diff --git a/README.md b/README.md
index 2631d3c..2fd199c 100644
--- a/README.md
+++ b/README.md
@@ -22,8 +22,9 @@ Docling bundles PDF document conversion to JSON and Markdown in an easy, self-co
* ⚡ Converts any PDF document to JSON or Markdown format, stable and lightning fast
* 📑 Understands detailed page layout, reading order and recovers table structures
* 📝 Extracts metadata from the document, such as title, authors, references and language
-* 🔍 Optionally applies OCR (use with scanned PDFs)
+* 🔍 Includes OCR support for scanned PDFs
* 🤖 Integrates easily with LLM app / RAG frameworks like 🦙 LlamaIndex and 🦜🔗 LangChain
+* 💻 Provides a simple and convenient CLI
## Installation
@@ -35,31 +36,33 @@ pip install docling
> [!NOTE]
> Works on macOS and Linux environments. Windows platforms are currently not tested.
+
+ Alternative PyTorch distributions
-### Use alternative PyTorch distributions
+ The Docling models depend on the [PyTorch](https://pytorch.org/) library.
+ Depending on your architecture, you might want to use a different distribution of `torch`.
+ For example, you might want support for different accelerator or for a cpu-only version.
+ All the different ways for installing `torch` are listed on their website .
-The Docling models depend on the [PyTorch](https://pytorch.org/) library.
-Depending on your architecture, you might want to use a different distribution of `torch`.
-For example, you might want support for different accelerator or for a cpu-only version.
-All the different ways for installing `torch` are listed on their website .
+ One common situation is the installation on Linux systems with cpu-only support.
+ In this case, we suggest the installation of Docling with the following options
-One common situation is the installation on Linux systems with cpu-only support.
-In this case, we suggest the installation of Docling with the following options
+ ```bash
+ # Example for installing on the Linux cpu-only version
+ pip install docling --extra-index-url https://download.pytorch.org/whl/cpu
+ ```
+
-```bash
-# Example for installing on the Linux cpu-only version
-pip install docling --extra-index-url https://download.pytorch.org/whl/cpu
-```
+
+ Docling development setup
+ To develop for Docling (features, bugfixes etc.), install as follows from your local clone's root dir:
+ ```bash
+ poetry install --all-extras
+ ```
+
-### Development setup
-
-To develop for Docling, you need Python 3.10 / 3.11 / 3.12 and Poetry. You can then install from your local clone's root dir:
-```bash
-poetry install --all-extras
-```
-
-## Usage
+## Getting started
### Convert a single document
@@ -70,7 +73,6 @@ from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2408.09869" # PDF path or URL
converter = DocumentConverter()
result = converter.convert_single(source)
-
print(result.render_as_markdown()) # output: "## Docling Technical Report[...]"
print(result.render_as_doctags()) # output: "..."
```
@@ -86,6 +88,51 @@ python examples/batch_convert.py
```
The output of the above command will be written to `./scratch`.
+### CLI
+
+You can also use Docling directly from your command line to convert individual files —be it local or by URL— or whole directories.
+
+A simple example would look like this:
+```console
+docling https://arxiv.org/pdf/2206.01062
+```
+
+To see all available options (export formats etc.) run `docling --help`.
+
+
+ CLI reference
+
+ Here are the available options as of this writing (for an up-to-date listing, run `docling --help`):
+
+ ```console
+ $ docling --help
+
+ Usage: docling [OPTIONS] source
+
+ ╭─ Arguments ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
+ │ * input_sources source PDF files to convert. Can be local file / directory paths or URL. [default: None] [required] │
+ ╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
+ ╭─ Options ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
+ │ --json --no-json If enabled the document is exported as JSON. [default: no-json] │
+ │ --md --no-md If enabled the document is exported as Markdown. [default: md] │
+ │ --txt --no-txt If enabled the document is exported as Text. [default: no-txt] │
+ │ --doctags --no-doctags If enabled the document is exported as Doc Tags. [default: no-doctags] │
+ │ --ocr --no-ocr If enabled, the bitmap content will be processed using OCR. [default: ocr] │
+ │ --backend [pypdfium2|docling] The PDF backend to use. [default: docling] │
+ │ --output PATH Output directory where results are saved. [default: .] │
+ │ --version Show version information. │
+ │ --help Show this message and exit. │
+ ╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
+ ```
+
+
+### RAG
+Check out the following examples showcasing RAG using Docling with standard LLM application frameworks:
+- [Basic RAG pipeline with 🦙 LlamaIndex](https://github.com/DS4SD/docling/tree/main/examples/rag_llamaindex.ipynb)
+- [Basic RAG pipeline with 🦜🔗 LangChain](https://github.com/DS4SD/docling/tree/main/examples/rag_langchain.ipynb)
+
+## Advanced features
+
### Adjust pipeline features
The example file [custom_convert.py](https://github.com/DS4SD/docling/blob/main/examples/custom_convert.py) contains multiple ways
@@ -144,11 +191,6 @@ results = doc_converter.convert(conv_input)
You can limit the CPU threads used by Docling by setting the environment variable `OMP_NUM_THREADS` accordingly. The default setting is using 4 CPU threads.
-### RAG
-Check out the following examples showcasing RAG using Docling with standard LLM application frameworks:
-- [Basic RAG pipeline with 🦙 LlamaIndex](https://github.com/DS4SD/docling/tree/main/examples/rag_llamaindex.ipynb)
-- [Basic RAG pipeline with 🦜🔗 LangChain](https://github.com/DS4SD/docling/tree/main/examples/rag_langchain.ipynb)
-
## Technical report
For more details on Docling's inner workings, check out the [Docling Technical Report](https://arxiv.org/abs/2408.09869).