Docling simplifies document processing, parsing diverse formats — including advanced PDF understanding — and providing seamless integrations with the gen AI ecosystem.
Go to file
Christoph Auer 3960b199d6
feat: Add DoclingParseV4 backend, using high-level docling-parse API (#905)
* Add DoclingParseV3 backend implementation

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Use docling-core with docling-parse types

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Fixes and test updates

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Fix streams

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Fix streams

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Reset tests

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* update test cases

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* update test units

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Add back DoclingParse v1 backend, pipeline options

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Update locks

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* fix: update docling-core to 2.22.0

Update dependency library docling-core to latest release 2.22.0
Fix regression tests and ground truth files

Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>

* Ground-truth files updated

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Update tests, use TextCell.from_ocr property

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Text fixes, new test data

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Rename docling backend to v4

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Test all backends, fixes

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Reset all tests to use docling-parse v1 for now

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Fixes for DPv4 backend init, better test coverage

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* test_input_doc use default backend

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

---------

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>
Co-authored-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>
2025-03-18 10:38:19 +01:00
.actor feat(actor): Docling Actor on Apify infrastructure (#875) 2025-03-18 10:17:44 +01:00
.github chore: move to docling-project org (#1160) 2025-03-14 12:35:29 +01:00
docling feat: Add DoclingParseV4 backend, using high-level docling-parse API (#905) 2025-03-18 10:38:19 +01:00
docs feat: Add DoclingParseV4 backend, using high-level docling-parse API (#905) 2025-03-18 10:38:19 +01:00
tests feat: Add DoclingParseV4 backend, using high-level docling-parse API (#905) 2025-03-18 10:38:19 +01:00
.gitignore ci: Add Github Actions (#4) 2024-07-16 13:05:04 +02:00
.pre-commit-config.yaml feat!: Docling v2 (#117) 2024-10-16 21:02:03 +02:00
CHANGELOG.md chore: move to docling-project org (#1160) 2025-03-14 12:35:29 +01:00
CITATION.cff chore: add downloads in README, security policy and update ci actions (#401) 2024-11-21 13:59:45 +01:00
CODE_OF_CONDUCT.md Initial commit 2024-07-15 09:42:42 +02:00
CONTRIBUTING.md chore: move to docling-project org (#1160) 2025-03-14 12:35:29 +01:00
Dockerfile docs: update example Dockerfile with download CLI (#929) 2025-02-13 14:19:50 +01:00
LICENSE chore: fix placeholders in license (#63) 2024-09-06 17:10:07 +02:00
MAINTAINERS.md docs: Update MAINTAINERS.md (#59) 2024-09-02 12:34:38 +02:00
mkdocs.yml chore: move to docling-project org (#1160) 2025-03-14 12:35:29 +01:00
poetry.lock feat: Add DoclingParseV4 backend, using high-level docling-parse API (#905) 2025-03-18 10:38:19 +01:00
pyproject.toml feat: Add DoclingParseV4 backend, using high-level docling-parse API (#905) 2025-03-18 10:38:19 +01:00
README.md feat(actor): Docling Actor on Apify infrastructure (#875) 2025-03-18 10:17:44 +01:00

Docling

Docling

DS4SD%2Fdocling | Trendshift

arXiv Docs PyPI version PyPI - Python Version Poetry Code style: black Imports: isort Pydantic v2 pre-commit License MIT PyPI Downloads Docling Actor

Docling simplifies document processing, parsing diverse formats — including advanced PDF understanding — and providing seamless integrations with the gen AI ecosystem.

Features

  • 🗂️ Parsing of multiple document formats incl. PDF, DOCX, XLSX, HTML, images, and more
  • 📑 Advanced PDF understanding incl. page layout, reading order, table structure, code, formulas, image classification, and more
  • 🧬 Unified, expressive DoclingDocument representation format
  • ↪️ Various export formats and options, including Markdown, HTML, and lossless JSON
  • 🔒 Local execution capabilities for sensitive data and air-gapped environments
  • 🤖 Plug-and-play integrations incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
  • 🔍 Extensive OCR support for scanned PDFs and images
  • 💻 Simple and convenient CLI

Coming soon

  • 📝 Metadata extraction, including title, authors, references & language
  • 📝 Inclusion of Visual Language Models (SmolDocling)
  • 📝 Chart understanding (Barchart, Piechart, LinePlot, etc)
  • 📝 Complex chemistry understanding (Molecular structures)

Installation

To use Docling, simply install docling from your package manager, e.g. pip:

pip install docling

Works on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.

More detailed installation instructions are available in the docs.

Getting started

To convert individual documents, use convert(), for example:

from docling.document_converter import DocumentConverter

source = "https://arxiv.org/pdf/2408.09869"  # document per local path or URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown())  # output: "## Docling Technical Report[...]"

More advanced usage options are available in the docs.

Documentation

Check out Docling's documentation, for details on installation, usage, concepts, recipes, extensions, and more.

Examples

Go hands-on with our examples, demonstrating how to address different application use cases with Docling.

Integrations

To further accelerate your AI application development, check out Docling's native integrations with popular frameworks and tools.

Apify Actor

Run Docling Actor on Apify

You can run Docling in the cloud without installation using the Docling Actor on Apify platform. Simply provide a document URL and get the processed result:

apify call vancura/docling -i '{
  "options": {
    "to_formats": ["md", "json", "html", "text", "doctags"]
  },
  "http_sources": [
    {"url": "https://vancura.dev/assets/actor-test/facial-hairstyles-and-filtering-facepiece-respirators.pdf"},
    {"url": "https://arxiv.org/pdf/2408.09869"}
  ]
}'

The Actor stores results in:

  • Processed document in key-value store (OUTPUT_RESULT)
  • Processing logs (DOCLING_LOG)
  • Dataset record with result URL and status

Read more about the Docling Actor, including how to use it via the Apify API and CLI.

Get help and support

Please feel free to connect with us using the discussion section.

Technical report

For more details on Docling's inner workings, check out the Docling Technical Report.

Contributing

Please read Contributing to Docling for details.

References

If you use Docling in your projects, please consider citing the following:

@techreport{Docling,
  author = {Deep Search Team},
  month = {8},
  title = {Docling Technical Report},
  url = {https://arxiv.org/abs/2408.09869},
  eprint = {2408.09869},
  doi = {10.48550/arXiv.2408.09869},
  version = {1.0.0},
  year = {2024}
}

License

The Docling codebase is under MIT license. For individual model usage, please refer to the model licenses found in the original packages.

IBM ❤️ Open Source AI

Docling has been brought to you by IBM.