Docling/tests/data/2305.03393v1-pg9.json
Peter W. J. Staar 48f4d1ba52
fix: Add unit tests (#51)
* add the pytests

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* renamed the test folder and added the toplevel test

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* updated the toplevel function test

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* need to start running all tests successfully

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added the reference converted documents

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added first test for json and md output

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* ran pre-commit

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* replaced deprecated json function with model_dump_json

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* replaced deprecated json function with model_dump_json

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* reformatted code

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* Fix backend tests

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* commented out the drawing

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* ci: avoid duplicate runs

Signed-off-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com>

* commented out json verification for now

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added verification of input cells

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* reformat code

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added test to verify the cells in the pages

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added test to verify the cells in the pages (2)

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added test to verify the cells in the pages (3)

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* run all examples in CI

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* make sure examples return failures

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* raise a failure if examples fail

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* fix examples

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* run examples after tests

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* Add tests and update top_level_tests using only datamodels

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Remove unnecessary code

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Validate conversion status on e2e test

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* package verify utils and add more tests

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* reduce docs in example, since they are already in the tests

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* skip batch_convert

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* pin docling-parse 1.1.2

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* updated the error messages

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* commented out the json verification for now

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* bumped GLM version

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* Fix lockfile

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Pin new docling-parse v1.1.3

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

---------

Signed-off-by: Peter Staar <taa@zurich.ibm.com>
Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Signed-off-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Co-authored-by: Christoph Auer <cau@zurich.ibm.com>
Co-authored-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
2024-08-30 14:08:20 +02:00

1 line
18 KiB
JSON

{"_name": "", "type": "pdf-document", "description": {"title": null, "abstract": null, "authors": null, "affiliations": null, "subjects": null, "keywords": null, "publication_date": null, "languages": null, "license": null, "publishers": null, "url_refs": null, "references": null, "publication": null, "reference_count": null, "citation_count": null, "citation_date": null, "advanced": null, "analytics": null, "logs": [], "collection": null, "acquisition": null}, "file-info": {"filename": "2305.03393v1-pg9.pdf", "filename-prov": null, "document-hash": "a07f5c34601ba2c234d898cbfaa9e29a7045996ccd82ccab3012516220a1f3a4", "#-pages": 1, "collection-name": null, "description": null, "page-hashes": [{"hash": "16ccd0a495625bd9c7a28a4b353d85137f3e6b09508a0d2280663478de9c9b25", "model": "default", "page": 1}]}, "main-text": [{"text": "Optimized Table Tokenization for Table Structure Recognition", "type": "page-header", "name": "Page-header", "font": null, "prov": [{"bbox": [193.9645538330078, 689.2177734375, 447.5447692871094, 700.5064697265625], "page": 1, "span": [0, 60], "__ref_s3_data": null}]}, {"text": "9", "type": "page-header", "name": "Page-header", "font": null, "prov": [{"bbox": [475.1263732910156, 689.2177734375, 480.5931396484375, 700.5064697265625], "page": 1, "span": [0, 1], "__ref_s3_data": null}]}, {"text": "order to compute the TED score. Inference timing results for all experiments were obtained from the same machine on a single core with AMD EPYC 7763 CPU @2.45 GHz.", "type": "paragraph", "name": "Text", "font": null, "prov": [{"bbox": [133.8929443359375, 639.093017578125, 480.79583740234375, 675.5369873046875], "page": 1, "span": [0, 163], "__ref_s3_data": null}]}, {"text": "5.1 Hyper Parameter Optimization", "type": "subtitle-level-1", "name": "Section-header", "font": null, "prov": [{"bbox": [134.27793884277344, 612.7918090820312, 318.4514465332031, 625.2948608398438], "page": 1, "span": [0, 32], "__ref_s3_data": null}]}, {"text": "We have chosen the PubTabNet data set to perform HPO, since it includes a highly diverse set of tables. Also we report TED scores separately for simple and complex tables (tables with cell spans). Results are presented in Table. 1. It is evident that with OTSL, our model achieves the same TED score and slightly better mAP scores in comparison to HTML. However OTSL yields a 2x speed up in the inference runtime over HTML.", "type": "paragraph", "name": "Text", "font": null, "prov": [{"bbox": [133.84170532226562, 536.5759887695312, 481.2436218261719, 608.8849487304688], "page": 1, "span": [0, 423], "__ref_s3_data": null}]}, {"text": "Table 1. HPO performed in OTSL and HTML representation on the same transformer-based TableFormer [9] architecture, trained only on PubTabNet [22]. Effects of reducing the # of layers in encoder and decoder stages of the model show that smaller models trained on OTSL perform better, especially in recognizing complex table structures, and maintain a much higher mAP score than the HTML counterpart.", "type": "caption", "name": "Caption", "font": null, "prov": [{"bbox": [133.8990936279297, 464.017822265625, 480.7420349121094, 519.2052612304688], "page": 1, "span": [0, 398], "__ref_s3_data": null}]}, {"name": "Table", "type": "table", "$ref": "#/tables/0"}, {"text": "5.2 Quantitative Results", "type": "subtitle-level-1", "name": "Section-header", "font": null, "prov": [{"bbox": [134.489013671875, 273.8258056640625, 264.4082946777344, 286.3288879394531], "page": 1, "span": [0, 24], "__ref_s3_data": null}]}, {"text": "We picked the model parameter configuration that produced the best prediction quality (enc=6, dec=6, heads=8) with PubTabNet alone, then independently trained and evaluated it on three publicly available data sets: PubTabNet (395k samples), FinTabNet (113k samples) and PubTables-1M (about 1M samples). Performance results are presented in Table. 2. It is clearly evident that the model trained on OTSL outperforms HTML across the board, keeping high TEDs and mAP scores even on difficult financial tables (FinTabNet) that contain sparse and large tables.", "type": "paragraph", "name": "Text", "font": null, "prov": [{"bbox": [133.97596740722656, 173.6999969482422, 480.8291931152344, 269.9199523925781], "page": 1, "span": [0, 555], "__ref_s3_data": null}]}, {"text": "Additionally, the results show that OTSL has an advantage over HTML when applied on a bigger data set like PubTables-1M and achieves significantly improved scores. Finally, OTSL achieves faster inference due to fewer decoding steps which is a result of the reduced sequence representation.", "type": "paragraph", "name": "Text", "font": null, "prov": [{"bbox": [133.89259338378906, 125.87999725341797, 480.9114074707031, 174.2779541015625], "page": 1, "span": [0, 289], "__ref_s3_data": null}]}], "figures": [], "tables": [{"#-cols": 8, "#-rows": 7, "bounding-box": null, "data": [[{"bbox": [160.3699951171875, 441.2538146972656, 168.04522705078125, 452.5425109863281], "spans": [[0, 0]], "text": "#", "type": "", "col": 0, "col-header": false, "col-span": [0, 1], "row": 0, "row-header": false, "row-span": [0, 1]}, {"bbox": [207.9739990234375, 441.2538146972656, 215.64923095703125, 452.5425109863281], "spans": [[0, 1]], "text": "#", "type": "", "col": 1, "col-header": false, "col-span": [1, 2], "row": 0, "row-header": false, "row-span": [0, 1]}, {"bbox": [239.79800415039062, 435.7748107910156, 278.33380126953125, 447.0635070800781], "spans": [[0, 2], [1, 2]], "text": "Language", "type": "", "col": 2, "col-header": false, "col-span": [2, 3], "row": 0, "row-header": false, "row-span": [0, 2]}, {"bbox": [324.6700134277344, 441.2538146972656, 348.2641906738281, 452.5425109863281], "spans": [[0, 3], [0, 4], [0, 5]], "text": "TEDs", "type": "", "col": 3, "col-header": false, "col-span": [3, 6], "row": 0, "row-header": false, "row-span": [0, 1]}, {"bbox": [324.6700134277344, 441.2538146972656, 348.2641906738281, 452.5425109863281], "spans": [[0, 3], [0, 4], [0, 5]], "text": "TEDs", "type": "", "col": 4, "col-header": false, "col-span": [3, 6], "row": 0, "row-header": false, "row-span": [0, 1]}, {"bbox": [324.6700134277344, 441.2538146972656, 348.2641906738281, 452.5425109863281], "spans": [[0, 3], [0, 4], [0, 5]], "text": "TEDs", "type": "", "col": 5, "col-header": false, "col-span": [3, 6], "row": 0, "row-header": false, "row-span": [0, 1]}, {"bbox": [396.27099609375, 441.5835266113281, 417.1259460449219, 452.5425109863281], "spans": [[0, 6]], "text": "mAP", "type": "", "col": 6, "col-header": false, "col-span": [6, 7], "row": 0, "row-header": false, "row-span": [0, 1]}, {"bbox": [430.77099609375, 441.5835266113281, 467.14141845703125, 452.5425109863281], "spans": [[0, 7]], "text": "Inference", "type": "", "col": 7, "col-header": false, "col-span": [7, 8], "row": 0, "row-header": false, "row-span": [0, 1]}], [{"bbox": [144.5919952392578, 428.3028259277344, 183.82894897460938, 439.5915222167969], "spans": [[1, 0]], "text": "enc-layers", "type": "", "col": 0, "col-header": false, "col-span": [0, 1], "row": 1, "row-header": false, "row-span": [1, 2]}, {"bbox": [192.19500732421875, 428.3028259277344, 231.42303466796875, 439.5915222167969], "spans": [[1, 1]], "text": "dec-layers", "type": "", "col": 1, "col-header": false, "col-span": [1, 2], "row": 1, "row-header": false, "row-span": [1, 2]}, {"bbox": [239.79800415039062, 435.7748107910156, 278.33380126953125, 447.0635070800781], "spans": [[0, 2], [1, 2]], "text": "Language", "type": "", "col": 2, "col-header": false, "col-span": [2, 3], "row": 1, "row-header": false, "row-span": [0, 2]}, {"bbox": [286.6860046386719, 428.3028259277344, 312.328125, 439.5915222167969], "spans": [[1, 3]], "text": "simple", "type": "", "col": 3, "col-header": false, "col-span": [3, 4], "row": 1, "row-header": false, "row-span": [1, 2]}, {"bbox": [320.7019958496094, 428.3028259277344, 353.71539306640625, 439.5915222167969], "spans": [[1, 4]], "text": "complex", "type": "", "col": 4, "col-header": false, "col-span": [4, 5], "row": 1, "row-header": false, "row-span": [1, 2]}, {"bbox": [369.3059997558594, 428.3028259277344, 379.0291442871094, 439.5915222167969], "spans": [[1, 5]], "text": "all", "type": "", "col": 5, "col-header": false, "col-span": [5, 6], "row": 1, "row-header": false, "row-span": [1, 2]}, {"bbox": [394.927001953125, 430.2948303222656, 418.4692077636719, 441.2538146972656], "spans": [[1, 6]], "text": "(0.75)", "type": "", "col": 6, "col-header": false, "col-span": [6, 7], "row": 1, "row-header": false, "row-span": [1, 2]}, {"bbox": [427.14801025390625, 430.2948303222656, 470.7695617675781, 441.2538146972656], "spans": [[1, 7]], "text": "time (secs)", "type": "", "col": 7, "col-header": false, "col-span": [7, 8], "row": 1, "row-header": false, "row-span": [1, 2]}], [{"bbox": [161.906005859375, 409.4728088378906, 166.51473999023438, 420.7615051269531], "spans": [[2, 0]], "text": "6", "type": "", "col": 0, "col-header": false, "col-span": [0, 1], "row": 2, "row-header": false, "row-span": [2, 3]}, {"bbox": [209.50900268554688, 409.4728088378906, 214.11773681640625, 420.7615051269531], "spans": [[2, 1]], "text": "6", "type": "", "col": 1, "col-header": false, "col-span": [1, 2], "row": 2, "row-header": false, "row-span": [2, 3]}, {"bbox": [245.17599487304688, 402.0008239746094, 272.9449462890625, 426.24151611328125], "spans": [[2, 2]], "text": "OTSL HTML", "type": "", "col": 2, "col-header": false, "col-span": [2, 3], "row": 2, "row-header": false, "row-span": [2, 3]}, {"bbox": [289.0169982910156, 402.0008239746094, 310.00732421875, 426.24151611328125], "spans": [[2, 3]], "text": "0.965 0.969", "type": "", "col": 3, "col-header": false, "col-span": [3, 4], "row": 2, "row-header": false, "row-span": [2, 3]}, {"bbox": [326.7170104980469, 402.0008239746094, 347.70733642578125, 426.24151611328125], "spans": [[2, 4]], "text": "0.934 0.927", "type": "", "col": 4, "col-header": false, "col-span": [4, 5], "row": 2, "row-header": false, "row-span": [2, 3]}, {"bbox": [363.6759948730469, 402.0008239746094, 384.66632080078125, 426.24151611328125], "spans": [[2, 5]], "text": "0.955 0.955", "type": "", "col": 5, "col-header": false, "col-span": [5, 6], "row": 2, "row-header": false, "row-span": [2, 3]}, {"bbox": [396.20599365234375, 402.0008239746094, 417.1963195800781, 426.3042907714844], "spans": [[2, 6]], "text": "0.88 0.857", "type": "", "col": 6, "col-header": false, "col-span": [6, 7], "row": 2, "row-header": false, "row-span": [2, 3]}, {"bbox": [439.5270080566406, 402.0008239746094, 458.38336181640625, 426.3042907714844], "spans": [[2, 7]], "text": "2.73 5.39", "type": "", "col": 7, "col-header": false, "col-span": [7, 8], "row": 2, "row-header": false, "row-span": [2, 3]}], [{"bbox": [161.906005859375, 383.17181396484375, 166.51473999023438, 394.46051025390625], "spans": [[3, 0]], "text": "4", "type": "", "col": 0, "col-header": false, "col-span": [0, 1], "row": 3, "row-header": false, "row-span": [3, 4]}, {"bbox": [209.50900268554688, 383.17181396484375, 214.11773681640625, 394.46051025390625], "spans": [[3, 1]], "text": "4", "type": "", "col": 1, "col-header": false, "col-span": [1, 2], "row": 3, "row-header": false, "row-span": [3, 4]}, {"bbox": [245.17599487304688, 375.6998291015625, 272.9449462890625, 399.93951416015625], "spans": [[3, 2]], "text": "OTSL HTML", "type": "", "col": 2, "col-header": false, "col-span": [2, 3], "row": 3, "row-header": false, "row-span": [3, 4]}, {"bbox": [289.0169982910156, 375.6998291015625, 310.00732421875, 399.93951416015625], "spans": [[3, 3]], "text": "0.938 0.952", "type": "", "col": 3, "col-header": false, "col-span": [3, 4], "row": 3, "row-header": false, "row-span": [3, 4]}, {"bbox": [326.7170104980469, 388.65081787109375, 347.70733642578125, 399.93951416015625], "spans": [[3, 4]], "text": "0.904", "type": "", "col": 4, "col-header": false, "col-span": [4, 5], "row": 3, "row-header": false, "row-span": [3, 4]}, {"bbox": [363.6759948730469, 388.65081787109375, 384.66632080078125, 399.93951416015625], "spans": [[3, 5]], "text": "0.927", "type": "", "col": 5, "col-header": false, "col-span": [5, 6], "row": 3, "row-header": false, "row-span": [3, 4]}, {"bbox": [394.6180114746094, 388.5970153808594, 418.7779846191406, 400.0022888183594], "spans": [[3, 6]], "text": "0.853", "type": "", "col": 6, "col-header": false, "col-span": [6, 7], "row": 3, "row-header": false, "row-span": [3, 4]}, {"bbox": [439.5270080566406, 388.5970153808594, 458.38336181640625, 400.0022888183594], "spans": [[3, 7]], "text": "1.97", "type": "", "col": 7, "col-header": false, "col-span": [7, 8], "row": 3, "row-header": false, "row-span": [3, 4]}], [{"bbox": null, "spans": [[4, 0]], "text": "", "type": "", "col": 0, "col-header": false, "col-span": [0, 1], "row": 4, "row-header": false, "row-span": [4, 5]}, {"bbox": null, "spans": [[4, 1]], "text": "", "type": "", "col": 1, "col-header": false, "col-span": [1, 2], "row": 4, "row-header": false, "row-span": [4, 5]}, {"bbox": [245.17599487304688, 349.3988342285156, 272.9449462890625, 373.6385192871094], "spans": [[4, 2]], "text": "OTSL HTML", "type": "", "col": 2, "col-header": false, "col-span": [2, 3], "row": 4, "row-header": false, "row-span": [4, 5]}, {"bbox": [289.0169982910156, 362.3498229980469, 310.00732421875, 373.6385192871094], "spans": [[4, 3]], "text": "0.923", "type": "", "col": 3, "col-header": false, "col-span": [3, 4], "row": 4, "row-header": false, "row-span": [4, 5]}, {"bbox": [326.7170104980469, 349.3988342285156, 347.70733642578125, 386.988525390625], "spans": [[4, 4]], "text": "0.909 0.897 0.901", "type": "", "col": 4, "col-header": false, "col-span": [4, 5], "row": 4, "row-header": false, "row-span": [4, 5]}, {"bbox": [362.0880126953125, 362.3498229980469, 386.24798583984375, 387.0513000488281], "spans": [[4, 5]], "text": "0.938 0.915", "type": "", "col": 5, "col-header": false, "col-span": [5, 6], "row": 4, "row-header": false, "row-span": [4, 5]}, {"bbox": [396.20599365234375, 375.6998291015625, 417.1963195800781, 386.988525390625], "spans": [[4, 6]], "text": "0.843", "type": "", "col": 6, "col-header": false, "col-span": [6, 7], "row": 4, "row-header": false, "row-span": [4, 5]}, {"bbox": [440.7669982910156, 375.6998291015625, 457.150390625, 386.988525390625], "spans": [[4, 7]], "text": "3.77", "type": "", "col": 7, "col-header": false, "col-span": [7, 8], "row": 4, "row-header": false, "row-span": [4, 5]}], [{"bbox": [161.906005859375, 356.8708190917969, 166.51473999023438, 368.1595153808594], "spans": [[5, 0]], "text": "2", "type": "", "col": 0, "col-header": false, "col-span": [0, 1], "row": 5, "row-header": false, "row-span": [5, 6]}, {"bbox": [209.50900268554688, 356.8708190917969, 214.11773681640625, 368.1595153808594], "spans": [[5, 1]], "text": "4", "type": "", "col": 1, "col-header": false, "col-span": [1, 2], "row": 5, "row-header": false, "row-span": [5, 6]}, {"bbox": null, "spans": [[5, 2]], "text": "", "type": "", "col": 2, "col-header": false, "col-span": [2, 3], "row": 5, "row-header": false, "row-span": [5, 6]}, {"bbox": [289.0169982910156, 349.3988342285156, 310.00732421875, 360.6875305175781], "spans": [[5, 3]], "text": "0.945", "type": "", "col": 3, "col-header": false, "col-span": [3, 4], "row": 5, "row-header": false, "row-span": [5, 6]}, {"bbox": null, "spans": [[5, 4]], "text": "", "type": "", "col": 4, "col-header": false, "col-span": [4, 5], "row": 5, "row-header": false, "row-span": [5, 6]}, {"bbox": [362.0880126953125, 349.34503173828125, 386.24798583984375, 360.75030517578125], "spans": [[5, 5]], "text": "0.931", "type": "", "col": 5, "col-header": false, "col-span": [5, 6], "row": 5, "row-header": false, "row-span": [5, 6]}, {"bbox": [394.6180114746094, 349.3988342285156, 418.7779846191406, 373.7012939453125], "spans": [[5, 6]], "text": "0.859 0.834", "type": "", "col": 6, "col-header": false, "col-span": [6, 7], "row": 5, "row-header": false, "row-span": [5, 6]}, {"bbox": [439.5270080566406, 349.3988342285156, 458.38336181640625, 373.7012939453125], "spans": [[5, 7]], "text": "1.91 3.81", "type": "", "col": 7, "col-header": false, "col-span": [7, 8], "row": 5, "row-header": false, "row-span": [5, 6]}], [{"bbox": [161.906005859375, 330.5688171386719, 166.51473999023438, 341.8575134277344], "spans": [[6, 0]], "text": "4", "type": "", "col": 0, "col-header": false, "col-span": [0, 1], "row": 6, "row-header": false, "row-span": [6, 7]}, {"bbox": [209.50900268554688, 330.5688171386719, 214.11773681640625, 341.8575134277344], "spans": [[6, 1]], "text": "2", "type": "", "col": 1, "col-header": false, "col-span": [1, 2], "row": 6, "row-header": false, "row-span": [6, 7]}, {"bbox": [245.17599487304688, 323.0968322753906, 272.9449462890625, 347.3375244140625], "spans": [[6, 2]], "text": "OTSL HTML", "type": "", "col": 2, "col-header": false, "col-span": [2, 3], "row": 6, "row-header": false, "row-span": [6, 7]}, {"bbox": [289.0169982910156, 323.0968322753906, 310.00732421875, 347.3375244140625], "spans": [[6, 3]], "text": "0.952 0.944", "type": "", "col": 3, "col-header": false, "col-span": [3, 4], "row": 6, "row-header": false, "row-span": [6, 7]}, {"bbox": [326.7170104980469, 323.0968322753906, 347.70733642578125, 347.3375244140625], "spans": [[6, 4]], "text": "0.92 0.903", "type": "", "col": 4, "col-header": false, "col-span": [4, 5], "row": 6, "row-header": false, "row-span": [6, 7]}, {"bbox": [362.0880126953125, 323.0968322753906, 386.24798583984375, 347.4002990722656], "spans": [[6, 5]], "text": "0.942 0.931", "type": "", "col": 5, "col-header": false, "col-span": [5, 6], "row": 6, "row-header": false, "row-span": [6, 7]}, {"bbox": [394.6180114746094, 323.0968322753906, 418.7779846191406, 347.4002990722656], "spans": [[6, 6]], "text": "0.857 0.824", "type": "", "col": 6, "col-header": false, "col-span": [6, 7], "row": 6, "row-header": false, "row-span": [6, 7]}, {"bbox": [439.5270080566406, 323.0968322753906, 458.38336181640625, 347.4002990722656], "spans": [[6, 7]], "text": "1.22 2", "type": "", "col": 7, "col-header": false, "col-span": [7, 8], "row": 6, "row-header": false, "row-span": [6, 7]}]], "model": null, "prov": [{"bbox": [139.83172607421875, 322.2643737792969, 474.81011962890625, 454.8448791503906], "page": 1, "span": [0, 0], "__ref_s3_data": null}], "text": "Table 1. HPO performed in OTSL and HTML representation on the same transformer-based TableFormer [9] architecture, trained only on PubTabNet [22]. Effects of reducing the # of layers in encoder and decoder stages of the model show that smaller models trained on OTSL perform better, especially in recognizing complex table structures, and maintain a much higher mAP score than the HTML counterpart.", "type": "table"}], "bitmaps": null, "equations": [], "footnotes": [], "page-dimensions": [{"height": 792.0, "page": 1, "width": 612.0}], "page-footers": [], "page-headers": [], "_s3_data": null, "identifiers": null}