docs: document CLI, minor README revamp (#100)
Signed-off-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
This commit is contained in:
parent
f555815343
commit
f8f2303348
94
README.md
94
README.md
@ -22,8 +22,9 @@ Docling bundles PDF document conversion to JSON and Markdown in an easy, self-co
|
|||||||
* ⚡ Converts any PDF document to JSON or Markdown format, stable and lightning fast
|
* ⚡ Converts any PDF document to JSON or Markdown format, stable and lightning fast
|
||||||
* 📑 Understands detailed page layout, reading order and recovers table structures
|
* 📑 Understands detailed page layout, reading order and recovers table structures
|
||||||
* 📝 Extracts metadata from the document, such as title, authors, references and language
|
* 📝 Extracts metadata from the document, such as title, authors, references and language
|
||||||
* 🔍 Optionally applies OCR (use with scanned PDFs)
|
* 🔍 Includes OCR support for scanned PDFs
|
||||||
* 🤖 Integrates easily with LLM app / RAG frameworks like 🦙 LlamaIndex and 🦜🔗 LangChain
|
* 🤖 Integrates easily with LLM app / RAG frameworks like 🦙 LlamaIndex and 🦜🔗 LangChain
|
||||||
|
* 💻 Provides a simple and convenient CLI
|
||||||
|
|
||||||
## Installation
|
## Installation
|
||||||
|
|
||||||
@ -35,31 +36,33 @@ pip install docling
|
|||||||
> [!NOTE]
|
> [!NOTE]
|
||||||
> Works on macOS and Linux environments. Windows platforms are currently not tested.
|
> Works on macOS and Linux environments. Windows platforms are currently not tested.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><b>Alternative PyTorch distributions</b></summary>
|
||||||
|
|
||||||
### Use alternative PyTorch distributions
|
The Docling models depend on the [PyTorch](https://pytorch.org/) library.
|
||||||
|
Depending on your architecture, you might want to use a different distribution of `torch`.
|
||||||
|
For example, you might want support for different accelerator or for a cpu-only version.
|
||||||
|
All the different ways for installing `torch` are listed on their website <https://pytorch.org/>.
|
||||||
|
|
||||||
The Docling models depend on the [PyTorch](https://pytorch.org/) library.
|
One common situation is the installation on Linux systems with cpu-only support.
|
||||||
Depending on your architecture, you might want to use a different distribution of `torch`.
|
In this case, we suggest the installation of Docling with the following options
|
||||||
For example, you might want support for different accelerator or for a cpu-only version.
|
|
||||||
All the different ways for installing `torch` are listed on their website <https://pytorch.org/>.
|
|
||||||
|
|
||||||
One common situation is the installation on Linux systems with cpu-only support.
|
```bash
|
||||||
In this case, we suggest the installation of Docling with the following options
|
# Example for installing on the Linux cpu-only version
|
||||||
|
pip install docling --extra-index-url https://download.pytorch.org/whl/cpu
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
```bash
|
<details>
|
||||||
# Example for installing on the Linux cpu-only version
|
<summary><b>Docling development setup</b></summary>
|
||||||
pip install docling --extra-index-url https://download.pytorch.org/whl/cpu
|
|
||||||
```
|
|
||||||
|
|
||||||
|
To develop for Docling (features, bugfixes etc.), install as follows from your local clone's root dir:
|
||||||
|
```bash
|
||||||
|
poetry install --all-extras
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
### Development setup
|
## Getting started
|
||||||
|
|
||||||
To develop for Docling, you need Python 3.10 / 3.11 / 3.12 and Poetry. You can then install from your local clone's root dir:
|
|
||||||
```bash
|
|
||||||
poetry install --all-extras
|
|
||||||
```
|
|
||||||
|
|
||||||
## Usage
|
|
||||||
|
|
||||||
### Convert a single document
|
### Convert a single document
|
||||||
|
|
||||||
@ -70,7 +73,6 @@ from docling.document_converter import DocumentConverter
|
|||||||
source = "https://arxiv.org/pdf/2408.09869" # PDF path or URL
|
source = "https://arxiv.org/pdf/2408.09869" # PDF path or URL
|
||||||
converter = DocumentConverter()
|
converter = DocumentConverter()
|
||||||
result = converter.convert_single(source)
|
result = converter.convert_single(source)
|
||||||
|
|
||||||
print(result.render_as_markdown()) # output: "## Docling Technical Report[...]"
|
print(result.render_as_markdown()) # output: "## Docling Technical Report[...]"
|
||||||
print(result.render_as_doctags()) # output: "<document><title><page_1><loc_20>..."
|
print(result.render_as_doctags()) # output: "<document><title><page_1><loc_20>..."
|
||||||
```
|
```
|
||||||
@ -86,6 +88,51 @@ python examples/batch_convert.py
|
|||||||
```
|
```
|
||||||
The output of the above command will be written to `./scratch`.
|
The output of the above command will be written to `./scratch`.
|
||||||
|
|
||||||
|
### CLI
|
||||||
|
|
||||||
|
You can also use Docling directly from your command line to convert individual files —be it local or by URL— or whole directories.
|
||||||
|
|
||||||
|
A simple example would look like this:
|
||||||
|
```console
|
||||||
|
docling https://arxiv.org/pdf/2206.01062
|
||||||
|
```
|
||||||
|
|
||||||
|
To see all available options (export formats etc.) run `docling --help`.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><b>CLI reference</b></summary>
|
||||||
|
|
||||||
|
Here are the available options as of this writing (for an up-to-date listing, run `docling --help`):
|
||||||
|
|
||||||
|
```console
|
||||||
|
$ docling --help
|
||||||
|
|
||||||
|
Usage: docling [OPTIONS] source
|
||||||
|
|
||||||
|
╭─ Arguments ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
|
||||||
|
│ * input_sources source PDF files to convert. Can be local file / directory paths or URL. [default: None] [required] │
|
||||||
|
╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
|
||||||
|
╭─ Options ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
|
||||||
|
│ --json --no-json If enabled the document is exported as JSON. [default: no-json] │
|
||||||
|
│ --md --no-md If enabled the document is exported as Markdown. [default: md] │
|
||||||
|
│ --txt --no-txt If enabled the document is exported as Text. [default: no-txt] │
|
||||||
|
│ --doctags --no-doctags If enabled the document is exported as Doc Tags. [default: no-doctags] │
|
||||||
|
│ --ocr --no-ocr If enabled, the bitmap content will be processed using OCR. [default: ocr] │
|
||||||
|
│ --backend [pypdfium2|docling] The PDF backend to use. [default: docling] │
|
||||||
|
│ --output PATH Output directory where results are saved. [default: .] │
|
||||||
|
│ --version Show version information. │
|
||||||
|
│ --help Show this message and exit. │
|
||||||
|
╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### RAG
|
||||||
|
Check out the following examples showcasing RAG using Docling with standard LLM application frameworks:
|
||||||
|
- [Basic RAG pipeline with 🦙 LlamaIndex](https://github.com/DS4SD/docling/tree/main/examples/rag_llamaindex.ipynb)
|
||||||
|
- [Basic RAG pipeline with 🦜🔗 LangChain](https://github.com/DS4SD/docling/tree/main/examples/rag_langchain.ipynb)
|
||||||
|
|
||||||
|
## Advanced features
|
||||||
|
|
||||||
### Adjust pipeline features
|
### Adjust pipeline features
|
||||||
|
|
||||||
The example file [custom_convert.py](https://github.com/DS4SD/docling/blob/main/examples/custom_convert.py) contains multiple ways
|
The example file [custom_convert.py](https://github.com/DS4SD/docling/blob/main/examples/custom_convert.py) contains multiple ways
|
||||||
@ -144,11 +191,6 @@ results = doc_converter.convert(conv_input)
|
|||||||
|
|
||||||
You can limit the CPU threads used by Docling by setting the environment variable `OMP_NUM_THREADS` accordingly. The default setting is using 4 CPU threads.
|
You can limit the CPU threads used by Docling by setting the environment variable `OMP_NUM_THREADS` accordingly. The default setting is using 4 CPU threads.
|
||||||
|
|
||||||
### RAG
|
|
||||||
Check out the following examples showcasing RAG using Docling with standard LLM application frameworks:
|
|
||||||
- [Basic RAG pipeline with 🦙 LlamaIndex](https://github.com/DS4SD/docling/tree/main/examples/rag_llamaindex.ipynb)
|
|
||||||
- [Basic RAG pipeline with 🦜🔗 LangChain](https://github.com/DS4SD/docling/tree/main/examples/rag_langchain.ipynb)
|
|
||||||
|
|
||||||
## Technical report
|
## Technical report
|
||||||
|
|
||||||
For more details on Docling's inner workings, check out the [Docling Technical Report](https://arxiv.org/abs/2408.09869).
|
For more details on Docling's inner workings, check out the [Docling Technical Report](https://arxiv.org/abs/2408.09869).
|
||||||
|
Loading…
Reference in New Issue
Block a user