docs: Examples for picture descriptions (#951)
* add more examples for picture descriptions Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * fix merge typo Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> --------- Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
parent
2716c7d4ff
commit
2d66e99b69
@ -1,7 +1,10 @@
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import requests
|
||||
from docling_core.types.doc import PictureItem
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from docling.datamodel.base_models import InputFormat
|
||||
from docling.datamodel.pipeline_options import (
|
||||
@ -11,29 +14,87 @@ from docling.datamodel.pipeline_options import (
|
||||
from docling.document_converter import DocumentConverter, PdfFormatOption
|
||||
|
||||
|
||||
def main():
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
input_doc_path = Path("./tests/data/pdf/2206.01062.pdf")
|
||||
|
||||
# This is using a local API server to do picture description.
|
||||
# For example, you can launch it locally with:
|
||||
# $ vllm serve "HuggingFaceTB/SmolVLM-256M-Instruct"
|
||||
|
||||
pipeline_options = PdfPipelineOptions(
|
||||
enable_remote_services=True # <-- this is required!
|
||||
)
|
||||
pipeline_options.do_picture_description = True
|
||||
pipeline_options.picture_description_options = PictureDescriptionApiOptions(
|
||||
def vllm_local_options(model: str):
|
||||
options = PictureDescriptionApiOptions(
|
||||
url="http://localhost:8000/v1/chat/completions",
|
||||
params=dict(
|
||||
model="HuggingFaceTB/SmolVLM-256M-Instruct",
|
||||
model=model,
|
||||
seed=42,
|
||||
max_completion_tokens=200,
|
||||
),
|
||||
prompt="Describe the image in three sentences. Be consise and accurate.",
|
||||
timeout=90,
|
||||
)
|
||||
return options
|
||||
|
||||
|
||||
def watsonx_vlm_options():
|
||||
load_dotenv()
|
||||
api_key = os.environ.get("WX_API_KEY")
|
||||
project_id = os.environ.get("WX_PROJECT_ID")
|
||||
|
||||
def _get_iam_access_token(api_key: str) -> str:
|
||||
res = requests.post(
|
||||
url="https://iam.cloud.ibm.com/identity/token",
|
||||
headers={
|
||||
"Content-Type": "application/x-www-form-urlencoded",
|
||||
},
|
||||
data=f"grant_type=urn:ibm:params:oauth:grant-type:apikey&apikey={api_key}",
|
||||
)
|
||||
res.raise_for_status()
|
||||
api_out = res.json()
|
||||
print(f"{api_out=}")
|
||||
return api_out["access_token"]
|
||||
|
||||
options = PictureDescriptionApiOptions(
|
||||
url="https://us-south.ml.cloud.ibm.com/ml/v1/text/chat?version=2023-05-29",
|
||||
params=dict(
|
||||
model_id="meta-llama/llama-3-2-11b-vision-instruct",
|
||||
project_id=project_id,
|
||||
parameters=dict(
|
||||
max_new_tokens=400,
|
||||
),
|
||||
),
|
||||
headers={
|
||||
"Authorization": "Bearer " + _get_iam_access_token(api_key=api_key),
|
||||
},
|
||||
prompt="Describe the image in three sentences. Be consise and accurate.",
|
||||
timeout=60,
|
||||
)
|
||||
return options
|
||||
|
||||
|
||||
def main():
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
input_doc_path = Path("./tests/data/pdf/2206.01062.pdf")
|
||||
|
||||
pipeline_options = PdfPipelineOptions(
|
||||
enable_remote_services=True # <-- this is required!
|
||||
)
|
||||
pipeline_options.do_picture_description = True
|
||||
|
||||
# The PictureDescriptionApiOptions() allows to interface with APIs supporting
|
||||
# the multi-modal chat interface. Here follow a few example on how to configure those.
|
||||
#
|
||||
# One possibility is self-hosting model, e.g. via VLLM.
|
||||
# $ vllm serve MODEL_NAME
|
||||
# Then PictureDescriptionApiOptions can point to the localhost endpoint.
|
||||
#
|
||||
# Example for the Granite Vision model: (uncomment the following lines)
|
||||
# pipeline_options.picture_description_options = vllm_local_options(
|
||||
# model="ibm-granite/granite-vision-3.1-2b-preview"
|
||||
# )
|
||||
#
|
||||
# Example for the SmolVLM model: (uncomment the following lines)
|
||||
pipeline_options.picture_description_options = vllm_local_options(
|
||||
model="HuggingFaceTB/SmolVLM-256M-Instruct"
|
||||
)
|
||||
#
|
||||
# Another possibility is using online services, e.g. watsonx.ai.
|
||||
# Using requires setting the env variables WX_API_KEY and WX_PROJECT_ID.
|
||||
# Uncomment the following line for this option:
|
||||
# pipeline_options.picture_description_options = watsonx_vlm_options()
|
||||
|
||||
doc_converter = DocumentConverter(
|
||||
format_options={
|
||||
|
@ -75,6 +75,8 @@ nav:
|
||||
- "Figure enrichment": examples/develop_picture_enrichment.py
|
||||
- "Table export": examples/export_tables.py
|
||||
- "Multimodal export": examples/export_multimodal.py
|
||||
- "Annotate picture with local vlm": examples/pictures_description.py
|
||||
- "Annotate picture with remote vlm": examples/pictures_description_api.py
|
||||
- "Force full page OCR": examples/full_page_ocr.py
|
||||
- "Automatic OCR language detection with tesseract": examples/tesseract_lang_detection.py
|
||||
- "RapidOCR with custom OCR models": examples/rapidocr_with_custom_models.py
|
||||
|
Loading…
Reference in New Issue
Block a user