docs: document CLI, minor README revamp (#100)

Signed-off-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
This commit is contained in:
Panos Vagenas 2024-09-24 09:21:28 +02:00 committed by GitHub
parent f555815343
commit f8f2303348
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -22,8 +22,9 @@ Docling bundles PDF document conversion to JSON and Markdown in an easy, self-co
* ⚡ Converts any PDF document to JSON or Markdown format, stable and lightning fast
* 📑 Understands detailed page layout, reading order and recovers table structures
* 📝 Extracts metadata from the document, such as title, authors, references and language
* 🔍 Optionally applies OCR (use with scanned PDFs)
* 🔍 Includes OCR support for scanned PDFs
* 🤖 Integrates easily with LLM app / RAG frameworks like 🦙 LlamaIndex and 🦜🔗 LangChain
* 💻 Provides a simple and convenient CLI
## Installation
@ -35,31 +36,33 @@ pip install docling
> [!NOTE]
> Works on macOS and Linux environments. Windows platforms are currently not tested.
<details>
<summary><b>Alternative PyTorch distributions</b></summary>
### Use alternative PyTorch distributions
The Docling models depend on the [PyTorch](https://pytorch.org/) library.
Depending on your architecture, you might want to use a different distribution of `torch`.
For example, you might want support for different accelerator or for a cpu-only version.
All the different ways for installing `torch` are listed on their website <https://pytorch.org/>.
The Docling models depend on the [PyTorch](https://pytorch.org/) library.
Depending on your architecture, you might want to use a different distribution of `torch`.
For example, you might want support for different accelerator or for a cpu-only version.
All the different ways for installing `torch` are listed on their website <https://pytorch.org/>.
One common situation is the installation on Linux systems with cpu-only support.
In this case, we suggest the installation of Docling with the following options
One common situation is the installation on Linux systems with cpu-only support.
In this case, we suggest the installation of Docling with the following options
```bash
# Example for installing on the Linux cpu-only version
pip install docling --extra-index-url https://download.pytorch.org/whl/cpu
```
</details>
```bash
# Example for installing on the Linux cpu-only version
pip install docling --extra-index-url https://download.pytorch.org/whl/cpu
```
<details>
<summary><b>Docling development setup</b></summary>
To develop for Docling (features, bugfixes etc.), install as follows from your local clone's root dir:
```bash
poetry install --all-extras
```
</details>
### Development setup
To develop for Docling, you need Python 3.10 / 3.11 / 3.12 and Poetry. You can then install from your local clone's root dir:
```bash
poetry install --all-extras
```
## Usage
## Getting started
### Convert a single document
@ -70,7 +73,6 @@ from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2408.09869" # PDF path or URL
converter = DocumentConverter()
result = converter.convert_single(source)
print(result.render_as_markdown()) # output: "## Docling Technical Report[...]"
print(result.render_as_doctags()) # output: "<document><title><page_1><loc_20>..."
```
@ -86,6 +88,51 @@ python examples/batch_convert.py
```
The output of the above command will be written to `./scratch`.
### CLI
You can also use Docling directly from your command line to convert individual files —be it local or by URL— or whole directories.
A simple example would look like this:
```console
docling https://arxiv.org/pdf/2206.01062
```
To see all available options (export formats etc.) run `docling --help`.
<details>
<summary><b>CLI reference</b></summary>
Here are the available options as of this writing (for an up-to-date listing, run `docling --help`):
```console
$ docling --help
Usage: docling [OPTIONS] source
╭─ Arguments ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ * input_sources source PDF files to convert. Can be local file / directory paths or URL. [default: None] [required] │
╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭─ Options ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ --json --no-json If enabled the document is exported as JSON. [default: no-json] │
│ --md --no-md If enabled the document is exported as Markdown. [default: md] │
│ --txt --no-txt If enabled the document is exported as Text. [default: no-txt] │
│ --doctags --no-doctags If enabled the document is exported as Doc Tags. [default: no-doctags] │
│ --ocr --no-ocr If enabled, the bitmap content will be processed using OCR. [default: ocr] │
│ --backend [pypdfium2|docling] The PDF backend to use. [default: docling] │
│ --output PATH Output directory where results are saved. [default: .] │
│ --version Show version information. │
│ --help Show this message and exit. │
╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
```
</details>
### RAG
Check out the following examples showcasing RAG using Docling with standard LLM application frameworks:
- [Basic RAG pipeline with 🦙 LlamaIndex](https://github.com/DS4SD/docling/tree/main/examples/rag_llamaindex.ipynb)
- [Basic RAG pipeline with 🦜🔗 LangChain](https://github.com/DS4SD/docling/tree/main/examples/rag_langchain.ipynb)
## Advanced features
### Adjust pipeline features
The example file [custom_convert.py](https://github.com/DS4SD/docling/blob/main/examples/custom_convert.py) contains multiple ways
@ -144,11 +191,6 @@ results = doc_converter.convert(conv_input)
You can limit the CPU threads used by Docling by setting the environment variable `OMP_NUM_THREADS` accordingly. The default setting is using 4 CPU threads.
### RAG
Check out the following examples showcasing RAG using Docling with standard LLM application frameworks:
- [Basic RAG pipeline with 🦙 LlamaIndex](https://github.com/DS4SD/docling/tree/main/examples/rag_llamaindex.ipynb)
- [Basic RAG pipeline with 🦜🔗 LangChain](https://github.com/DS4SD/docling/tree/main/examples/rag_langchain.ipynb)
## Technical report
For more details on Docling's inner workings, check out the [Docling Technical Report](https://arxiv.org/abs/2408.09869).