remove 'albumentations'
This commit is contained in:
parent
98b8ccc38d
commit
4edac82fc3
@ -1,4 +1,3 @@
|
||||
albumentations==1.4.0
|
||||
numpy==1.24.4
|
||||
omegaconf==2.3.0
|
||||
opencv-python==4.11.0.86
|
||||
|
@ -1,4 +1,4 @@
|
||||
"""
|
||||
"""
|
||||
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
||||
SPDX-License-Identifier: MIT
|
||||
"""
|
||||
@ -6,8 +6,11 @@ SPDX-License-Identifier: MIT
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import ImageOps
|
||||
from torchvision import transforms
|
||||
from torchvision.transforms.functional import resize
|
||||
|
||||
from utils.utils import *
|
||||
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
|
||||
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
|
||||
|
||||
|
||||
class DolphinProcessor:
|
||||
@ -34,6 +37,10 @@ class DolphinProcessor:
|
||||
self.prefix_answer_space_flag = dp_config.get("prefix_answer_space_flag", True)
|
||||
self.suffix_prompt_space_flag = dp_config.get("suffix_prompt_space_flag", True)
|
||||
|
||||
self.transform = transforms.Compose(
|
||||
[transforms.ToTensor(), transforms.Normalize(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD)]
|
||||
)
|
||||
|
||||
def process_prompt_for_inference(self, prompt):
|
||||
prompt = prompt.replace("<image>\n", "")
|
||||
if not prompt.startswith("<s>"):
|
||||
@ -60,5 +67,5 @@ class DolphinProcessor:
|
||||
)
|
||||
image = ImageOps.expand(image, padding)
|
||||
if return_img_size:
|
||||
return test_transform(image).unsqueeze(0), (origin_w, origin_h)
|
||||
return test_transform(image).unsqueeze(0)
|
||||
return self.transform(image).unsqueeze(0), (origin_w, origin_h)
|
||||
return self.transform(image).unsqueeze(0)
|
||||
|
180
utils/utils.py
180
utils/utils.py
@ -1,37 +1,33 @@
|
||||
"""
|
||||
"""
|
||||
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
||||
SPDX-License-Identifier: MIT
|
||||
"""
|
||||
|
||||
import copy
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import io
|
||||
import re
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Tuple
|
||||
|
||||
import albumentations as alb
|
||||
import cv2
|
||||
import numpy as np
|
||||
from albumentations.pytorch import ToTensorV2
|
||||
import pymupdf
|
||||
from PIL import Image
|
||||
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from torchvision.transforms.functional import resize
|
||||
|
||||
from utils.markdown_utils import MarkdownConverter
|
||||
|
||||
|
||||
def save_figure_to_local(pil_crop, save_dir, image_name, reading_order):
|
||||
"""Save cropped figure to local file system
|
||||
|
||||
|
||||
Args:
|
||||
pil_crop: PIL Image object of the cropped figure
|
||||
save_dir: Base directory to save results
|
||||
image_name: Name of the source image/document
|
||||
reading_order: Reading order of the figure in the document
|
||||
|
||||
|
||||
Returns:
|
||||
str: Filename of the saved figure
|
||||
"""
|
||||
@ -39,17 +35,17 @@ def save_figure_to_local(pil_crop, save_dir, image_name, reading_order):
|
||||
# Create figures directory if it doesn't exist
|
||||
figures_dir = os.path.join(save_dir, "markdown", "figures")
|
||||
# os.makedirs(figures_dir, exist_ok=True)
|
||||
|
||||
|
||||
# Generate figure filename
|
||||
figure_filename = f"{image_name}_figure_{reading_order:03d}.png"
|
||||
figure_path = os.path.join(figures_dir, figure_filename)
|
||||
|
||||
|
||||
# Save the figure
|
||||
pil_crop.save(figure_path, format="PNG", quality=95)
|
||||
|
||||
|
||||
# print(f"Saved figure: {figure_filename}")
|
||||
return figure_filename
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error saving figure: {str(e)}")
|
||||
# Return a fallback filename
|
||||
@ -58,38 +54,38 @@ def save_figure_to_local(pil_crop, save_dir, image_name, reading_order):
|
||||
|
||||
def convert_pdf_to_images(pdf_path, target_size=896):
|
||||
"""Convert PDF pages to images
|
||||
|
||||
|
||||
Args:
|
||||
pdf_path: Path to PDF file
|
||||
target_size: Target size for the longest dimension
|
||||
|
||||
|
||||
Returns:
|
||||
List of PIL Images
|
||||
"""
|
||||
images = []
|
||||
try:
|
||||
doc = pymupdf.open(pdf_path)
|
||||
|
||||
|
||||
for page_num in range(len(doc)):
|
||||
page = doc[page_num]
|
||||
|
||||
|
||||
# Calculate scale to make longest dimension equal to target_size
|
||||
rect = page.rect
|
||||
scale = target_size / max(rect.width, rect.height)
|
||||
|
||||
|
||||
# Render page as image
|
||||
mat = pymupdf.Matrix(scale, scale)
|
||||
pix = page.get_pixmap(matrix=mat)
|
||||
|
||||
|
||||
# Convert to PIL Image
|
||||
img_data = pix.tobytes("png")
|
||||
pil_image = Image.open(io.BytesIO(img_data))
|
||||
images.append(pil_image)
|
||||
|
||||
|
||||
doc.close()
|
||||
print(f"Successfully converted {len(images)} pages from PDF")
|
||||
return images
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error converting PDF to images: {str(e)}")
|
||||
return []
|
||||
@ -97,42 +93,38 @@ def convert_pdf_to_images(pdf_path, target_size=896):
|
||||
|
||||
def is_pdf_file(file_path):
|
||||
"""Check if file is a PDF"""
|
||||
return file_path.lower().endswith('.pdf')
|
||||
return file_path.lower().endswith(".pdf")
|
||||
|
||||
|
||||
def save_combined_pdf_results(all_page_results, pdf_path, save_dir):
|
||||
"""Save combined results for multi-page PDF with both JSON and Markdown
|
||||
|
||||
|
||||
Args:
|
||||
all_page_results: List of results for all pages
|
||||
pdf_path: Path to original PDF file
|
||||
save_dir: Directory to save results
|
||||
|
||||
|
||||
Returns:
|
||||
Path to saved combined JSON file
|
||||
"""
|
||||
# Create output filename based on PDF name
|
||||
base_name = os.path.splitext(os.path.basename(pdf_path))[0]
|
||||
|
||||
|
||||
# Prepare combined results
|
||||
combined_results = {
|
||||
"source_file": pdf_path,
|
||||
"total_pages": len(all_page_results),
|
||||
"pages": all_page_results
|
||||
}
|
||||
|
||||
combined_results = {"source_file": pdf_path, "total_pages": len(all_page_results), "pages": all_page_results}
|
||||
|
||||
# Save combined JSON results
|
||||
json_filename = f"{base_name}.json"
|
||||
json_path = os.path.join(save_dir, "recognition_json", json_filename)
|
||||
os.makedirs(os.path.dirname(json_path), exist_ok=True)
|
||||
|
||||
with open(json_path, 'w', encoding='utf-8') as f:
|
||||
|
||||
with open(json_path, "w", encoding="utf-8") as f:
|
||||
json.dump(combined_results, f, indent=2, ensure_ascii=False)
|
||||
|
||||
|
||||
# Generate and save combined markdown
|
||||
try:
|
||||
markdown_converter = MarkdownConverter()
|
||||
|
||||
|
||||
# Combine all page results into a single list for markdown conversion
|
||||
all_elements = []
|
||||
for page_data in all_page_results:
|
||||
@ -140,52 +132,33 @@ def save_combined_pdf_results(all_page_results, pdf_path, save_dir):
|
||||
if page_elements:
|
||||
# Add page separator if not the first page
|
||||
if all_elements:
|
||||
all_elements.append({
|
||||
"label": "page_separator",
|
||||
"text": f"\n\n---\n\n",
|
||||
"reading_order": len(all_elements)
|
||||
})
|
||||
all_elements.append(
|
||||
{"label": "page_separator", "text": f"\n\n---\n\n", "reading_order": len(all_elements)}
|
||||
)
|
||||
all_elements.extend(page_elements)
|
||||
|
||||
|
||||
# Generate markdown content
|
||||
markdown_content = markdown_converter.convert(all_elements)
|
||||
|
||||
|
||||
# Save markdown file
|
||||
markdown_filename = f"{base_name}.md"
|
||||
markdown_path = os.path.join(save_dir, "markdown", markdown_filename)
|
||||
os.makedirs(os.path.dirname(markdown_path), exist_ok=True)
|
||||
|
||||
with open(markdown_path, 'w', encoding='utf-8') as f:
|
||||
|
||||
with open(markdown_path, "w", encoding="utf-8") as f:
|
||||
f.write(markdown_content)
|
||||
|
||||
|
||||
# print(f"Combined markdown saved to: {markdown_path}")
|
||||
|
||||
|
||||
except ImportError:
|
||||
print("MarkdownConverter not available, skipping markdown generation")
|
||||
except Exception as e:
|
||||
print(f"Error generating markdown: {e}")
|
||||
|
||||
|
||||
# print(f"Combined JSON results saved to: {json_path}")
|
||||
return json_path
|
||||
|
||||
|
||||
def alb_wrapper(transform):
|
||||
def f(im):
|
||||
return transform(image=np.asarray(im))["image"]
|
||||
|
||||
return f
|
||||
|
||||
|
||||
test_transform = alb_wrapper(
|
||||
alb.Compose(
|
||||
[
|
||||
alb.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD),
|
||||
ToTensorV2(),
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def check_coord_valid(x1, y1, x2, y2, image_size=None, abs_coord=True):
|
||||
# print(f"check_coord_valid: {x1}, {y1}, {x2}, {y2}, {image_size}, {abs_coord}")
|
||||
if x2 <= x1 or y2 <= y1:
|
||||
@ -195,12 +168,12 @@ def check_coord_valid(x1, y1, x2, y2, image_size=None, abs_coord=True):
|
||||
if not abs_coord:
|
||||
if x2 > 1 or y2 > 1:
|
||||
return False, f"[{x1}, {y1}, {x2}, {y2}]"
|
||||
elif image_size is not None: # has image size
|
||||
elif image_size is not None: # has image size
|
||||
if x2 > image_size[0] or y2 > image_size[1]:
|
||||
return False, f"[{x1}, {y1}, {x2}, {y2}]"
|
||||
return True, None
|
||||
|
||||
|
||||
|
||||
def adjust_box_edges(image, boxes: List[List[float]], max_pixels=15, threshold=0.2):
|
||||
"""
|
||||
Image: cv2.image object, or Path
|
||||
@ -276,6 +249,7 @@ def parse_layout_string(bbox_str):
|
||||
@dataclass
|
||||
class ImageDimensions:
|
||||
"""Class to store image dimensions"""
|
||||
|
||||
original_w: int
|
||||
original_h: int
|
||||
padded_w: int
|
||||
@ -284,11 +258,11 @@ class ImageDimensions:
|
||||
|
||||
def map_to_original_coordinates(x1, y1, x2, y2, dims: ImageDimensions) -> Tuple[int, int, int, int]:
|
||||
"""Map coordinates from padded image back to original image
|
||||
|
||||
|
||||
Args:
|
||||
x1, y1, x2, y2: Coordinates in padded image
|
||||
dims: Image dimensions object
|
||||
|
||||
|
||||
Returns:
|
||||
tuple: (x1, y1, x2, y2) coordinates in original image
|
||||
"""
|
||||
@ -296,19 +270,19 @@ def map_to_original_coordinates(x1, y1, x2, y2, dims: ImageDimensions) -> Tuple[
|
||||
# Calculate padding offsets
|
||||
top = (dims.padded_h - dims.original_h) // 2
|
||||
left = (dims.padded_w - dims.original_w) // 2
|
||||
|
||||
|
||||
# Map back to original coordinates
|
||||
orig_x1 = max(0, x1 - left)
|
||||
orig_y1 = max(0, y1 - top)
|
||||
orig_x2 = min(dims.original_w, x2 - left)
|
||||
orig_y2 = min(dims.original_h, y2 - top)
|
||||
|
||||
|
||||
# Ensure we have a valid box (width and height > 0)
|
||||
if orig_x2 <= orig_x1:
|
||||
orig_x2 = min(orig_x1 + 1, dims.original_w)
|
||||
if orig_y2 <= orig_y1:
|
||||
orig_y2 = min(orig_y1 + 1, dims.original_h)
|
||||
|
||||
|
||||
return int(orig_x1), int(orig_y1), int(orig_x2), int(orig_y2)
|
||||
except Exception as e:
|
||||
print(f"map_to_original_coordinates error: {str(e)}")
|
||||
@ -318,12 +292,17 @@ def map_to_original_coordinates(x1, y1, x2, y2, dims: ImageDimensions) -> Tuple[
|
||||
|
||||
def map_to_relevant_coordinates(abs_coords, dims: ImageDimensions):
|
||||
"""
|
||||
From absolute coordinates to relevant coordinates
|
||||
e.g. [100, 100, 200, 200] -> [0.1, 0.2, 0.3, 0.4]
|
||||
From absolute coordinates to relevant coordinates
|
||||
e.g. [100, 100, 200, 200] -> [0.1, 0.2, 0.3, 0.4]
|
||||
"""
|
||||
try:
|
||||
x1, y1, x2, y2 = abs_coords
|
||||
return round(x1 / dims.original_w, 3), round(y1 / dims.original_h, 3), round(x2 / dims.original_w, 3), round(y2 / dims.original_h, 3)
|
||||
return (
|
||||
round(x1 / dims.original_w, 3),
|
||||
round(y1 / dims.original_h, 3),
|
||||
round(x2 / dims.original_w, 3),
|
||||
round(y2 / dims.original_h, 3),
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"map_to_relevant_coordinates error: {str(e)}")
|
||||
return 0.0, 0.0, 1.0, 1.0 # Return full image coordinates
|
||||
@ -331,13 +310,13 @@ def map_to_relevant_coordinates(abs_coords, dims: ImageDimensions):
|
||||
|
||||
def process_coordinates(coords, padded_image, dims: ImageDimensions, previous_box=None):
|
||||
"""Process and adjust coordinates
|
||||
|
||||
|
||||
Args:
|
||||
coords: Normalized coordinates [x1, y1, x2, y2]
|
||||
padded_image: Padded image
|
||||
dims: Image dimensions object
|
||||
previous_box: Previous box coordinates for overlap adjustment
|
||||
|
||||
|
||||
Returns:
|
||||
tuple: (x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, new_previous_box)
|
||||
"""
|
||||
@ -345,35 +324,35 @@ def process_coordinates(coords, padded_image, dims: ImageDimensions, previous_bo
|
||||
# Convert normalized coordinates to absolute coordinates
|
||||
x1, y1 = int(coords[0] * dims.padded_w), int(coords[1] * dims.padded_h)
|
||||
x2, y2 = int(coords[2] * dims.padded_w), int(coords[3] * dims.padded_h)
|
||||
|
||||
|
||||
# Ensure coordinates are within image bounds before adjustment
|
||||
x1 = max(0, min(x1, dims.padded_w - 1))
|
||||
y1 = max(0, min(y1, dims.padded_h - 1))
|
||||
x2 = max(0, min(x2, dims.padded_w))
|
||||
y2 = max(0, min(y2, dims.padded_h))
|
||||
|
||||
|
||||
# Ensure width and height are at least 1 pixel
|
||||
if x2 <= x1:
|
||||
x2 = min(x1 + 1, dims.padded_w)
|
||||
if y2 <= y1:
|
||||
y2 = min(y1 + 1, dims.padded_h)
|
||||
|
||||
|
||||
# Extend box boundaries
|
||||
new_boxes = adjust_box_edges(padded_image, [[x1, y1, x2, y2]])
|
||||
x1, y1, x2, y2 = new_boxes[0]
|
||||
|
||||
|
||||
# Ensure coordinates are still within image bounds after adjustment
|
||||
x1 = max(0, min(x1, dims.padded_w - 1))
|
||||
y1 = max(0, min(y1, dims.padded_h - 1))
|
||||
x2 = max(0, min(x2, dims.padded_w))
|
||||
y2 = max(0, min(y2, dims.padded_h))
|
||||
|
||||
|
||||
# Ensure width and height are at least 1 pixel after adjustment
|
||||
if x2 <= x1:
|
||||
x2 = min(x1 + 1, dims.padded_w)
|
||||
if y2 <= y1:
|
||||
y2 = min(y1 + 1, dims.padded_h)
|
||||
|
||||
|
||||
# Check for overlap with previous box and adjust
|
||||
if previous_box is not None:
|
||||
prev_x1, prev_y1, prev_x2, prev_y2 = previous_box
|
||||
@ -384,15 +363,13 @@ def process_coordinates(coords, padded_image, dims: ImageDimensions, previous_bo
|
||||
# Make sure y2 is still greater than y1
|
||||
if y2 <= y1:
|
||||
y2 = min(y1 + 1, dims.padded_h)
|
||||
|
||||
|
||||
# Update previous box
|
||||
new_previous_box = [x1, y1, x2, y2]
|
||||
|
||||
# Map to original coordinates
|
||||
orig_x1, orig_y1, orig_x2, orig_y2 = map_to_original_coordinates(
|
||||
x1, y1, x2, y2, dims
|
||||
)
|
||||
|
||||
orig_x1, orig_y1, orig_x2, orig_y2 = map_to_original_coordinates(x1, y1, x2, y2, dims)
|
||||
|
||||
return x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, new_previous_box
|
||||
except Exception as e:
|
||||
print(f"process_coordinates error: {str(e)}")
|
||||
@ -403,10 +380,10 @@ def process_coordinates(coords, padded_image, dims: ImageDimensions, previous_bo
|
||||
|
||||
def prepare_image(image) -> Tuple[np.ndarray, ImageDimensions]:
|
||||
"""Load and prepare image with padding while maintaining aspect ratio
|
||||
|
||||
|
||||
Args:
|
||||
image: PIL image
|
||||
|
||||
|
||||
Returns:
|
||||
tuple: (padded_image, image_dimensions)
|
||||
"""
|
||||
@ -423,29 +400,18 @@ def prepare_image(image) -> Tuple[np.ndarray, ImageDimensions]:
|
||||
right = max_size - original_w - left
|
||||
|
||||
# Apply padding
|
||||
padded_image = cv2.copyMakeBorder(image, top, bottom, left, right,
|
||||
cv2.BORDER_CONSTANT, value=(0, 0, 0))
|
||||
padded_image = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(0, 0, 0))
|
||||
|
||||
padded_h, padded_w = padded_image.shape[:2]
|
||||
|
||||
dimensions = ImageDimensions(
|
||||
original_w=original_w,
|
||||
original_h=original_h,
|
||||
padded_w=padded_w,
|
||||
padded_h=padded_h
|
||||
)
|
||||
|
||||
|
||||
dimensions = ImageDimensions(original_w=original_w, original_h=original_h, padded_w=padded_w, padded_h=padded_h)
|
||||
|
||||
return padded_image, dimensions
|
||||
except Exception as e:
|
||||
print(f"prepare_image error: {str(e)}")
|
||||
# Create a minimal valid image and dimensions
|
||||
h, w = image.height, image.width
|
||||
dimensions = ImageDimensions(
|
||||
original_w=w,
|
||||
original_h=h,
|
||||
padded_w=w,
|
||||
padded_h=h
|
||||
)
|
||||
dimensions = ImageDimensions(original_w=w, original_h=h, padded_w=w, padded_h=h)
|
||||
# Return a black image of the same size
|
||||
return np.zeros((h, w, 3), dtype=np.uint8), dimensions
|
||||
|
||||
@ -484,7 +450,7 @@ def crop_margin(img: Image.Image) -> Image.Image:
|
||||
if width == 0 or height == 0:
|
||||
print("Warning: Image has zero width or height")
|
||||
return img
|
||||
|
||||
|
||||
data = np.array(img.convert("L"))
|
||||
data = data.astype(np.uint8)
|
||||
max_val = data.max()
|
||||
@ -498,13 +464,13 @@ def crop_margin(img: Image.Image) -> Image.Image:
|
||||
if coords is None:
|
||||
return img
|
||||
a, b, w, h = cv2.boundingRect(coords) # Find minimum spanning bounding box
|
||||
|
||||
|
||||
# Ensure crop coordinates are within image bounds
|
||||
a = max(0, a)
|
||||
b = max(0, b)
|
||||
w = min(w, width - a)
|
||||
h = min(h, height - b)
|
||||
|
||||
|
||||
# Only crop if we have a valid region
|
||||
if w > 0 and h > 0:
|
||||
return img.crop((a, b, a + w, b + h))
|
||||
|
Loading…
Reference in New Issue
Block a user