudo systemctl restart apache2
```
## Confirm Connectivity
At this point, you should be able to connect to the HTTP service at the server name or IP address you provided.
At this point, you should be able to connect to the HTTPS service at the server name or IP address you provided.
!!! info
Please keep in mind that the configurations provided here are bare minimums required to get NetBox up and running. You may want to make adjustments to better suit your production environment.
@@ -91,5 +90,5 @@ If you are unable to connect to the HTTP server, check that:
If you are able to connect but receive a 502 (bad gateway) error, check the following:
* The WSGI worker processes (gunicorn) are running (`systemctl status netbox` should show a status of "active (running)")
* nginx/Apache is configured to connect to the port on which gunicorn is listening (default is 8001).
* Nginx/Apache is configured to connect to the port on which gunicorn is listening (default is 8001).
* SELinux is not preventing the reverse proxy connection. You may need to allow HTTP network connections with the command `setsebool -P httpd_can_network_connect 1`
Next, create a file in the same directory as `configuration.py` (typically `netbox/netbox/`) named `ldap_config.py`. Define all of the parameters required below in `ldap_config.py`. Complete documentation of all `django-auth-ldap` configuration options is included in the project's [official documentation](http://django-auth-ldap.readthedocs.io/).
Next, create a file in the same directory as `configuration.py` (typically `/opt/netbox/netbox/netbox/`) named `ldap_config.py`. Define all of the parameters required below in `ldap_config.py`. Complete documentation of all `django-auth-ldap` configuration options is included in the project's [official documentation](https://django-auth-ldap.readthedocs.io/).
### General Server Configuration
@@ -75,7 +74,7 @@ STARTTLS can be configured by setting `AUTH_LDAP_START_TLS = True` and using the
### User Authentication
!!! info
When using Windows Server 2012, `AUTH_LDAP_USER_DN_TEMPLATE` should be set to None.
When using Windows Server 2012+, `AUTH_LDAP_USER_DN_TEMPLATE` should be set to None.
`systemctl restart netbox` restarts the Netbox service, and initiates any changes made to `ldap_config.py`. If there are syntax errors present, the NetBox process will not spawn an instance, and errors should be logged to `/var/log/messages`.
`systemctl restart netbox` restarts the NetBox service, and initiates any changes made to `ldap_config.py`. If there are syntax errors present, the NetBox process will not spawn an instance, and errors should be logged to `/var/log/messages`.
For troubleshooting LDAP user/group queries, add the following lines to the start of `ldap_config.py` after `import ldap`.
For troubleshooting LDAP user/group queries, add or merge the following [logging](../configuration/optional-settings.md#logging) configuration to `configuration.py`:
Ensure the file and path specified in logfile exist and are writable and executable by the application service account. Restart the netbox service and attempt to log into the site to trigger log entries to this file.
The installation instructions provided here have been tested to work on Ubuntu 20.04 and CentOS 8.2. The particular commands needed to install dependencies on other distributions may vary significantly. Unfortunately, this is outside the control of the NetBox maintainers. Please consult your distribution's documentation for assistance with any errors.
The following sections detail how to set up a new instance of NetBox:
1. [PostgreSQL database](1-postgresql.md)
@@ -9,6 +11,18 @@ The following sections detail how to set up a new instance of NetBox:
5. [HTTP server](5-http-server.md)
6. [LDAP authentication](6-ldap.md) (optional)
The video below demonstrates the installation of NetBox v2.10.3 on Ubuntu 20.04 for your reference.
Below is a simplified overview of the NetBox application stack for reference:

@@ -16,6 +30,3 @@ Below is a simplified overview of the NetBox application stack for reference:
## Upgrading
If you are upgrading from an existing installation, please consult the [upgrading guide](upgrading.md).
!!! note
Beginning with v2.5.9, the official documentation calls for systemd to be used for managing the WSGI workers in place of supervisord. Please see the instructions for [migrating to systemd](migrating-to-systemd.md) if you are still using supervisord.
Prior to upgrading your NetBox instance, be sure to carefully review all [release notes](../../release-notes/) that have been published since your current version was released. Although the upgrade process typically does not involve additional work, certain releases may introduce breaking or backward-incompatible changes. These are called out in the release notes under the version in which the change went into effect.
Prior to upgrading your NetBox instance, be sure to carefully review all [release notes](../release-notes/index.md) that have been published since your current version was released. Although the upgrade process typically does not involve additional work, certain releases may introduce breaking or backward-incompatible changes. These are called out in the release notes under the release in which the change went into effect.
## Update Dependencies to Required Versions
NetBox v2.9.0 and later requires the following:
NetBox v3.0 and later requires the following:
| Dependency | Minimum Version |
|------------|-----------------|
| Python | 3.6 |
| Python | 3.7 |
| PostgreSQL | 9.6 |
| Redis | 4.0 |
## Install the Latest Code
## Install the Latest Release
As with the initial installation, you can upgrade NetBox by either downloading the latest release package or by cloning the `master` branch of the git repository.
@@ -25,47 +25,36 @@ Download the [latest stable release](https://github.com/netbox-community/netbox/
Be sure to replicate your uploaded media as well. (The exact action necessary will depend on where you choose to store your media, but in general moving or copying the media directory will suffice.)
Also make sure to copy over any custom scripts and reports that you've made. Note that if these are stored outside the project root, you will not need to copy them. (Check the `SCRIPTS_ROOT` and `REPORTS_ROOT` parameters in the configuration file above if you're unsure.)
Also make sure to copy or link any custom scripts and reports that you've made. Note that if these are stored outside the project root, you will not need to copy them. (Check the `SCRIPTS_ROOT` and `REPORTS_ROOT` parameters in the configuration file above if you're unsure.)
@@ -73,10 +62,9 @@ If you followed the original installation guide to set up gunicorn, be sure to c
This guide assumes that NetBox is installed at `/opt/netbox`. Pull down the most recent iteration of the master branch:
```no-highlight
# cd /opt/netbox
# git checkout master
# git pull origin master
# git status
cd /opt/netbox
sudo git checkout master
sudo git pull origin master
```
## Run the Upgrade Script
@@ -84,38 +72,49 @@ This guide assumes that NetBox is installed at `/opt/netbox`. Pull down the most
Once the new code is in place, verify that any optional Python packages required by your deployment (e.g. `napalm` or `django-auth-ldap`) are listed in `local_requirements.txt`. Then, run the upgrade script:
```no-highlight
# ./upgrade.sh
sudo ./upgrade.sh
```
This script:
!!! warning
If the default version of Python is not at least 3.7, you'll need to pass the path to a supported Python version as an environment variable when calling the upgrade script. For example:
```no-highlight
sudo PYTHON=/usr/bin/python3.7 ./upgrade.sh
```
This script performs the following actions:
* Destroys and rebuilds the Python virtual environment
* Installs all required Python packages (listed in `requirements.txt`)
* Installs any additional packages from `local_requirements.txt`
* Applies any database migrations that were included in the release
* Builds the documentation locally (for offline use)
* Collects all static files to be served by the HTTP service
* Deletes stale content types from the database
* Deletes all expired user sessions from the database
* Clears all cached data to prevent conflicts with the new release
!!! note
It's possible that the upgrade script will display a notice warning of unreflected database migrations:
Your models have changes that are not yet reflected in a migration, and so won't be applied.
Run 'manage.py makemigrations' to make new migrations, and then re-run 'manage.py migrate' to apply them.
This may occur due to semantic differences in environment, and can be safely ignored. Never attempt to create new migrations unless you are intentionally modifying the database schema.
If the upgrade script prompts a warning about unreflected database migrations, this indicates that some change has
been made to your local codebase and should be investigated. Never attempt to create new migrations unless you are
intentionally modifying the database schema.
## Restart the NetBox Services
!!! warning
If you are upgrading from an installation that does not use a Python virtual environment, you'll need to update the systemd service files to reference the new Python and gunicorn executables before restarting the services. These are located in `/opt/netbox/venv/bin/`. See the example service files in `/opt/netbox/contrib/` for reference.
If you are upgrading from an installation that does not use a Python virtual environment (any release prior to v2.7.9), you'll need to update the systemd service files to reference the new Python and gunicorn executables before restarting the services. These are located in `/opt/netbox/venv/bin/`. See the example service files in `/opt/netbox/contrib/` for reference.
Finally, restart the gunicorn and RQ services:
```no-highlight
# sudo systemctl restart netbox netbox-rq
sudo systemctl restart netbox netbox-rq
```
!!! note
It's possible you are still using supervisord instead of systemd. If so, please see the instructions for [migrating to systemd](migrating-to-systemd.md).
## Verify Housekeeping Scheduling
If upgrading from a release prior to NetBox v3.0, check that a cron task (or similar scheduled process) has been configured to run NetBox's nightly housekeeping command. A shell script which invokes this command is included at `contrib/netbox-housekeeping.sh`. It can be copied to your system's daily cron task directory, or included within the crontab directly. (If NetBox has been installed in a nonstandard path, be sure to update the system paths within this script first.)
The association of a circuit with a particular site and/or device is modeled separately as a circuit termination. A circuit may have up to two terminations, labeled A and Z. A single-termination circuit can be used when you don't know (or care) about the far end of a circuit (for example, an Internet access circuit which connects to a transit provider). A dual-termination circuit is useful for tracking circuits which connect two sites.
Each circuit termination is tied to a site, and may optionally be connected via a cable to a specific device interface or port within that site. Each termination must be assigned a port speed, and can optionally be assigned an upstream speed if it differs from the downstream speed (a common scenario with e.g. DOCSIS cable modems). Fields are also available to track cross-connect and patch panel details.
Each circuit termination is attached to either a site or to a provider network. Site terminations may optionally be connected via a cable to a specific device interface or port within that site. Each termination must be assigned a port speed, and can optionally be assigned an upstream speed if it differs from the downstream speed (a common scenario with e.g. DOCSIS cable modems). Fields are also available to track cross-connect and patch panel details.
In adherence with NetBox's philosophy of closely modeling the real world, a circuit may terminate only to a physical interface. For example, circuits may not terminate to LAG interfaces, which are virtual in nature. In such cases, a separate physical circuit is associated with each LAG member interface and each needs to be modeled discretely.
In adherence with NetBox's philosophy of closely modeling the real world, a circuit may be connected only to a physical interface. For example, circuits may not terminate to LAG interfaces, which are virtual in nature. In such cases, a separate physical circuit is associated with each LAG member interface and each needs to be modeled discretely.
!!! note
A circuit in NetBox represents a physical link, and cannot have more than two endpoints. When modeling a multi-point topology, each leg of the topology must be defined as a discrete circuit, with one end terminating within the provider's infrastructure.
A circuit in NetBox represents a physical link, and cannot have more than two endpoints. When modeling a multi-point topology, each leg of the topology must be defined as a discrete circuit, with one end terminating within the provider's infrastructure. The provider network model is ideal for representing these networks.
This model can be used to represent the boundary of a provider network, the details of which are unknown or unimportant to the NetBox user. For example, it might represent a provider's regional MPLS network to which multiple circuits provide connectivity.
Each provider network must be assigned to a provider. A circuit may terminate to either a provider network or to a site.
@@ -8,7 +8,7 @@ A device is said to be full-depth if its installation on one rack face prevents
Each device must be instantiated from a pre-created device type, and its default components (console ports, power ports, interfaces, etc.) will be created automatically. (The device type associated with a device may be changed after its creation, however its components will not be updated retroactively.)
Each device must be assigned a site, device role, and operational status, and may optionally be assigned to a specific rack within a site. A platform, serial number, and asset tag may optionally be assigned to each device.
Each device must be assigned a site, device role, and operational status, and may optionally be assigned to a specific location and/or rack within a site. A platform, serial number, and asset tag may optionally be assigned to each device.
Device names must be unique within a site, unless the device has been assigned to a tenant. Devices may also be unnamed.
Interfaces in NetBox represent network interfaces used to exchange data with connected devices. On modern networks, these are most commonly Ethernet, but other types are supported as well. Each interface must be assigned a type, and may optionally be assigned a MAC address, MTU, and IEEE 802.1Q mode (tagged or access). Each interface can also be enabled or disabled, and optionally designated as management-only (for out-of-band management).
Interfaces may be physical or virtual in nature, but only physical interfaces may be connected via cables. Cables can connect interfaces to pass-through ports, circuit terminations, or other interfaces.
!!! note
Although devices and virtual machines both can have interfaces, a separate model is used for each. Thus, device interfaces have some properties that are not present on virtual machine interfaces and vice versa.
### Interface Types
Interfaces may be physical or virtual in nature, but only physical interfaces may be connected via cables. Cables can connect interfaces to pass-through ports, circuit terminations, or other interfaces. Virtual interfaces, such as 802.1Q-tagged subinterfaces, may be assigned to physical parent interfaces.
Physical interfaces may be arranged into a link aggregation group (LAG) and associated with a parent LAG (virtual) interface. LAG interfaces can be recursively nested to model bonding of trunk groups. Like all virtual interfaces, LAG interfaces cannot be connected physically.
IP addresses can be assigned to interfaces. VLANs can also be assigned to each interface as either tagged or untagged. (An interface may have only one untagged VLAN.)
### IP Address Assignment
!!! note
Although devices and virtual machines both can have interfaces, a separate model is used for each. Thus, device interfaces have some properties that are not present on virtual machine interfaces and vice versa.
IP addresses can be assigned to interfaces. VLANs can also be assigned to each interface as either tagged or untagged. (An interface may have only one untagged VLAN.)
Racks and devices can be grouped by location within a site. A location may represent a floor, room, cage, or similar organizational unit. Locations can be nested to form a hierarchy. For example, you may have floors within a site, and rooms within a floor.
The name and facility ID of each rack within a location must be unique. (Racks not assigned to the same location may have identical names and/or facility IDs.)
@@ -4,6 +4,6 @@ A platform defines the type of software running on a device or virtual machine.
Platforms may optionally be limited by manufacturer: If a platform is assigned to a particular manufacturer, it can only be assigned to devices with a type belonging to that manufacturer.
The platform model is also used to indicate which [NAPALM](https://napalm-automation.net/) driver and any associated arguments NetBox should use when connecting to a remote device. The name of the driver along with optional parameters are stored with the platform.
The platform model is also used to indicate which NAPALM driver (if any) and any associated arguments NetBox should use when connecting to a remote device. The name of the driver along with optional parameters are stored with the platform.
The assignment of platforms to devices is an optional feature, and may be disregarded if not desired.
A power feed represents the distribution of power from a power panel to a particular device, typically a power distribution unit (PDU). The power pot (inlet) on a device can be connected via a cable to a power feed. A power feed may optionally be assigned to a rack to allow more easily tracking the distribution of power among racks.
A power feed represents the distribution of power from a power panel to a particular device, typically a power distribution unit (PDU). The power port (inlet) on a device can be connected via a cable to a power feed. A power feed may optionally be assigned to a rack to allow more easily tracking the distribution of power among racks.
Each power feed is assigned an operational type (primary or redundant) and one of the following statuses:
A power panel represents the origin point in NetBox for electrical power being disseminated by one or more power feeds. In a data center environment, one power panel often serves a group of racks, with an individual power feed extending to each rack, though this is not always the case. It is common to have two sets of panels and feeds arranged in parallel to provide redundant power to each rack.
Each power panel must be assigned to a site, and may optionally be assigned to a particular rack group.
Each power panel must be assigned to a site, and may optionally be assigned to a particular location within that site.
!!! note
NetBox does not model the mechanism by which power is delivered to a power panel. Power panels define the root level of the power distribution hierarchy in NetBox.
The rack model represents a physical two- or four-post equipment rack in which devices can be installed. Each rack must be assigned to a site, and may optionally be assigned to a rack group and/or tenant. Racks can also be organized by user-defined functional roles.
The rack model represents a physical two- or four-post equipment rack in which devices can be installed. Each rack must be assigned to a site, and may optionally be assigned to a location and/or tenant. Racks can also be organized by user-defined functional roles.
Rack height is measured in *rack units* (U); racks are commonly between 42U and 48U tall, but NetBox allows you to define racks of arbitrary height. A toggle is provided to indicate whether rack units are in ascending (from the ground up) or descending order.
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.