Docling simplifies document processing, parsing diverse formats — including advanced PDF understanding — and providing seamless integrations with the gen AI ecosystem.
Go to file
Christoph Auer 3c9fe76b70
feat: [Experimental] Introduce VLM pipeline using HF AutoModelForVision2Seq, featuring SmolDocling model (#1054)
* Skeleton for SmolDocling model and VLM Pipeline

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* wip smolDocling inference and vlm pipeline

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* WIP, first working code for inference of SmolDocling, and vlm pipeline assembly code, example included.

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Fixes to preserve page image and demo export to html

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Enabled figure support in vlm_pipeline

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Fix for table span compute in vlm_pipeline

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Properly propagating image data per page, together with predicted tags in VLM pipeline. This enables correct figure extraction and page numbers in provenances

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Cleaned up logs, added pages to vlm_pipeline, basic timing per page measurement in smol_docling models

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Replaced hardcoded otsl tokens with the ones from docling-core tokens.py enum

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Added tokens/sec measurement, improved example

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Added capability for vlm_pipeline to grab text from preconfigured backend

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Exposed "force_backend_text" as pipeline parameter

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Flipped keep_backend to True for vlm_pipeline assembly to work

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Updated vlm pipeline assembly and smol docling model code to support updated doctags

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Fixing doctags starting tag, that broke elements on first line during assembly

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Introduced SmolDoclingOptions to configure model parameters (such as query and artifacts path) via client code, see example in minimal_smol_docling. Provisioning for other potential vlm all-in-one models.

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Moved artifacts_path for SmolDocling into vlm_options instead of global pipeline option

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* New assembly code for latest model revision, updated prompt and parsing of doctags, updated logging

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Updated example of Smol Docling usage

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Added captions for the images for SmolDocling assembly code, improved provenance definition for all elements

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Update minimal smoldocling example

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Fix repo id

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Cleaned up unnecessary logging

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* More elegant solution in removing the input prompt

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* removed minimal_smol_docling example from CI checks

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Removed special html code wrapping when exporting to docling document, cleaned up comments

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Addressing PR comments, added enabled property to SmolDocling, and related VLM pipeline option, few other minor things

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Moved keep_backend = True to vlm pipeline

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* removed pipeline_options.generate_table_images from vlm_pipeline (deprecated in the pipelines)

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Added example on how to get original predicted doctags in minimal_smol_docling

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* removing changes from base_pipeline

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Replaced remaining strings to appropriate enums

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Updated poetry.lock

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* re-built poetry.lock

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Generalize and refactor VLM pipeline and models

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Rename example

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Move imports

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Expose control over using flash_attention_2

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Fix VLM example exclusion in CI

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Add back device_map and accelerate

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Make drawing code resilient against bad bboxes

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* chore: clean up code and comments

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* chore: more cleanup

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* chore: fix leftover .to(device)

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* fix: add proper table provenance

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

---------

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>
Co-authored-by: Maksym Lysak <mly@zurich.ibm.com>
2025-02-26 14:43:26 +01:00
.github feat: [Experimental] Introduce VLM pipeline using HF AutoModelForVision2Seq, featuring SmolDocling model (#1054) 2025-02-26 14:43:26 +01:00
docling feat: [Experimental] Introduce VLM pipeline using HF AutoModelForVision2Seq, featuring SmolDocling model (#1054) 2025-02-26 14:43:26 +01:00
docs feat: [Experimental] Introduce VLM pipeline using HF AutoModelForVision2Seq, featuring SmolDocling model (#1054) 2025-02-26 14:43:26 +01:00
tests fix(html): Parse text in div elements as TextItem (#1041) 2025-02-24 12:38:29 +01:00
.gitignore ci: Add Github Actions (#4) 2024-07-16 13:05:04 +02:00
.pre-commit-config.yaml feat!: Docling v2 (#117) 2024-10-16 21:02:03 +02:00
CHANGELOG.md chore: bump version to 2.24.0 [skip ci] 2025-02-20 18:31:20 +00:00
CITATION.cff chore: add downloads in README, security policy and update ci actions (#401) 2024-11-21 13:59:45 +01:00
CODE_OF_CONDUCT.md Initial commit 2024-07-15 09:42:42 +02:00
CONTRIBUTING.md chore: add downloads in README, security policy and update ci actions (#401) 2024-11-21 13:59:45 +01:00
Dockerfile docs: update example Dockerfile with download CLI (#929) 2025-02-13 14:19:50 +01:00
LICENSE chore: fix placeholders in license (#63) 2024-09-06 17:10:07 +02:00
MAINTAINERS.md docs: Update MAINTAINERS.md (#59) 2024-09-02 12:34:38 +02:00
mkdocs.yml docs: revamp picture description example (#1015) 2025-02-19 11:28:54 +01:00
poetry.lock feat: [Experimental] Introduce VLM pipeline using HF AutoModelForVision2Seq, featuring SmolDocling model (#1054) 2025-02-26 14:43:26 +01:00
pyproject.toml feat: [Experimental] Introduce VLM pipeline using HF AutoModelForVision2Seq, featuring SmolDocling model (#1054) 2025-02-26 14:43:26 +01:00
README.md docs: updated the readme with upcoming features (#831) 2025-01-30 09:52:54 +01:00

Docling

Docling

DS4SD%2Fdocling | Trendshift

arXiv Docs PyPI version PyPI - Python Version Poetry Code style: black Imports: isort Pydantic v2 pre-commit License MIT PyPI Downloads

Docling simplifies document processing, parsing diverse formats — including advanced PDF understanding — and providing seamless integrations with the gen AI ecosystem.

Features

  • 🗂️ Parsing of multiple document formats incl. PDF, DOCX, XLSX, HTML, images, and more
  • 📑 Advanced PDF understanding incl. page layout, reading order, table structure, code, formulas, image classification, and more
  • 🧬 Unified, expressive DoclingDocument representation format
  • ↪️ Various export formats and options, including Markdown, HTML, and lossless JSON
  • 🔒 Local execution capabilities for sensitive data and air-gapped environments
  • 🤖 Plug-and-play integrations incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
  • 🔍 Extensive OCR support for scanned PDFs and images
  • 💻 Simple and convenient CLI

Coming soon

  • 📝 Metadata extraction, including title, authors, references & language
  • 📝 Inclusion of Visual Language Models (SmolDocling)
  • 📝 Chart understanding (Barchart, Piechart, LinePlot, etc)
  • 📝 Complex chemistry understanding (Molecular structures)

Installation

To use Docling, simply install docling from your package manager, e.g. pip:

pip install docling

Works on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.

More detailed installation instructions are available in the docs.

Getting started

To convert individual documents, use convert(), for example:

from docling.document_converter import DocumentConverter

source = "https://arxiv.org/pdf/2408.09869"  # document per local path or URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown())  # output: "## Docling Technical Report[...]"

More advanced usage options are available in the docs.

Documentation

Check out Docling's documentation, for details on installation, usage, concepts, recipes, extensions, and more.

Examples

Go hands-on with our examples, demonstrating how to address different application use cases with Docling.

Integrations

To further accelerate your AI application development, check out Docling's native integrations with popular frameworks and tools.

Get help and support

Please feel free to connect with us using the discussion section.

Technical report

For more details on Docling's inner workings, check out the Docling Technical Report.

Contributing

Please read Contributing to Docling for details.

References

If you use Docling in your projects, please consider citing the following:

@techreport{Docling,
  author = {Deep Search Team},
  month = {8},
  title = {Docling Technical Report},
  url = {https://arxiv.org/abs/2408.09869},
  eprint = {2408.09869},
  doi = {10.48550/arXiv.2408.09869},
  version = {1.0.0},
  year = {2024}
}

License

The Docling codebase is under MIT license. For individual model usage, please refer to the model licenses found in the original packages.

IBM ❤️ Open Source AI

Docling has been brought to you by IBM.