Docling simplifies document processing, parsing diverse formats — including advanced PDF understanding — and providing seamless integrations with the gen AI ecosystem.
Go to file
Peter W. J. Staar 48f4d1ba52
fix: Add unit tests (#51)
* add the pytests

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* renamed the test folder and added the toplevel test

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* updated the toplevel function test

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* need to start running all tests successfully

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added the reference converted documents

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added first test for json and md output

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* ran pre-commit

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* replaced deprecated json function with model_dump_json

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* replaced deprecated json function with model_dump_json

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* reformatted code

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* Fix backend tests

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* commented out the drawing

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* ci: avoid duplicate runs

Signed-off-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com>

* commented out json verification for now

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added verification of input cells

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* reformat code

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added test to verify the cells in the pages

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added test to verify the cells in the pages (2)

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added test to verify the cells in the pages (3)

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* run all examples in CI

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* make sure examples return failures

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* raise a failure if examples fail

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* fix examples

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* run examples after tests

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* Add tests and update top_level_tests using only datamodels

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Remove unnecessary code

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Validate conversion status on e2e test

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* package verify utils and add more tests

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* reduce docs in example, since they are already in the tests

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* skip batch_convert

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* pin docling-parse 1.1.2

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* updated the error messages

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* commented out the json verification for now

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* bumped GLM version

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* Fix lockfile

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Pin new docling-parse v1.1.3

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

---------

Signed-off-by: Peter Staar <taa@zurich.ibm.com>
Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Signed-off-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Co-authored-by: Christoph Auer <cau@zurich.ibm.com>
Co-authored-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
2024-08-30 14:08:20 +02:00
.github fix: Add unit tests (#51) 2024-08-30 14:08:20 +02:00
docling fix: Add unit tests (#51) 2024-08-30 14:08:20 +02:00
examples fix: Add unit tests (#51) 2024-08-30 14:08:20 +02:00
tests fix: Add unit tests (#51) 2024-08-30 14:08:20 +02:00
.gitignore ci: Add Github Actions (#4) 2024-07-16 13:05:04 +02:00
.pre-commit-config.yaml fix: Add unit tests (#51) 2024-08-30 14:08:20 +02:00
CHANGELOG.md chore: bump version to 1.8.4 [skip ci] 2024-08-30 08:47:57 +00:00
CODE_OF_CONDUCT.md Initial commit 2024-07-15 09:42:42 +02:00
CONTRIBUTING.md Initial commit 2024-07-15 09:42:42 +02:00
Dockerfile docs: add instructions for cpu-only installation (#56) 2024-08-30 10:20:21 +02:00
LICENSE Initial commit 2024-07-15 09:42:42 +02:00
logo.png Initial commit 2024-07-15 09:42:42 +02:00
MAINTAINERS.md Initial commit 2024-07-15 09:42:42 +02:00
poetry.lock fix: Add unit tests (#51) 2024-08-30 14:08:20 +02:00
pyproject.toml fix: Add unit tests (#51) 2024-08-30 14:08:20 +02:00
README.md docs: add instructions for cpu-only installation (#56) 2024-08-30 10:20:21 +02:00

Docling

Docling

arXiv PyPI version Python Poetry Code style: black Imports: isort Pydantic v2 pre-commit License MIT

Docling bundles PDF document conversion to JSON and Markdown in an easy, self-contained package.

Features

  • Converts any PDF document to JSON or Markdown format, stable and lightning fast
  • 📑 Understands detailed page layout, reading order and recovers table structures
  • 📝 Extracts metadata from the document, such as title, authors, references and language
  • 🔍 Optionally applies OCR (use with scanned PDFs)

Installation

To use Docling, simply install docling from your package manager, e.g. pip:

pip install docling

Note

Works on macOS and Linux environments. Windows platforms are currently not tested.

Use alternative PyTorch distributions

The Docling models depend on the PyTorch library. Depending on your architecture, you might want to use a different distribution of torch. For example, you might want support for different accelerator or for a cpu-only version. All the different ways for installing torch are listed on their website https://pytorch.org/.

One common situation is the installation on Linux systems with cpu-only support. In this case, we suggest the installation of Docling with the following options

# Example for installing on the Linux cpu-only version
pip install docling --extra-index-url https://download.pytorch.org/whl/cpu

Development setup

To develop for Docling, you need Python 3.10 / 3.11 / 3.12 and Poetry. You can then install from your local clone's root dir:

poetry install --all-extras

Usage

Convert a single document

To convert invidual PDF documents, use convert_single(), for example:

from docling.document_converter import DocumentConverter

source = "https://arxiv.org/pdf/2408.09869"  # PDF path or URL
converter = DocumentConverter()
result = converter.convert_single(source)
print(result.render_as_markdown())  # output: "## Docling Technical Report[...]"

Convert a batch of documents

For an example of batch-converting documents, see batch_convert.py.

From a local repo clone, you can run it with:

python examples/batch_convert.py

The output of the above command will be written to ./scratch.

Adjust pipeline features

The example file custom_convert.py contains multiple ways one can adjust the conversion pipeline and features.

Control pipeline options

You can control if table structure recognition or OCR should be performed by arguments passed to DocumentConverter:

doc_converter = DocumentConverter(
    artifacts_path=artifacts_path,
    pipeline_options=PipelineOptions(
        do_table_structure=False,  # controls if table structure is recovered
        do_ocr=True,  # controls if OCR is applied (ignores programmatic content)
    ),
)

Control table extraction options

You can control if table structure recognition should map the recognized structure back to PDF cells (default) or use text cells from the structure prediction itself. This can improve output quality if you find that multiple columns in extracted tables are erroneously merged into one.

pipeline_options = PipelineOptions(do_table_structure=True)
pipeline_options.table_structure_options.do_cell_matching = False  # uses text cells predicted from table structure model

doc_converter = DocumentConverter(
    artifacts_path=artifacts_path,
    pipeline_options=pipeline_options,
)

Impose limits on the document size

You can limit the file size and number of pages which should be allowed to process per document:

conv_input = DocumentConversionInput.from_paths(
    paths=[Path("./test/data/2206.01062.pdf")],
    limits=DocumentLimits(max_num_pages=100, max_file_size=20971520)
)

Convert from binary PDF streams

You can convert PDFs from a binary stream instead of from the filesystem as follows:

buf = BytesIO(your_binary_stream)
docs = [DocumentStream(filename="my_doc.pdf", stream=buf)]
conv_input = DocumentConversionInput.from_streams(docs)
results = doc_converter.convert(conv_input)

Limit resource usage

You can limit the CPU threads used by Docling by setting the environment variable OMP_NUM_THREADS accordingly. The default setting is using 4 CPU threads.

Contributing

Please read Contributing to Docling for details.

References

If you use Docling in your projects, please consider citing the following:

@techreport{Docling,
  author = {Deep Search Team},
  month = {8},
  title = {{Docling Technical Report}},
  url={https://arxiv.org/abs/2408.09869},
  eprint={2408.09869},
  doi = "10.48550/arXiv.2408.09869",
  version = {1.0.0},
  year = {2024}
}

License

The Docling codebase is under MIT license. For individual model usage, please refer to the model licenses found in the original packages.