Docling simplifies document processing, parsing diverse formats — including advanced PDF understanding — and providing seamless integrations with the gen AI ecosystem.
Go to file
Rafael Teixeira de Lima 6eb718f849
feat: equations to latex in MSWord backend (with inline groups) (#1114)
* Equation groups

Signed-off-by: Rafael Teixeira de Lima <Rafael.td.lima@gmail.com>

* fix: Proper handling of orphan IDs in layout postprocessing (#1118)

* Fix the handling of orphan IDs in layout postprocessing

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Update test cases

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

---------

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Signed-off-by: Rafael Teixeira de Lima <Rafael.td.lima@gmail.com>

* chore: bump version to 2.25.2 [skip ci]

* docs: add description of DOCLING_ARTIFACTS_PATH env var (#1124)

add env var in docs

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Signed-off-by: Rafael Teixeira de Lima <Rafael.td.lima@gmail.com>

* fix(CLI): fix help message for abort options (#1130)

fix help message

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Signed-off-by: Rafael Teixeira de Lima <Rafael.td.lima@gmail.com>

* perf: New revision code formula model and document picture classifier (#1140)

* new version code formula model

Signed-off-by: Matteo-Omenetti <Matteo.Omenetti1@ibm.com>

* new version document picture classifier

Signed-off-by: Matteo-Omenetti <Matteo.Omenetti1@ibm.com>

* new code formula model

Signed-off-by: Matteo-Omenetti <Matteo.Omenetti1@ibm.com>

* restored original code formula test pdf

Signed-off-by: Matteo-Omenetti <Matteo.Omenetti1@ibm.com>

---------

Signed-off-by: Matteo-Omenetti <Matteo.Omenetti1@ibm.com>
Co-authored-by: Matteo-Omenetti <Matteo.Omenetti1@ibm.com>
Signed-off-by: Rafael Teixeira de Lima <Rafael.td.lima@gmail.com>

* feat: Use new TableFormer model weights and default to accurate model version (#1100)

* feat: New tableformer model weights [WIP]

Signed-off-by: Christoph Auer <60343111+cau-git@users.noreply.github.com>

* Updated TF version

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Updated tests, after merging with Main, Switched to Accurate TF model by default

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

---------

Signed-off-by: Christoph Auer <60343111+cau-git@users.noreply.github.com>
Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>
Co-authored-by: Maksym Lysak <mly@zurich.ibm.com>
Signed-off-by: Rafael Teixeira de Lima <Rafael.td.lima@gmail.com>

* chore: bump version to 2.26.0 [skip ci]

* fix: Pass tests, update docling-core to 2.22.0 (#1150)

fix: update docling-core to 2.22.0

Update dependency library docling-core to latest release 2.22.0
Fix regression tests and ground truth files

Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>

* Updating content hash

Signed-off-by: Rafael Teixeira de Lima <Rafael.td.lima@gmail.com>

---------

Signed-off-by: Rafael Teixeira de Lima <Rafael.td.lima@gmail.com>
Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Signed-off-by: Matteo-Omenetti <Matteo.Omenetti1@ibm.com>
Signed-off-by: Christoph Auer <60343111+cau-git@users.noreply.github.com>
Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>
Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>
Co-authored-by: Christoph Auer <60343111+cau-git@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com>
Co-authored-by: Matteo <43417658+Matteo-Omenetti@users.noreply.github.com>
Co-authored-by: Matteo-Omenetti <Matteo.Omenetti1@ibm.com>
Co-authored-by: Maksym Lysak <mly@zurich.ibm.com>
Co-authored-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>
2025-03-13 15:12:22 +01:00
.github chore: use gh cache for huggingface models (#1096) 2025-03-03 00:13:47 +01:00
docling feat: equations to latex in MSWord backend (with inline groups) (#1114) 2025-03-13 15:12:22 +01:00
docs feat: Use new TableFormer model weights and default to accurate model version (#1100) 2025-03-11 10:53:49 +01:00
tests feat: equations to latex in MSWord backend (with inline groups) (#1114) 2025-03-13 15:12:22 +01:00
.gitignore ci: Add Github Actions (#4) 2024-07-16 13:05:04 +02:00
.pre-commit-config.yaml feat!: Docling v2 (#117) 2024-10-16 21:02:03 +02:00
CHANGELOG.md chore: bump version to 2.26.0 [skip ci] 2025-03-11 11:12:43 +00:00
CITATION.cff chore: add downloads in README, security policy and update ci actions (#401) 2024-11-21 13:59:45 +01:00
CODE_OF_CONDUCT.md Initial commit 2024-07-15 09:42:42 +02:00
CONTRIBUTING.md chore: add downloads in README, security policy and update ci actions (#401) 2024-11-21 13:59:45 +01:00
Dockerfile docs: update example Dockerfile with download CLI (#929) 2025-02-13 14:19:50 +01:00
LICENSE chore: fix placeholders in license (#63) 2024-09-06 17:10:07 +02:00
MAINTAINERS.md docs: Update MAINTAINERS.md (#59) 2024-09-02 12:34:38 +02:00
mkdocs.yml docs: Enrichment models (#1097) 2025-03-04 14:24:38 +01:00
poetry.lock feat: equations to latex in MSWord backend (with inline groups) (#1114) 2025-03-13 15:12:22 +01:00
pyproject.toml feat: equations to latex in MSWord backend (with inline groups) (#1114) 2025-03-13 15:12:22 +01:00
README.md docs: Enrichment models (#1097) 2025-03-04 14:24:38 +01:00

Docling

Docling

DS4SD%2Fdocling | Trendshift

arXiv Docs PyPI version PyPI - Python Version Poetry Code style: black Imports: isort Pydantic v2 pre-commit License MIT PyPI Downloads

Docling simplifies document processing, parsing diverse formats — including advanced PDF understanding — and providing seamless integrations with the gen AI ecosystem.

Features

  • 🗂️ Parsing of multiple document formats incl. PDF, DOCX, XLSX, HTML, images, and more
  • 📑 Advanced PDF understanding incl. page layout, reading order, table structure, code, formulas, image classification, and more
  • 🧬 Unified, expressive DoclingDocument representation format
  • ↪️ Various export formats and options, including Markdown, HTML, and lossless JSON
  • 🔒 Local execution capabilities for sensitive data and air-gapped environments
  • 🤖 Plug-and-play integrations incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
  • 🔍 Extensive OCR support for scanned PDFs and images
  • 💻 Simple and convenient CLI

Coming soon

  • 📝 Metadata extraction, including title, authors, references & language
  • 📝 Inclusion of Visual Language Models (SmolDocling)
  • 📝 Chart understanding (Barchart, Piechart, LinePlot, etc)
  • 📝 Complex chemistry understanding (Molecular structures)

Installation

To use Docling, simply install docling from your package manager, e.g. pip:

pip install docling

Works on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.

More detailed installation instructions are available in the docs.

Getting started

To convert individual documents, use convert(), for example:

from docling.document_converter import DocumentConverter

source = "https://arxiv.org/pdf/2408.09869"  # document per local path or URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown())  # output: "## Docling Technical Report[...]"

More advanced usage options are available in the docs.

Documentation

Check out Docling's documentation, for details on installation, usage, concepts, recipes, extensions, and more.

Examples

Go hands-on with our examples, demonstrating how to address different application use cases with Docling.

Integrations

To further accelerate your AI application development, check out Docling's native integrations with popular frameworks and tools.

Get help and support

Please feel free to connect with us using the discussion section.

Technical report

For more details on Docling's inner workings, check out the Docling Technical Report.

Contributing

Please read Contributing to Docling for details.

References

If you use Docling in your projects, please consider citing the following:

@techreport{Docling,
  author = {Deep Search Team},
  month = {8},
  title = {Docling Technical Report},
  url = {https://arxiv.org/abs/2408.09869},
  eprint = {2408.09869},
  doi = {10.48550/arXiv.2408.09869},
  version = {1.0.0},
  year = {2024}
}

License

The Docling codebase is under MIT license. For individual model usage, please refer to the model licenses found in the original packages.

IBM ❤️ Open Source AI

Docling has been brought to you by IBM.