mirror of
https://github.com/EvolutionAPI/evolution-client-python.git
synced 2025-12-20 20:32:21 -06:00
initial commit
This commit is contained in:
73
env/lib/python3.10/site-packages/docutils/utils/math/__init__.py
vendored
Normal file
73
env/lib/python3.10/site-packages/docutils/utils/math/__init__.py
vendored
Normal file
@@ -0,0 +1,73 @@
|
||||
# :Id: $Id: __init__.py 9516 2024-01-15 16:11:08Z milde $
|
||||
# :Author: Guenter Milde.
|
||||
# :License: Released under the terms of the `2-Clause BSD license`_, in short:
|
||||
#
|
||||
# Copying and distribution of this file, with or without modification,
|
||||
# are permitted in any medium without royalty provided the copyright
|
||||
# notice and this notice are preserved.
|
||||
# This file is offered as-is, without any warranty.
|
||||
#
|
||||
# .. _2-Clause BSD license: https://opensource.org/licenses/BSD-2-Clause
|
||||
|
||||
"""
|
||||
This is the Docutils (Python Documentation Utilities) "math" sub-package.
|
||||
|
||||
It contains various modules for conversion between different math formats
|
||||
(LaTeX, MathML, HTML).
|
||||
|
||||
:math2html: LaTeX math -> HTML conversion from eLyXer
|
||||
:latex2mathml: LaTeX math -> presentational MathML
|
||||
:unichar2tex: Unicode character to LaTeX math translation table
|
||||
:tex2unichar: LaTeX math to Unicode character translation dictionaries
|
||||
:mathalphabet2unichar: LaTeX math alphabets to Unicode character translation
|
||||
:tex2mathml_extern: Wrapper for 3rd party TeX -> MathML converters
|
||||
"""
|
||||
|
||||
# helpers for Docutils math support
|
||||
# =================================
|
||||
|
||||
|
||||
class MathError(ValueError):
|
||||
"""Exception for math syntax and math conversion errors.
|
||||
|
||||
The additional attribute `details` may hold a list of Docutils
|
||||
nodes suitable as children for a ``<system_message>``.
|
||||
"""
|
||||
def __init__(self, msg, details=[]):
|
||||
super().__init__(msg)
|
||||
self.details = details
|
||||
|
||||
|
||||
def toplevel_code(code):
|
||||
"""Return string (LaTeX math) `code` with environments stripped out."""
|
||||
chunks = code.split(r'\begin{')
|
||||
return r'\begin{'.join(chunk.split(r'\end{')[-1]
|
||||
for chunk in chunks)
|
||||
|
||||
|
||||
def pick_math_environment(code, numbered=False):
|
||||
"""Return the right math environment to display `code`.
|
||||
|
||||
The test simply looks for line-breaks (``\\``) outside environments.
|
||||
Multi-line formulae are set with ``align``, one-liners with
|
||||
``equation``.
|
||||
|
||||
If `numbered` evaluates to ``False``, the "starred" versions are used
|
||||
to suppress numbering.
|
||||
"""
|
||||
if toplevel_code(code).find(r'\\') >= 0:
|
||||
env = 'align'
|
||||
else:
|
||||
env = 'equation'
|
||||
if not numbered:
|
||||
env += '*'
|
||||
return env
|
||||
|
||||
|
||||
def wrap_math_code(code, as_block):
|
||||
# Wrap math-code in mode-switching TeX command/environment.
|
||||
# If `as_block` is True, use environment for displayed equation(s).
|
||||
if as_block:
|
||||
env = pick_math_environment(code)
|
||||
return '\\begin{%s}\n%s\n\\end{%s}' % (env, code, env)
|
||||
return '$%s$' % code
|
||||
BIN
env/lib/python3.10/site-packages/docutils/utils/math/__pycache__/__init__.cpython-310.pyc
vendored
Normal file
BIN
env/lib/python3.10/site-packages/docutils/utils/math/__pycache__/__init__.cpython-310.pyc
vendored
Normal file
Binary file not shown.
BIN
env/lib/python3.10/site-packages/docutils/utils/math/__pycache__/latex2mathml.cpython-310.pyc
vendored
Normal file
BIN
env/lib/python3.10/site-packages/docutils/utils/math/__pycache__/latex2mathml.cpython-310.pyc
vendored
Normal file
Binary file not shown.
BIN
env/lib/python3.10/site-packages/docutils/utils/math/__pycache__/math2html.cpython-310.pyc
vendored
Normal file
BIN
env/lib/python3.10/site-packages/docutils/utils/math/__pycache__/math2html.cpython-310.pyc
vendored
Normal file
Binary file not shown.
Binary file not shown.
BIN
env/lib/python3.10/site-packages/docutils/utils/math/__pycache__/mathml_elements.cpython-310.pyc
vendored
Normal file
BIN
env/lib/python3.10/site-packages/docutils/utils/math/__pycache__/mathml_elements.cpython-310.pyc
vendored
Normal file
Binary file not shown.
BIN
env/lib/python3.10/site-packages/docutils/utils/math/__pycache__/tex2mathml_extern.cpython-310.pyc
vendored
Normal file
BIN
env/lib/python3.10/site-packages/docutils/utils/math/__pycache__/tex2mathml_extern.cpython-310.pyc
vendored
Normal file
Binary file not shown.
BIN
env/lib/python3.10/site-packages/docutils/utils/math/__pycache__/tex2unichar.cpython-310.pyc
vendored
Normal file
BIN
env/lib/python3.10/site-packages/docutils/utils/math/__pycache__/tex2unichar.cpython-310.pyc
vendored
Normal file
Binary file not shown.
BIN
env/lib/python3.10/site-packages/docutils/utils/math/__pycache__/unichar2tex.cpython-310.pyc
vendored
Normal file
BIN
env/lib/python3.10/site-packages/docutils/utils/math/__pycache__/unichar2tex.cpython-310.pyc
vendored
Normal file
Binary file not shown.
1252
env/lib/python3.10/site-packages/docutils/utils/math/latex2mathml.py
vendored
Normal file
1252
env/lib/python3.10/site-packages/docutils/utils/math/latex2mathml.py
vendored
Normal file
File diff suppressed because it is too large
Load Diff
3165
env/lib/python3.10/site-packages/docutils/utils/math/math2html.py
vendored
Executable file
3165
env/lib/python3.10/site-packages/docutils/utils/math/math2html.py
vendored
Executable file
File diff suppressed because it is too large
Load Diff
892
env/lib/python3.10/site-packages/docutils/utils/math/mathalphabet2unichar.py
vendored
Normal file
892
env/lib/python3.10/site-packages/docutils/utils/math/mathalphabet2unichar.py
vendored
Normal file
@@ -0,0 +1,892 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# LaTeX math to Unicode symbols translation dictionaries for
|
||||
# the content of math alphabet commands (\mathtt, \mathbf, ...).
|
||||
# Generated with ``write_mathalphabet2unichar.py`` from the data in
|
||||
# http://milde.users.sourceforge.net/LUCR/Math/
|
||||
#
|
||||
# :Copyright: © 2024 Günter Milde.
|
||||
# :License: Released under the terms of the `2-Clause BSD license`__, in short:
|
||||
#
|
||||
# Copying and distribution of this file, with or without modification,
|
||||
# are permitted in any medium without royalty provided the copyright
|
||||
# notice and this notice are preserved.
|
||||
# This file is offered as-is, without any warranty.
|
||||
#
|
||||
# __ https://opensource.org/licenses/BSD-2-Clause
|
||||
|
||||
mathbb = {
|
||||
'0': '\U0001d7d8', # 𝟘 MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO
|
||||
'1': '\U0001d7d9', # 𝟙 MATHEMATICAL DOUBLE-STRUCK DIGIT ONE
|
||||
'2': '\U0001d7da', # 𝟚 MATHEMATICAL DOUBLE-STRUCK DIGIT TWO
|
||||
'3': '\U0001d7db', # 𝟛 MATHEMATICAL DOUBLE-STRUCK DIGIT THREE
|
||||
'4': '\U0001d7dc', # 𝟜 MATHEMATICAL DOUBLE-STRUCK DIGIT FOUR
|
||||
'5': '\U0001d7dd', # 𝟝 MATHEMATICAL DOUBLE-STRUCK DIGIT FIVE
|
||||
'6': '\U0001d7de', # 𝟞 MATHEMATICAL DOUBLE-STRUCK DIGIT SIX
|
||||
'7': '\U0001d7df', # 𝟟 MATHEMATICAL DOUBLE-STRUCK DIGIT SEVEN
|
||||
'8': '\U0001d7e0', # 𝟠 MATHEMATICAL DOUBLE-STRUCK DIGIT EIGHT
|
||||
'9': '\U0001d7e1', # 𝟡 MATHEMATICAL DOUBLE-STRUCK DIGIT NINE
|
||||
'A': '\U0001d538', # 𝔸 MATHEMATICAL DOUBLE-STRUCK CAPITAL A
|
||||
'B': '\U0001d539', # 𝔹 MATHEMATICAL DOUBLE-STRUCK CAPITAL B
|
||||
'C': '\u2102', # ℂ DOUBLE-STRUCK CAPITAL C
|
||||
'D': '\U0001d53b', # 𝔻 MATHEMATICAL DOUBLE-STRUCK CAPITAL D
|
||||
'E': '\U0001d53c', # 𝔼 MATHEMATICAL DOUBLE-STRUCK CAPITAL E
|
||||
'F': '\U0001d53d', # 𝔽 MATHEMATICAL DOUBLE-STRUCK CAPITAL F
|
||||
'G': '\U0001d53e', # 𝔾 MATHEMATICAL DOUBLE-STRUCK CAPITAL G
|
||||
'H': '\u210d', # ℍ DOUBLE-STRUCK CAPITAL H
|
||||
'I': '\U0001d540', # 𝕀 MATHEMATICAL DOUBLE-STRUCK CAPITAL I
|
||||
'J': '\U0001d541', # 𝕁 MATHEMATICAL DOUBLE-STRUCK CAPITAL J
|
||||
'K': '\U0001d542', # 𝕂 MATHEMATICAL DOUBLE-STRUCK CAPITAL K
|
||||
'L': '\U0001d543', # 𝕃 MATHEMATICAL DOUBLE-STRUCK CAPITAL L
|
||||
'M': '\U0001d544', # 𝕄 MATHEMATICAL DOUBLE-STRUCK CAPITAL M
|
||||
'N': '\u2115', # ℕ DOUBLE-STRUCK CAPITAL N
|
||||
'O': '\U0001d546', # 𝕆 MATHEMATICAL DOUBLE-STRUCK CAPITAL O
|
||||
'P': '\u2119', # ℙ DOUBLE-STRUCK CAPITAL P
|
||||
'Q': '\u211a', # ℚ DOUBLE-STRUCK CAPITAL Q
|
||||
'R': '\u211d', # ℝ DOUBLE-STRUCK CAPITAL R
|
||||
'S': '\U0001d54a', # 𝕊 MATHEMATICAL DOUBLE-STRUCK CAPITAL S
|
||||
'T': '\U0001d54b', # 𝕋 MATHEMATICAL DOUBLE-STRUCK CAPITAL T
|
||||
'U': '\U0001d54c', # 𝕌 MATHEMATICAL DOUBLE-STRUCK CAPITAL U
|
||||
'V': '\U0001d54d', # 𝕍 MATHEMATICAL DOUBLE-STRUCK CAPITAL V
|
||||
'W': '\U0001d54e', # 𝕎 MATHEMATICAL DOUBLE-STRUCK CAPITAL W
|
||||
'X': '\U0001d54f', # 𝕏 MATHEMATICAL DOUBLE-STRUCK CAPITAL X
|
||||
'Y': '\U0001d550', # 𝕐 MATHEMATICAL DOUBLE-STRUCK CAPITAL Y
|
||||
'Z': '\u2124', # ℤ DOUBLE-STRUCK CAPITAL Z
|
||||
'a': '\U0001d552', # 𝕒 MATHEMATICAL DOUBLE-STRUCK SMALL A
|
||||
'b': '\U0001d553', # 𝕓 MATHEMATICAL DOUBLE-STRUCK SMALL B
|
||||
'c': '\U0001d554', # 𝕔 MATHEMATICAL DOUBLE-STRUCK SMALL C
|
||||
'd': '\U0001d555', # 𝕕 MATHEMATICAL DOUBLE-STRUCK SMALL D
|
||||
'e': '\U0001d556', # 𝕖 MATHEMATICAL DOUBLE-STRUCK SMALL E
|
||||
'f': '\U0001d557', # 𝕗 MATHEMATICAL DOUBLE-STRUCK SMALL F
|
||||
'g': '\U0001d558', # 𝕘 MATHEMATICAL DOUBLE-STRUCK SMALL G
|
||||
'h': '\U0001d559', # 𝕙 MATHEMATICAL DOUBLE-STRUCK SMALL H
|
||||
'i': '\U0001d55a', # 𝕚 MATHEMATICAL DOUBLE-STRUCK SMALL I
|
||||
'j': '\U0001d55b', # 𝕛 MATHEMATICAL DOUBLE-STRUCK SMALL J
|
||||
'k': '\U0001d55c', # 𝕜 MATHEMATICAL DOUBLE-STRUCK SMALL K
|
||||
'l': '\U0001d55d', # 𝕝 MATHEMATICAL DOUBLE-STRUCK SMALL L
|
||||
'm': '\U0001d55e', # 𝕞 MATHEMATICAL DOUBLE-STRUCK SMALL M
|
||||
'n': '\U0001d55f', # 𝕟 MATHEMATICAL DOUBLE-STRUCK SMALL N
|
||||
'o': '\U0001d560', # 𝕠 MATHEMATICAL DOUBLE-STRUCK SMALL O
|
||||
'p': '\U0001d561', # 𝕡 MATHEMATICAL DOUBLE-STRUCK SMALL P
|
||||
'q': '\U0001d562', # 𝕢 MATHEMATICAL DOUBLE-STRUCK SMALL Q
|
||||
'r': '\U0001d563', # 𝕣 MATHEMATICAL DOUBLE-STRUCK SMALL R
|
||||
's': '\U0001d564', # 𝕤 MATHEMATICAL DOUBLE-STRUCK SMALL S
|
||||
't': '\U0001d565', # 𝕥 MATHEMATICAL DOUBLE-STRUCK SMALL T
|
||||
'u': '\U0001d566', # 𝕦 MATHEMATICAL DOUBLE-STRUCK SMALL U
|
||||
'v': '\U0001d567', # 𝕧 MATHEMATICAL DOUBLE-STRUCK SMALL V
|
||||
'w': '\U0001d568', # 𝕨 MATHEMATICAL DOUBLE-STRUCK SMALL W
|
||||
'x': '\U0001d569', # 𝕩 MATHEMATICAL DOUBLE-STRUCK SMALL X
|
||||
'y': '\U0001d56a', # 𝕪 MATHEMATICAL DOUBLE-STRUCK SMALL Y
|
||||
'z': '\U0001d56b', # 𝕫 MATHEMATICAL DOUBLE-STRUCK SMALL Z
|
||||
'Γ': '\u213e', # ℾ DOUBLE-STRUCK CAPITAL GAMMA
|
||||
'Π': '\u213f', # ℿ DOUBLE-STRUCK CAPITAL PI
|
||||
'Σ': '\u2140', # ⅀ DOUBLE-STRUCK N-ARY SUMMATION
|
||||
'γ': '\u213d', # ℽ DOUBLE-STRUCK SMALL GAMMA
|
||||
'π': '\u213c', # ℼ DOUBLE-STRUCK SMALL PI
|
||||
}
|
||||
|
||||
mathbf = {
|
||||
'0': '\U0001d7ce', # 𝟎 MATHEMATICAL BOLD DIGIT ZERO
|
||||
'1': '\U0001d7cf', # 𝟏 MATHEMATICAL BOLD DIGIT ONE
|
||||
'2': '\U0001d7d0', # 𝟐 MATHEMATICAL BOLD DIGIT TWO
|
||||
'3': '\U0001d7d1', # 𝟑 MATHEMATICAL BOLD DIGIT THREE
|
||||
'4': '\U0001d7d2', # 𝟒 MATHEMATICAL BOLD DIGIT FOUR
|
||||
'5': '\U0001d7d3', # 𝟓 MATHEMATICAL BOLD DIGIT FIVE
|
||||
'6': '\U0001d7d4', # 𝟔 MATHEMATICAL BOLD DIGIT SIX
|
||||
'7': '\U0001d7d5', # 𝟕 MATHEMATICAL BOLD DIGIT SEVEN
|
||||
'8': '\U0001d7d6', # 𝟖 MATHEMATICAL BOLD DIGIT EIGHT
|
||||
'9': '\U0001d7d7', # 𝟗 MATHEMATICAL BOLD DIGIT NINE
|
||||
'A': '\U0001d400', # 𝐀 MATHEMATICAL BOLD CAPITAL A
|
||||
'B': '\U0001d401', # 𝐁 MATHEMATICAL BOLD CAPITAL B
|
||||
'C': '\U0001d402', # 𝐂 MATHEMATICAL BOLD CAPITAL C
|
||||
'D': '\U0001d403', # 𝐃 MATHEMATICAL BOLD CAPITAL D
|
||||
'E': '\U0001d404', # 𝐄 MATHEMATICAL BOLD CAPITAL E
|
||||
'F': '\U0001d405', # 𝐅 MATHEMATICAL BOLD CAPITAL F
|
||||
'G': '\U0001d406', # 𝐆 MATHEMATICAL BOLD CAPITAL G
|
||||
'H': '\U0001d407', # 𝐇 MATHEMATICAL BOLD CAPITAL H
|
||||
'I': '\U0001d408', # 𝐈 MATHEMATICAL BOLD CAPITAL I
|
||||
'J': '\U0001d409', # 𝐉 MATHEMATICAL BOLD CAPITAL J
|
||||
'K': '\U0001d40a', # 𝐊 MATHEMATICAL BOLD CAPITAL K
|
||||
'L': '\U0001d40b', # 𝐋 MATHEMATICAL BOLD CAPITAL L
|
||||
'M': '\U0001d40c', # 𝐌 MATHEMATICAL BOLD CAPITAL M
|
||||
'N': '\U0001d40d', # 𝐍 MATHEMATICAL BOLD CAPITAL N
|
||||
'O': '\U0001d40e', # 𝐎 MATHEMATICAL BOLD CAPITAL O
|
||||
'P': '\U0001d40f', # 𝐏 MATHEMATICAL BOLD CAPITAL P
|
||||
'Q': '\U0001d410', # 𝐐 MATHEMATICAL BOLD CAPITAL Q
|
||||
'R': '\U0001d411', # 𝐑 MATHEMATICAL BOLD CAPITAL R
|
||||
'S': '\U0001d412', # 𝐒 MATHEMATICAL BOLD CAPITAL S
|
||||
'T': '\U0001d413', # 𝐓 MATHEMATICAL BOLD CAPITAL T
|
||||
'U': '\U0001d414', # 𝐔 MATHEMATICAL BOLD CAPITAL U
|
||||
'V': '\U0001d415', # 𝐕 MATHEMATICAL BOLD CAPITAL V
|
||||
'W': '\U0001d416', # 𝐖 MATHEMATICAL BOLD CAPITAL W
|
||||
'X': '\U0001d417', # 𝐗 MATHEMATICAL BOLD CAPITAL X
|
||||
'Y': '\U0001d418', # 𝐘 MATHEMATICAL BOLD CAPITAL Y
|
||||
'Z': '\U0001d419', # 𝐙 MATHEMATICAL BOLD CAPITAL Z
|
||||
'a': '\U0001d41a', # 𝐚 MATHEMATICAL BOLD SMALL A
|
||||
'b': '\U0001d41b', # 𝐛 MATHEMATICAL BOLD SMALL B
|
||||
'c': '\U0001d41c', # 𝐜 MATHEMATICAL BOLD SMALL C
|
||||
'd': '\U0001d41d', # 𝐝 MATHEMATICAL BOLD SMALL D
|
||||
'e': '\U0001d41e', # 𝐞 MATHEMATICAL BOLD SMALL E
|
||||
'f': '\U0001d41f', # 𝐟 MATHEMATICAL BOLD SMALL F
|
||||
'g': '\U0001d420', # 𝐠 MATHEMATICAL BOLD SMALL G
|
||||
'h': '\U0001d421', # 𝐡 MATHEMATICAL BOLD SMALL H
|
||||
'i': '\U0001d422', # 𝐢 MATHEMATICAL BOLD SMALL I
|
||||
'j': '\U0001d423', # 𝐣 MATHEMATICAL BOLD SMALL J
|
||||
'k': '\U0001d424', # 𝐤 MATHEMATICAL BOLD SMALL K
|
||||
'l': '\U0001d425', # 𝐥 MATHEMATICAL BOLD SMALL L
|
||||
'm': '\U0001d426', # 𝐦 MATHEMATICAL BOLD SMALL M
|
||||
'n': '\U0001d427', # 𝐧 MATHEMATICAL BOLD SMALL N
|
||||
'o': '\U0001d428', # 𝐨 MATHEMATICAL BOLD SMALL O
|
||||
'p': '\U0001d429', # 𝐩 MATHEMATICAL BOLD SMALL P
|
||||
'q': '\U0001d42a', # 𝐪 MATHEMATICAL BOLD SMALL Q
|
||||
'r': '\U0001d42b', # 𝐫 MATHEMATICAL BOLD SMALL R
|
||||
's': '\U0001d42c', # 𝐬 MATHEMATICAL BOLD SMALL S
|
||||
't': '\U0001d42d', # 𝐭 MATHEMATICAL BOLD SMALL T
|
||||
'u': '\U0001d42e', # 𝐮 MATHEMATICAL BOLD SMALL U
|
||||
'v': '\U0001d42f', # 𝐯 MATHEMATICAL BOLD SMALL V
|
||||
'w': '\U0001d430', # 𝐰 MATHEMATICAL BOLD SMALL W
|
||||
'x': '\U0001d431', # 𝐱 MATHEMATICAL BOLD SMALL X
|
||||
'y': '\U0001d432', # 𝐲 MATHEMATICAL BOLD SMALL Y
|
||||
'z': '\U0001d433', # 𝐳 MATHEMATICAL BOLD SMALL Z
|
||||
'Γ': '\U0001d6aa', # 𝚪 MATHEMATICAL BOLD CAPITAL GAMMA
|
||||
'Δ': '\U0001d6ab', # 𝚫 MATHEMATICAL BOLD CAPITAL DELTA
|
||||
'Θ': '\U0001d6af', # 𝚯 MATHEMATICAL BOLD CAPITAL THETA
|
||||
'Λ': '\U0001d6b2', # 𝚲 MATHEMATICAL BOLD CAPITAL LAMDA
|
||||
'Ξ': '\U0001d6b5', # 𝚵 MATHEMATICAL BOLD CAPITAL XI
|
||||
'Π': '\U0001d6b7', # 𝚷 MATHEMATICAL BOLD CAPITAL PI
|
||||
'Σ': '\U0001d6ba', # 𝚺 MATHEMATICAL BOLD CAPITAL SIGMA
|
||||
'Υ': '\U0001d6bc', # 𝚼 MATHEMATICAL BOLD CAPITAL UPSILON
|
||||
'Φ': '\U0001d6bd', # 𝚽 MATHEMATICAL BOLD CAPITAL PHI
|
||||
'Ψ': '\U0001d6bf', # 𝚿 MATHEMATICAL BOLD CAPITAL PSI
|
||||
'Ω': '\U0001d6c0', # 𝛀 MATHEMATICAL BOLD CAPITAL OMEGA
|
||||
'α': '\U0001d6c2', # 𝛂 MATHEMATICAL BOLD SMALL ALPHA
|
||||
'β': '\U0001d6c3', # 𝛃 MATHEMATICAL BOLD SMALL BETA
|
||||
'γ': '\U0001d6c4', # 𝛄 MATHEMATICAL BOLD SMALL GAMMA
|
||||
'δ': '\U0001d6c5', # 𝛅 MATHEMATICAL BOLD SMALL DELTA
|
||||
'ε': '\U0001d6c6', # 𝛆 MATHEMATICAL BOLD SMALL EPSILON
|
||||
'ζ': '\U0001d6c7', # 𝛇 MATHEMATICAL BOLD SMALL ZETA
|
||||
'η': '\U0001d6c8', # 𝛈 MATHEMATICAL BOLD SMALL ETA
|
||||
'θ': '\U0001d6c9', # 𝛉 MATHEMATICAL BOLD SMALL THETA
|
||||
'ι': '\U0001d6ca', # 𝛊 MATHEMATICAL BOLD SMALL IOTA
|
||||
'κ': '\U0001d6cb', # 𝛋 MATHEMATICAL BOLD SMALL KAPPA
|
||||
'λ': '\U0001d6cc', # 𝛌 MATHEMATICAL BOLD SMALL LAMDA
|
||||
'μ': '\U0001d6cd', # 𝛍 MATHEMATICAL BOLD SMALL MU
|
||||
'ν': '\U0001d6ce', # 𝛎 MATHEMATICAL BOLD SMALL NU
|
||||
'ξ': '\U0001d6cf', # 𝛏 MATHEMATICAL BOLD SMALL XI
|
||||
'π': '\U0001d6d1', # 𝛑 MATHEMATICAL BOLD SMALL PI
|
||||
'ρ': '\U0001d6d2', # 𝛒 MATHEMATICAL BOLD SMALL RHO
|
||||
'ς': '\U0001d6d3', # 𝛓 MATHEMATICAL BOLD SMALL FINAL SIGMA
|
||||
'σ': '\U0001d6d4', # 𝛔 MATHEMATICAL BOLD SMALL SIGMA
|
||||
'τ': '\U0001d6d5', # 𝛕 MATHEMATICAL BOLD SMALL TAU
|
||||
'υ': '\U0001d6d6', # 𝛖 MATHEMATICAL BOLD SMALL UPSILON
|
||||
'φ': '\U0001d6d7', # 𝛗 MATHEMATICAL BOLD SMALL PHI
|
||||
'χ': '\U0001d6d8', # 𝛘 MATHEMATICAL BOLD SMALL CHI
|
||||
'ψ': '\U0001d6d9', # 𝛙 MATHEMATICAL BOLD SMALL PSI
|
||||
'ω': '\U0001d6da', # 𝛚 MATHEMATICAL BOLD SMALL OMEGA
|
||||
'ϑ': '\U0001d6dd', # 𝛝 MATHEMATICAL BOLD THETA SYMBOL
|
||||
'ϕ': '\U0001d6df', # 𝛟 MATHEMATICAL BOLD PHI SYMBOL
|
||||
'ϖ': '\U0001d6e1', # 𝛡 MATHEMATICAL BOLD PI SYMBOL
|
||||
'Ϝ': '\U0001d7ca', # 𝟊 MATHEMATICAL BOLD CAPITAL DIGAMMA
|
||||
'ϝ': '\U0001d7cb', # 𝟋 MATHEMATICAL BOLD SMALL DIGAMMA
|
||||
'ϰ': '\U0001d6de', # 𝛞 MATHEMATICAL BOLD KAPPA SYMBOL
|
||||
'ϱ': '\U0001d6e0', # 𝛠 MATHEMATICAL BOLD RHO SYMBOL
|
||||
'ϵ': '\U0001d6dc', # 𝛜 MATHEMATICAL BOLD EPSILON SYMBOL
|
||||
'∂': '\U0001d6db', # 𝛛 MATHEMATICAL BOLD PARTIAL DIFFERENTIAL
|
||||
'∇': '\U0001d6c1', # 𝛁 MATHEMATICAL BOLD NABLA
|
||||
}
|
||||
|
||||
mathbfit = {
|
||||
'A': '\U0001d468', # 𝑨 MATHEMATICAL BOLD ITALIC CAPITAL A
|
||||
'B': '\U0001d469', # 𝑩 MATHEMATICAL BOLD ITALIC CAPITAL B
|
||||
'C': '\U0001d46a', # 𝑪 MATHEMATICAL BOLD ITALIC CAPITAL C
|
||||
'D': '\U0001d46b', # 𝑫 MATHEMATICAL BOLD ITALIC CAPITAL D
|
||||
'E': '\U0001d46c', # 𝑬 MATHEMATICAL BOLD ITALIC CAPITAL E
|
||||
'F': '\U0001d46d', # 𝑭 MATHEMATICAL BOLD ITALIC CAPITAL F
|
||||
'G': '\U0001d46e', # 𝑮 MATHEMATICAL BOLD ITALIC CAPITAL G
|
||||
'H': '\U0001d46f', # 𝑯 MATHEMATICAL BOLD ITALIC CAPITAL H
|
||||
'I': '\U0001d470', # 𝑰 MATHEMATICAL BOLD ITALIC CAPITAL I
|
||||
'J': '\U0001d471', # 𝑱 MATHEMATICAL BOLD ITALIC CAPITAL J
|
||||
'K': '\U0001d472', # 𝑲 MATHEMATICAL BOLD ITALIC CAPITAL K
|
||||
'L': '\U0001d473', # 𝑳 MATHEMATICAL BOLD ITALIC CAPITAL L
|
||||
'M': '\U0001d474', # 𝑴 MATHEMATICAL BOLD ITALIC CAPITAL M
|
||||
'N': '\U0001d475', # 𝑵 MATHEMATICAL BOLD ITALIC CAPITAL N
|
||||
'O': '\U0001d476', # 𝑶 MATHEMATICAL BOLD ITALIC CAPITAL O
|
||||
'P': '\U0001d477', # 𝑷 MATHEMATICAL BOLD ITALIC CAPITAL P
|
||||
'Q': '\U0001d478', # 𝑸 MATHEMATICAL BOLD ITALIC CAPITAL Q
|
||||
'R': '\U0001d479', # 𝑹 MATHEMATICAL BOLD ITALIC CAPITAL R
|
||||
'S': '\U0001d47a', # 𝑺 MATHEMATICAL BOLD ITALIC CAPITAL S
|
||||
'T': '\U0001d47b', # 𝑻 MATHEMATICAL BOLD ITALIC CAPITAL T
|
||||
'U': '\U0001d47c', # 𝑼 MATHEMATICAL BOLD ITALIC CAPITAL U
|
||||
'V': '\U0001d47d', # 𝑽 MATHEMATICAL BOLD ITALIC CAPITAL V
|
||||
'W': '\U0001d47e', # 𝑾 MATHEMATICAL BOLD ITALIC CAPITAL W
|
||||
'X': '\U0001d47f', # 𝑿 MATHEMATICAL BOLD ITALIC CAPITAL X
|
||||
'Y': '\U0001d480', # 𝒀 MATHEMATICAL BOLD ITALIC CAPITAL Y
|
||||
'Z': '\U0001d481', # 𝒁 MATHEMATICAL BOLD ITALIC CAPITAL Z
|
||||
'a': '\U0001d482', # 𝒂 MATHEMATICAL BOLD ITALIC SMALL A
|
||||
'b': '\U0001d483', # 𝒃 MATHEMATICAL BOLD ITALIC SMALL B
|
||||
'c': '\U0001d484', # 𝒄 MATHEMATICAL BOLD ITALIC SMALL C
|
||||
'd': '\U0001d485', # 𝒅 MATHEMATICAL BOLD ITALIC SMALL D
|
||||
'e': '\U0001d486', # 𝒆 MATHEMATICAL BOLD ITALIC SMALL E
|
||||
'f': '\U0001d487', # 𝒇 MATHEMATICAL BOLD ITALIC SMALL F
|
||||
'g': '\U0001d488', # 𝒈 MATHEMATICAL BOLD ITALIC SMALL G
|
||||
'h': '\U0001d489', # 𝒉 MATHEMATICAL BOLD ITALIC SMALL H
|
||||
'i': '\U0001d48a', # 𝒊 MATHEMATICAL BOLD ITALIC SMALL I
|
||||
'j': '\U0001d48b', # 𝒋 MATHEMATICAL BOLD ITALIC SMALL J
|
||||
'k': '\U0001d48c', # 𝒌 MATHEMATICAL BOLD ITALIC SMALL K
|
||||
'l': '\U0001d48d', # 𝒍 MATHEMATICAL BOLD ITALIC SMALL L
|
||||
'm': '\U0001d48e', # 𝒎 MATHEMATICAL BOLD ITALIC SMALL M
|
||||
'n': '\U0001d48f', # 𝒏 MATHEMATICAL BOLD ITALIC SMALL N
|
||||
'o': '\U0001d490', # 𝒐 MATHEMATICAL BOLD ITALIC SMALL O
|
||||
'p': '\U0001d491', # 𝒑 MATHEMATICAL BOLD ITALIC SMALL P
|
||||
'q': '\U0001d492', # 𝒒 MATHEMATICAL BOLD ITALIC SMALL Q
|
||||
'r': '\U0001d493', # 𝒓 MATHEMATICAL BOLD ITALIC SMALL R
|
||||
's': '\U0001d494', # 𝒔 MATHEMATICAL BOLD ITALIC SMALL S
|
||||
't': '\U0001d495', # 𝒕 MATHEMATICAL BOLD ITALIC SMALL T
|
||||
'u': '\U0001d496', # 𝒖 MATHEMATICAL BOLD ITALIC SMALL U
|
||||
'v': '\U0001d497', # 𝒗 MATHEMATICAL BOLD ITALIC SMALL V
|
||||
'w': '\U0001d498', # 𝒘 MATHEMATICAL BOLD ITALIC SMALL W
|
||||
'x': '\U0001d499', # 𝒙 MATHEMATICAL BOLD ITALIC SMALL X
|
||||
'y': '\U0001d49a', # 𝒚 MATHEMATICAL BOLD ITALIC SMALL Y
|
||||
'z': '\U0001d49b', # 𝒛 MATHEMATICAL BOLD ITALIC SMALL Z
|
||||
'Γ': '\U0001d71e', # 𝜞 MATHEMATICAL BOLD ITALIC CAPITAL GAMMA
|
||||
'Δ': '\U0001d71f', # 𝜟 MATHEMATICAL BOLD ITALIC CAPITAL DELTA
|
||||
'Θ': '\U0001d723', # 𝜣 MATHEMATICAL BOLD ITALIC CAPITAL THETA
|
||||
'Λ': '\U0001d726', # 𝜦 MATHEMATICAL BOLD ITALIC CAPITAL LAMDA
|
||||
'Ξ': '\U0001d729', # 𝜩 MATHEMATICAL BOLD ITALIC CAPITAL XI
|
||||
'Π': '\U0001d72b', # 𝜫 MATHEMATICAL BOLD ITALIC CAPITAL PI
|
||||
'Σ': '\U0001d72e', # 𝜮 MATHEMATICAL BOLD ITALIC CAPITAL SIGMA
|
||||
'Υ': '\U0001d730', # 𝜰 MATHEMATICAL BOLD ITALIC CAPITAL UPSILON
|
||||
'Φ': '\U0001d731', # 𝜱 MATHEMATICAL BOLD ITALIC CAPITAL PHI
|
||||
'Ψ': '\U0001d733', # 𝜳 MATHEMATICAL BOLD ITALIC CAPITAL PSI
|
||||
'Ω': '\U0001d734', # 𝜴 MATHEMATICAL BOLD ITALIC CAPITAL OMEGA
|
||||
'α': '\U0001d736', # 𝜶 MATHEMATICAL BOLD ITALIC SMALL ALPHA
|
||||
'β': '\U0001d737', # 𝜷 MATHEMATICAL BOLD ITALIC SMALL BETA
|
||||
'γ': '\U0001d738', # 𝜸 MATHEMATICAL BOLD ITALIC SMALL GAMMA
|
||||
'δ': '\U0001d739', # 𝜹 MATHEMATICAL BOLD ITALIC SMALL DELTA
|
||||
'ε': '\U0001d73a', # 𝜺 MATHEMATICAL BOLD ITALIC SMALL EPSILON
|
||||
'ζ': '\U0001d73b', # 𝜻 MATHEMATICAL BOLD ITALIC SMALL ZETA
|
||||
'η': '\U0001d73c', # 𝜼 MATHEMATICAL BOLD ITALIC SMALL ETA
|
||||
'θ': '\U0001d73d', # 𝜽 MATHEMATICAL BOLD ITALIC SMALL THETA
|
||||
'ι': '\U0001d73e', # 𝜾 MATHEMATICAL BOLD ITALIC SMALL IOTA
|
||||
'κ': '\U0001d73f', # 𝜿 MATHEMATICAL BOLD ITALIC SMALL KAPPA
|
||||
'λ': '\U0001d740', # 𝝀 MATHEMATICAL BOLD ITALIC SMALL LAMDA
|
||||
'μ': '\U0001d741', # 𝝁 MATHEMATICAL BOLD ITALIC SMALL MU
|
||||
'ν': '\U0001d742', # 𝝂 MATHEMATICAL BOLD ITALIC SMALL NU
|
||||
'ξ': '\U0001d743', # 𝝃 MATHEMATICAL BOLD ITALIC SMALL XI
|
||||
'π': '\U0001d745', # 𝝅 MATHEMATICAL BOLD ITALIC SMALL PI
|
||||
'ρ': '\U0001d746', # 𝝆 MATHEMATICAL BOLD ITALIC SMALL RHO
|
||||
'ς': '\U0001d747', # 𝝇 MATHEMATICAL BOLD ITALIC SMALL FINAL SIGMA
|
||||
'σ': '\U0001d748', # 𝝈 MATHEMATICAL BOLD ITALIC SMALL SIGMA
|
||||
'τ': '\U0001d749', # 𝝉 MATHEMATICAL BOLD ITALIC SMALL TAU
|
||||
'υ': '\U0001d74a', # 𝝊 MATHEMATICAL BOLD ITALIC SMALL UPSILON
|
||||
'φ': '\U0001d74b', # 𝝋 MATHEMATICAL BOLD ITALIC SMALL PHI
|
||||
'χ': '\U0001d74c', # 𝝌 MATHEMATICAL BOLD ITALIC SMALL CHI
|
||||
'ψ': '\U0001d74d', # 𝝍 MATHEMATICAL BOLD ITALIC SMALL PSI
|
||||
'ω': '\U0001d74e', # 𝝎 MATHEMATICAL BOLD ITALIC SMALL OMEGA
|
||||
'ϑ': '\U0001d751', # 𝝑 MATHEMATICAL BOLD ITALIC THETA SYMBOL
|
||||
'ϕ': '\U0001d753', # 𝝓 MATHEMATICAL BOLD ITALIC PHI SYMBOL
|
||||
'ϖ': '\U0001d755', # 𝝕 MATHEMATICAL BOLD ITALIC PI SYMBOL
|
||||
'ϰ': '\U0001d752', # 𝝒 MATHEMATICAL BOLD ITALIC KAPPA SYMBOL
|
||||
'ϱ': '\U0001d754', # 𝝔 MATHEMATICAL BOLD ITALIC RHO SYMBOL
|
||||
'ϵ': '\U0001d750', # 𝝐 MATHEMATICAL BOLD ITALIC EPSILON SYMBOL
|
||||
'∂': '\U0001d74f', # 𝝏 MATHEMATICAL BOLD ITALIC PARTIAL DIFFERENTIAL
|
||||
'∇': '\U0001d735', # 𝜵 MATHEMATICAL BOLD ITALIC NABLA
|
||||
}
|
||||
|
||||
mathcal = {
|
||||
'A': '\U0001d49c', # 𝒜 MATHEMATICAL SCRIPT CAPITAL A
|
||||
'B': '\u212c', # ℬ SCRIPT CAPITAL B
|
||||
'C': '\U0001d49e', # 𝒞 MATHEMATICAL SCRIPT CAPITAL C
|
||||
'D': '\U0001d49f', # 𝒟 MATHEMATICAL SCRIPT CAPITAL D
|
||||
'E': '\u2130', # ℰ SCRIPT CAPITAL E
|
||||
'F': '\u2131', # ℱ SCRIPT CAPITAL F
|
||||
'G': '\U0001d4a2', # 𝒢 MATHEMATICAL SCRIPT CAPITAL G
|
||||
'H': '\u210b', # ℋ SCRIPT CAPITAL H
|
||||
'I': '\u2110', # ℐ SCRIPT CAPITAL I
|
||||
'J': '\U0001d4a5', # 𝒥 MATHEMATICAL SCRIPT CAPITAL J
|
||||
'K': '\U0001d4a6', # 𝒦 MATHEMATICAL SCRIPT CAPITAL K
|
||||
'L': '\u2112', # ℒ SCRIPT CAPITAL L
|
||||
'M': '\u2133', # ℳ SCRIPT CAPITAL M
|
||||
'N': '\U0001d4a9', # 𝒩 MATHEMATICAL SCRIPT CAPITAL N
|
||||
'O': '\U0001d4aa', # 𝒪 MATHEMATICAL SCRIPT CAPITAL O
|
||||
'P': '\U0001d4ab', # 𝒫 MATHEMATICAL SCRIPT CAPITAL P
|
||||
'Q': '\U0001d4ac', # 𝒬 MATHEMATICAL SCRIPT CAPITAL Q
|
||||
'R': '\u211b', # ℛ SCRIPT CAPITAL R
|
||||
'S': '\U0001d4ae', # 𝒮 MATHEMATICAL SCRIPT CAPITAL S
|
||||
'T': '\U0001d4af', # 𝒯 MATHEMATICAL SCRIPT CAPITAL T
|
||||
'U': '\U0001d4b0', # 𝒰 MATHEMATICAL SCRIPT CAPITAL U
|
||||
'V': '\U0001d4b1', # 𝒱 MATHEMATICAL SCRIPT CAPITAL V
|
||||
'W': '\U0001d4b2', # 𝒲 MATHEMATICAL SCRIPT CAPITAL W
|
||||
'X': '\U0001d4b3', # 𝒳 MATHEMATICAL SCRIPT CAPITAL X
|
||||
'Y': '\U0001d4b4', # 𝒴 MATHEMATICAL SCRIPT CAPITAL Y
|
||||
'Z': '\U0001d4b5', # 𝒵 MATHEMATICAL SCRIPT CAPITAL Z
|
||||
'a': '\U0001d4b6', # 𝒶 MATHEMATICAL SCRIPT SMALL A
|
||||
'b': '\U0001d4b7', # 𝒷 MATHEMATICAL SCRIPT SMALL B
|
||||
'c': '\U0001d4b8', # 𝒸 MATHEMATICAL SCRIPT SMALL C
|
||||
'd': '\U0001d4b9', # 𝒹 MATHEMATICAL SCRIPT SMALL D
|
||||
'e': '\u212f', # ℯ SCRIPT SMALL E
|
||||
'f': '\U0001d4bb', # 𝒻 MATHEMATICAL SCRIPT SMALL F
|
||||
'g': '\u210a', # ℊ SCRIPT SMALL G
|
||||
'h': '\U0001d4bd', # 𝒽 MATHEMATICAL SCRIPT SMALL H
|
||||
'i': '\U0001d4be', # 𝒾 MATHEMATICAL SCRIPT SMALL I
|
||||
'j': '\U0001d4bf', # 𝒿 MATHEMATICAL SCRIPT SMALL J
|
||||
'k': '\U0001d4c0', # 𝓀 MATHEMATICAL SCRIPT SMALL K
|
||||
'l': '\U0001d4c1', # 𝓁 MATHEMATICAL SCRIPT SMALL L
|
||||
'm': '\U0001d4c2', # 𝓂 MATHEMATICAL SCRIPT SMALL M
|
||||
'n': '\U0001d4c3', # 𝓃 MATHEMATICAL SCRIPT SMALL N
|
||||
'o': '\u2134', # ℴ SCRIPT SMALL O
|
||||
'p': '\U0001d4c5', # 𝓅 MATHEMATICAL SCRIPT SMALL P
|
||||
'q': '\U0001d4c6', # 𝓆 MATHEMATICAL SCRIPT SMALL Q
|
||||
'r': '\U0001d4c7', # 𝓇 MATHEMATICAL SCRIPT SMALL R
|
||||
's': '\U0001d4c8', # 𝓈 MATHEMATICAL SCRIPT SMALL S
|
||||
't': '\U0001d4c9', # 𝓉 MATHEMATICAL SCRIPT SMALL T
|
||||
'u': '\U0001d4ca', # 𝓊 MATHEMATICAL SCRIPT SMALL U
|
||||
'v': '\U0001d4cb', # 𝓋 MATHEMATICAL SCRIPT SMALL V
|
||||
'w': '\U0001d4cc', # 𝓌 MATHEMATICAL SCRIPT SMALL W
|
||||
'x': '\U0001d4cd', # 𝓍 MATHEMATICAL SCRIPT SMALL X
|
||||
'y': '\U0001d4ce', # 𝓎 MATHEMATICAL SCRIPT SMALL Y
|
||||
'z': '\U0001d4cf', # 𝓏 MATHEMATICAL SCRIPT SMALL Z
|
||||
}
|
||||
|
||||
mathfrak = {
|
||||
'A': '\U0001d504', # 𝔄 MATHEMATICAL FRAKTUR CAPITAL A
|
||||
'B': '\U0001d505', # 𝔅 MATHEMATICAL FRAKTUR CAPITAL B
|
||||
'C': '\u212d', # ℭ BLACK-LETTER CAPITAL C
|
||||
'D': '\U0001d507', # 𝔇 MATHEMATICAL FRAKTUR CAPITAL D
|
||||
'E': '\U0001d508', # 𝔈 MATHEMATICAL FRAKTUR CAPITAL E
|
||||
'F': '\U0001d509', # 𝔉 MATHEMATICAL FRAKTUR CAPITAL F
|
||||
'G': '\U0001d50a', # 𝔊 MATHEMATICAL FRAKTUR CAPITAL G
|
||||
'H': '\u210c', # ℌ BLACK-LETTER CAPITAL H
|
||||
'I': '\u2111', # ℑ BLACK-LETTER CAPITAL I
|
||||
'J': '\U0001d50d', # 𝔍 MATHEMATICAL FRAKTUR CAPITAL J
|
||||
'K': '\U0001d50e', # 𝔎 MATHEMATICAL FRAKTUR CAPITAL K
|
||||
'L': '\U0001d50f', # 𝔏 MATHEMATICAL FRAKTUR CAPITAL L
|
||||
'M': '\U0001d510', # 𝔐 MATHEMATICAL FRAKTUR CAPITAL M
|
||||
'N': '\U0001d511', # 𝔑 MATHEMATICAL FRAKTUR CAPITAL N
|
||||
'O': '\U0001d512', # 𝔒 MATHEMATICAL FRAKTUR CAPITAL O
|
||||
'P': '\U0001d513', # 𝔓 MATHEMATICAL FRAKTUR CAPITAL P
|
||||
'Q': '\U0001d514', # 𝔔 MATHEMATICAL FRAKTUR CAPITAL Q
|
||||
'R': '\u211c', # ℜ BLACK-LETTER CAPITAL R
|
||||
'S': '\U0001d516', # 𝔖 MATHEMATICAL FRAKTUR CAPITAL S
|
||||
'T': '\U0001d517', # 𝔗 MATHEMATICAL FRAKTUR CAPITAL T
|
||||
'U': '\U0001d518', # 𝔘 MATHEMATICAL FRAKTUR CAPITAL U
|
||||
'V': '\U0001d519', # 𝔙 MATHEMATICAL FRAKTUR CAPITAL V
|
||||
'W': '\U0001d51a', # 𝔚 MATHEMATICAL FRAKTUR CAPITAL W
|
||||
'X': '\U0001d51b', # 𝔛 MATHEMATICAL FRAKTUR CAPITAL X
|
||||
'Y': '\U0001d51c', # 𝔜 MATHEMATICAL FRAKTUR CAPITAL Y
|
||||
'Z': '\u2128', # ℨ BLACK-LETTER CAPITAL Z
|
||||
'a': '\U0001d51e', # 𝔞 MATHEMATICAL FRAKTUR SMALL A
|
||||
'b': '\U0001d51f', # 𝔟 MATHEMATICAL FRAKTUR SMALL B
|
||||
'c': '\U0001d520', # 𝔠 MATHEMATICAL FRAKTUR SMALL C
|
||||
'd': '\U0001d521', # 𝔡 MATHEMATICAL FRAKTUR SMALL D
|
||||
'e': '\U0001d522', # 𝔢 MATHEMATICAL FRAKTUR SMALL E
|
||||
'f': '\U0001d523', # 𝔣 MATHEMATICAL FRAKTUR SMALL F
|
||||
'g': '\U0001d524', # 𝔤 MATHEMATICAL FRAKTUR SMALL G
|
||||
'h': '\U0001d525', # 𝔥 MATHEMATICAL FRAKTUR SMALL H
|
||||
'i': '\U0001d526', # 𝔦 MATHEMATICAL FRAKTUR SMALL I
|
||||
'j': '\U0001d527', # 𝔧 MATHEMATICAL FRAKTUR SMALL J
|
||||
'k': '\U0001d528', # 𝔨 MATHEMATICAL FRAKTUR SMALL K
|
||||
'l': '\U0001d529', # 𝔩 MATHEMATICAL FRAKTUR SMALL L
|
||||
'm': '\U0001d52a', # 𝔪 MATHEMATICAL FRAKTUR SMALL M
|
||||
'n': '\U0001d52b', # 𝔫 MATHEMATICAL FRAKTUR SMALL N
|
||||
'o': '\U0001d52c', # 𝔬 MATHEMATICAL FRAKTUR SMALL O
|
||||
'p': '\U0001d52d', # 𝔭 MATHEMATICAL FRAKTUR SMALL P
|
||||
'q': '\U0001d52e', # 𝔮 MATHEMATICAL FRAKTUR SMALL Q
|
||||
'r': '\U0001d52f', # 𝔯 MATHEMATICAL FRAKTUR SMALL R
|
||||
's': '\U0001d530', # 𝔰 MATHEMATICAL FRAKTUR SMALL S
|
||||
't': '\U0001d531', # 𝔱 MATHEMATICAL FRAKTUR SMALL T
|
||||
'u': '\U0001d532', # 𝔲 MATHEMATICAL FRAKTUR SMALL U
|
||||
'v': '\U0001d533', # 𝔳 MATHEMATICAL FRAKTUR SMALL V
|
||||
'w': '\U0001d534', # 𝔴 MATHEMATICAL FRAKTUR SMALL W
|
||||
'x': '\U0001d535', # 𝔵 MATHEMATICAL FRAKTUR SMALL X
|
||||
'y': '\U0001d536', # 𝔶 MATHEMATICAL FRAKTUR SMALL Y
|
||||
'z': '\U0001d537', # 𝔷 MATHEMATICAL FRAKTUR SMALL Z
|
||||
}
|
||||
|
||||
mathit = {
|
||||
'A': '\U0001d434', # 𝐴 MATHEMATICAL ITALIC CAPITAL A
|
||||
'B': '\U0001d435', # 𝐵 MATHEMATICAL ITALIC CAPITAL B
|
||||
'C': '\U0001d436', # 𝐶 MATHEMATICAL ITALIC CAPITAL C
|
||||
'D': '\U0001d437', # 𝐷 MATHEMATICAL ITALIC CAPITAL D
|
||||
'E': '\U0001d438', # 𝐸 MATHEMATICAL ITALIC CAPITAL E
|
||||
'F': '\U0001d439', # 𝐹 MATHEMATICAL ITALIC CAPITAL F
|
||||
'G': '\U0001d43a', # 𝐺 MATHEMATICAL ITALIC CAPITAL G
|
||||
'H': '\U0001d43b', # 𝐻 MATHEMATICAL ITALIC CAPITAL H
|
||||
'I': '\U0001d43c', # 𝐼 MATHEMATICAL ITALIC CAPITAL I
|
||||
'J': '\U0001d43d', # 𝐽 MATHEMATICAL ITALIC CAPITAL J
|
||||
'K': '\U0001d43e', # 𝐾 MATHEMATICAL ITALIC CAPITAL K
|
||||
'L': '\U0001d43f', # 𝐿 MATHEMATICAL ITALIC CAPITAL L
|
||||
'M': '\U0001d440', # 𝑀 MATHEMATICAL ITALIC CAPITAL M
|
||||
'N': '\U0001d441', # 𝑁 MATHEMATICAL ITALIC CAPITAL N
|
||||
'O': '\U0001d442', # 𝑂 MATHEMATICAL ITALIC CAPITAL O
|
||||
'P': '\U0001d443', # 𝑃 MATHEMATICAL ITALIC CAPITAL P
|
||||
'Q': '\U0001d444', # 𝑄 MATHEMATICAL ITALIC CAPITAL Q
|
||||
'R': '\U0001d445', # 𝑅 MATHEMATICAL ITALIC CAPITAL R
|
||||
'S': '\U0001d446', # 𝑆 MATHEMATICAL ITALIC CAPITAL S
|
||||
'T': '\U0001d447', # 𝑇 MATHEMATICAL ITALIC CAPITAL T
|
||||
'U': '\U0001d448', # 𝑈 MATHEMATICAL ITALIC CAPITAL U
|
||||
'V': '\U0001d449', # 𝑉 MATHEMATICAL ITALIC CAPITAL V
|
||||
'W': '\U0001d44a', # 𝑊 MATHEMATICAL ITALIC CAPITAL W
|
||||
'X': '\U0001d44b', # 𝑋 MATHEMATICAL ITALIC CAPITAL X
|
||||
'Y': '\U0001d44c', # 𝑌 MATHEMATICAL ITALIC CAPITAL Y
|
||||
'Z': '\U0001d44d', # 𝑍 MATHEMATICAL ITALIC CAPITAL Z
|
||||
'a': '\U0001d44e', # 𝑎 MATHEMATICAL ITALIC SMALL A
|
||||
'b': '\U0001d44f', # 𝑏 MATHEMATICAL ITALIC SMALL B
|
||||
'c': '\U0001d450', # 𝑐 MATHEMATICAL ITALIC SMALL C
|
||||
'd': '\U0001d451', # 𝑑 MATHEMATICAL ITALIC SMALL D
|
||||
'e': '\U0001d452', # 𝑒 MATHEMATICAL ITALIC SMALL E
|
||||
'f': '\U0001d453', # 𝑓 MATHEMATICAL ITALIC SMALL F
|
||||
'g': '\U0001d454', # 𝑔 MATHEMATICAL ITALIC SMALL G
|
||||
'h': '\u210e', # ℎ PLANCK CONSTANT
|
||||
'i': '\U0001d456', # 𝑖 MATHEMATICAL ITALIC SMALL I
|
||||
'j': '\U0001d457', # 𝑗 MATHEMATICAL ITALIC SMALL J
|
||||
'k': '\U0001d458', # 𝑘 MATHEMATICAL ITALIC SMALL K
|
||||
'l': '\U0001d459', # 𝑙 MATHEMATICAL ITALIC SMALL L
|
||||
'm': '\U0001d45a', # 𝑚 MATHEMATICAL ITALIC SMALL M
|
||||
'n': '\U0001d45b', # 𝑛 MATHEMATICAL ITALIC SMALL N
|
||||
'o': '\U0001d45c', # 𝑜 MATHEMATICAL ITALIC SMALL O
|
||||
'p': '\U0001d45d', # 𝑝 MATHEMATICAL ITALIC SMALL P
|
||||
'q': '\U0001d45e', # 𝑞 MATHEMATICAL ITALIC SMALL Q
|
||||
'r': '\U0001d45f', # 𝑟 MATHEMATICAL ITALIC SMALL R
|
||||
's': '\U0001d460', # 𝑠 MATHEMATICAL ITALIC SMALL S
|
||||
't': '\U0001d461', # 𝑡 MATHEMATICAL ITALIC SMALL T
|
||||
'u': '\U0001d462', # 𝑢 MATHEMATICAL ITALIC SMALL U
|
||||
'v': '\U0001d463', # 𝑣 MATHEMATICAL ITALIC SMALL V
|
||||
'w': '\U0001d464', # 𝑤 MATHEMATICAL ITALIC SMALL W
|
||||
'x': '\U0001d465', # 𝑥 MATHEMATICAL ITALIC SMALL X
|
||||
'y': '\U0001d466', # 𝑦 MATHEMATICAL ITALIC SMALL Y
|
||||
'z': '\U0001d467', # 𝑧 MATHEMATICAL ITALIC SMALL Z
|
||||
'ı': '\U0001d6a4', # 𝚤 MATHEMATICAL ITALIC SMALL DOTLESS I
|
||||
'ȷ': '\U0001d6a5', # 𝚥 MATHEMATICAL ITALIC SMALL DOTLESS J
|
||||
'Γ': '\U0001d6e4', # 𝛤 MATHEMATICAL ITALIC CAPITAL GAMMA
|
||||
'Δ': '\U0001d6e5', # 𝛥 MATHEMATICAL ITALIC CAPITAL DELTA
|
||||
'Θ': '\U0001d6e9', # 𝛩 MATHEMATICAL ITALIC CAPITAL THETA
|
||||
'Λ': '\U0001d6ec', # 𝛬 MATHEMATICAL ITALIC CAPITAL LAMDA
|
||||
'Ξ': '\U0001d6ef', # 𝛯 MATHEMATICAL ITALIC CAPITAL XI
|
||||
'Π': '\U0001d6f1', # 𝛱 MATHEMATICAL ITALIC CAPITAL PI
|
||||
'Σ': '\U0001d6f4', # 𝛴 MATHEMATICAL ITALIC CAPITAL SIGMA
|
||||
'Υ': '\U0001d6f6', # 𝛶 MATHEMATICAL ITALIC CAPITAL UPSILON
|
||||
'Φ': '\U0001d6f7', # 𝛷 MATHEMATICAL ITALIC CAPITAL PHI
|
||||
'Ψ': '\U0001d6f9', # 𝛹 MATHEMATICAL ITALIC CAPITAL PSI
|
||||
'Ω': '\U0001d6fa', # 𝛺 MATHEMATICAL ITALIC CAPITAL OMEGA
|
||||
'α': '\U0001d6fc', # 𝛼 MATHEMATICAL ITALIC SMALL ALPHA
|
||||
'β': '\U0001d6fd', # 𝛽 MATHEMATICAL ITALIC SMALL BETA
|
||||
'γ': '\U0001d6fe', # 𝛾 MATHEMATICAL ITALIC SMALL GAMMA
|
||||
'δ': '\U0001d6ff', # 𝛿 MATHEMATICAL ITALIC SMALL DELTA
|
||||
'ε': '\U0001d700', # 𝜀 MATHEMATICAL ITALIC SMALL EPSILON
|
||||
'ζ': '\U0001d701', # 𝜁 MATHEMATICAL ITALIC SMALL ZETA
|
||||
'η': '\U0001d702', # 𝜂 MATHEMATICAL ITALIC SMALL ETA
|
||||
'θ': '\U0001d703', # 𝜃 MATHEMATICAL ITALIC SMALL THETA
|
||||
'ι': '\U0001d704', # 𝜄 MATHEMATICAL ITALIC SMALL IOTA
|
||||
'κ': '\U0001d705', # 𝜅 MATHEMATICAL ITALIC SMALL KAPPA
|
||||
'λ': '\U0001d706', # 𝜆 MATHEMATICAL ITALIC SMALL LAMDA
|
||||
'μ': '\U0001d707', # 𝜇 MATHEMATICAL ITALIC SMALL MU
|
||||
'ν': '\U0001d708', # 𝜈 MATHEMATICAL ITALIC SMALL NU
|
||||
'ξ': '\U0001d709', # 𝜉 MATHEMATICAL ITALIC SMALL XI
|
||||
'π': '\U0001d70b', # 𝜋 MATHEMATICAL ITALIC SMALL PI
|
||||
'ρ': '\U0001d70c', # 𝜌 MATHEMATICAL ITALIC SMALL RHO
|
||||
'ς': '\U0001d70d', # 𝜍 MATHEMATICAL ITALIC SMALL FINAL SIGMA
|
||||
'σ': '\U0001d70e', # 𝜎 MATHEMATICAL ITALIC SMALL SIGMA
|
||||
'τ': '\U0001d70f', # 𝜏 MATHEMATICAL ITALIC SMALL TAU
|
||||
'υ': '\U0001d710', # 𝜐 MATHEMATICAL ITALIC SMALL UPSILON
|
||||
'φ': '\U0001d711', # 𝜑 MATHEMATICAL ITALIC SMALL PHI
|
||||
'χ': '\U0001d712', # 𝜒 MATHEMATICAL ITALIC SMALL CHI
|
||||
'ψ': '\U0001d713', # 𝜓 MATHEMATICAL ITALIC SMALL PSI
|
||||
'ω': '\U0001d714', # 𝜔 MATHEMATICAL ITALIC SMALL OMEGA
|
||||
'ϑ': '\U0001d717', # 𝜗 MATHEMATICAL ITALIC THETA SYMBOL
|
||||
'ϕ': '\U0001d719', # 𝜙 MATHEMATICAL ITALIC PHI SYMBOL
|
||||
'ϖ': '\U0001d71b', # 𝜛 MATHEMATICAL ITALIC PI SYMBOL
|
||||
'ϱ': '\U0001d71a', # 𝜚 MATHEMATICAL ITALIC RHO SYMBOL
|
||||
'ϵ': '\U0001d716', # 𝜖 MATHEMATICAL ITALIC EPSILON SYMBOL
|
||||
'∂': '\U0001d715', # 𝜕 MATHEMATICAL ITALIC PARTIAL DIFFERENTIAL
|
||||
'∇': '\U0001d6fb', # 𝛻 MATHEMATICAL ITALIC NABLA
|
||||
}
|
||||
|
||||
mathsf = {
|
||||
'0': '\U0001d7e2', # 𝟢 MATHEMATICAL SANS-SERIF DIGIT ZERO
|
||||
'1': '\U0001d7e3', # 𝟣 MATHEMATICAL SANS-SERIF DIGIT ONE
|
||||
'2': '\U0001d7e4', # 𝟤 MATHEMATICAL SANS-SERIF DIGIT TWO
|
||||
'3': '\U0001d7e5', # 𝟥 MATHEMATICAL SANS-SERIF DIGIT THREE
|
||||
'4': '\U0001d7e6', # 𝟦 MATHEMATICAL SANS-SERIF DIGIT FOUR
|
||||
'5': '\U0001d7e7', # 𝟧 MATHEMATICAL SANS-SERIF DIGIT FIVE
|
||||
'6': '\U0001d7e8', # 𝟨 MATHEMATICAL SANS-SERIF DIGIT SIX
|
||||
'7': '\U0001d7e9', # 𝟩 MATHEMATICAL SANS-SERIF DIGIT SEVEN
|
||||
'8': '\U0001d7ea', # 𝟪 MATHEMATICAL SANS-SERIF DIGIT EIGHT
|
||||
'9': '\U0001d7eb', # 𝟫 MATHEMATICAL SANS-SERIF DIGIT NINE
|
||||
'A': '\U0001d5a0', # 𝖠 MATHEMATICAL SANS-SERIF CAPITAL A
|
||||
'B': '\U0001d5a1', # 𝖡 MATHEMATICAL SANS-SERIF CAPITAL B
|
||||
'C': '\U0001d5a2', # 𝖢 MATHEMATICAL SANS-SERIF CAPITAL C
|
||||
'D': '\U0001d5a3', # 𝖣 MATHEMATICAL SANS-SERIF CAPITAL D
|
||||
'E': '\U0001d5a4', # 𝖤 MATHEMATICAL SANS-SERIF CAPITAL E
|
||||
'F': '\U0001d5a5', # 𝖥 MATHEMATICAL SANS-SERIF CAPITAL F
|
||||
'G': '\U0001d5a6', # 𝖦 MATHEMATICAL SANS-SERIF CAPITAL G
|
||||
'H': '\U0001d5a7', # 𝖧 MATHEMATICAL SANS-SERIF CAPITAL H
|
||||
'I': '\U0001d5a8', # 𝖨 MATHEMATICAL SANS-SERIF CAPITAL I
|
||||
'J': '\U0001d5a9', # 𝖩 MATHEMATICAL SANS-SERIF CAPITAL J
|
||||
'K': '\U0001d5aa', # 𝖪 MATHEMATICAL SANS-SERIF CAPITAL K
|
||||
'L': '\U0001d5ab', # 𝖫 MATHEMATICAL SANS-SERIF CAPITAL L
|
||||
'M': '\U0001d5ac', # 𝖬 MATHEMATICAL SANS-SERIF CAPITAL M
|
||||
'N': '\U0001d5ad', # 𝖭 MATHEMATICAL SANS-SERIF CAPITAL N
|
||||
'O': '\U0001d5ae', # 𝖮 MATHEMATICAL SANS-SERIF CAPITAL O
|
||||
'P': '\U0001d5af', # 𝖯 MATHEMATICAL SANS-SERIF CAPITAL P
|
||||
'Q': '\U0001d5b0', # 𝖰 MATHEMATICAL SANS-SERIF CAPITAL Q
|
||||
'R': '\U0001d5b1', # 𝖱 MATHEMATICAL SANS-SERIF CAPITAL R
|
||||
'S': '\U0001d5b2', # 𝖲 MATHEMATICAL SANS-SERIF CAPITAL S
|
||||
'T': '\U0001d5b3', # 𝖳 MATHEMATICAL SANS-SERIF CAPITAL T
|
||||
'U': '\U0001d5b4', # 𝖴 MATHEMATICAL SANS-SERIF CAPITAL U
|
||||
'V': '\U0001d5b5', # 𝖵 MATHEMATICAL SANS-SERIF CAPITAL V
|
||||
'W': '\U0001d5b6', # 𝖶 MATHEMATICAL SANS-SERIF CAPITAL W
|
||||
'X': '\U0001d5b7', # 𝖷 MATHEMATICAL SANS-SERIF CAPITAL X
|
||||
'Y': '\U0001d5b8', # 𝖸 MATHEMATICAL SANS-SERIF CAPITAL Y
|
||||
'Z': '\U0001d5b9', # 𝖹 MATHEMATICAL SANS-SERIF CAPITAL Z
|
||||
'a': '\U0001d5ba', # 𝖺 MATHEMATICAL SANS-SERIF SMALL A
|
||||
'b': '\U0001d5bb', # 𝖻 MATHEMATICAL SANS-SERIF SMALL B
|
||||
'c': '\U0001d5bc', # 𝖼 MATHEMATICAL SANS-SERIF SMALL C
|
||||
'd': '\U0001d5bd', # 𝖽 MATHEMATICAL SANS-SERIF SMALL D
|
||||
'e': '\U0001d5be', # 𝖾 MATHEMATICAL SANS-SERIF SMALL E
|
||||
'f': '\U0001d5bf', # 𝖿 MATHEMATICAL SANS-SERIF SMALL F
|
||||
'g': '\U0001d5c0', # 𝗀 MATHEMATICAL SANS-SERIF SMALL G
|
||||
'h': '\U0001d5c1', # 𝗁 MATHEMATICAL SANS-SERIF SMALL H
|
||||
'i': '\U0001d5c2', # 𝗂 MATHEMATICAL SANS-SERIF SMALL I
|
||||
'j': '\U0001d5c3', # 𝗃 MATHEMATICAL SANS-SERIF SMALL J
|
||||
'k': '\U0001d5c4', # 𝗄 MATHEMATICAL SANS-SERIF SMALL K
|
||||
'l': '\U0001d5c5', # 𝗅 MATHEMATICAL SANS-SERIF SMALL L
|
||||
'm': '\U0001d5c6', # 𝗆 MATHEMATICAL SANS-SERIF SMALL M
|
||||
'n': '\U0001d5c7', # 𝗇 MATHEMATICAL SANS-SERIF SMALL N
|
||||
'o': '\U0001d5c8', # 𝗈 MATHEMATICAL SANS-SERIF SMALL O
|
||||
'p': '\U0001d5c9', # 𝗉 MATHEMATICAL SANS-SERIF SMALL P
|
||||
'q': '\U0001d5ca', # 𝗊 MATHEMATICAL SANS-SERIF SMALL Q
|
||||
'r': '\U0001d5cb', # 𝗋 MATHEMATICAL SANS-SERIF SMALL R
|
||||
's': '\U0001d5cc', # 𝗌 MATHEMATICAL SANS-SERIF SMALL S
|
||||
't': '\U0001d5cd', # 𝗍 MATHEMATICAL SANS-SERIF SMALL T
|
||||
'u': '\U0001d5ce', # 𝗎 MATHEMATICAL SANS-SERIF SMALL U
|
||||
'v': '\U0001d5cf', # 𝗏 MATHEMATICAL SANS-SERIF SMALL V
|
||||
'w': '\U0001d5d0', # 𝗐 MATHEMATICAL SANS-SERIF SMALL W
|
||||
'x': '\U0001d5d1', # 𝗑 MATHEMATICAL SANS-SERIF SMALL X
|
||||
'y': '\U0001d5d2', # 𝗒 MATHEMATICAL SANS-SERIF SMALL Y
|
||||
'z': '\U0001d5d3', # 𝗓 MATHEMATICAL SANS-SERIF SMALL Z
|
||||
}
|
||||
|
||||
mathsfbf = {
|
||||
'0': '\U0001d7ec', # 𝟬 MATHEMATICAL SANS-SERIF BOLD DIGIT ZERO
|
||||
'1': '\U0001d7ed', # 𝟭 MATHEMATICAL SANS-SERIF BOLD DIGIT ONE
|
||||
'2': '\U0001d7ee', # 𝟮 MATHEMATICAL SANS-SERIF BOLD DIGIT TWO
|
||||
'3': '\U0001d7ef', # 𝟯 MATHEMATICAL SANS-SERIF BOLD DIGIT THREE
|
||||
'4': '\U0001d7f0', # 𝟰 MATHEMATICAL SANS-SERIF BOLD DIGIT FOUR
|
||||
'5': '\U0001d7f1', # 𝟱 MATHEMATICAL SANS-SERIF BOLD DIGIT FIVE
|
||||
'6': '\U0001d7f2', # 𝟲 MATHEMATICAL SANS-SERIF BOLD DIGIT SIX
|
||||
'7': '\U0001d7f3', # 𝟳 MATHEMATICAL SANS-SERIF BOLD DIGIT SEVEN
|
||||
'8': '\U0001d7f4', # 𝟴 MATHEMATICAL SANS-SERIF BOLD DIGIT EIGHT
|
||||
'9': '\U0001d7f5', # 𝟵 MATHEMATICAL SANS-SERIF BOLD DIGIT NINE
|
||||
'A': '\U0001d5d4', # 𝗔 MATHEMATICAL SANS-SERIF BOLD CAPITAL A
|
||||
'B': '\U0001d5d5', # 𝗕 MATHEMATICAL SANS-SERIF BOLD CAPITAL B
|
||||
'C': '\U0001d5d6', # 𝗖 MATHEMATICAL SANS-SERIF BOLD CAPITAL C
|
||||
'D': '\U0001d5d7', # 𝗗 MATHEMATICAL SANS-SERIF BOLD CAPITAL D
|
||||
'E': '\U0001d5d8', # 𝗘 MATHEMATICAL SANS-SERIF BOLD CAPITAL E
|
||||
'F': '\U0001d5d9', # 𝗙 MATHEMATICAL SANS-SERIF BOLD CAPITAL F
|
||||
'G': '\U0001d5da', # 𝗚 MATHEMATICAL SANS-SERIF BOLD CAPITAL G
|
||||
'H': '\U0001d5db', # 𝗛 MATHEMATICAL SANS-SERIF BOLD CAPITAL H
|
||||
'I': '\U0001d5dc', # 𝗜 MATHEMATICAL SANS-SERIF BOLD CAPITAL I
|
||||
'J': '\U0001d5dd', # 𝗝 MATHEMATICAL SANS-SERIF BOLD CAPITAL J
|
||||
'K': '\U0001d5de', # 𝗞 MATHEMATICAL SANS-SERIF BOLD CAPITAL K
|
||||
'L': '\U0001d5df', # 𝗟 MATHEMATICAL SANS-SERIF BOLD CAPITAL L
|
||||
'M': '\U0001d5e0', # 𝗠 MATHEMATICAL SANS-SERIF BOLD CAPITAL M
|
||||
'N': '\U0001d5e1', # 𝗡 MATHEMATICAL SANS-SERIF BOLD CAPITAL N
|
||||
'O': '\U0001d5e2', # 𝗢 MATHEMATICAL SANS-SERIF BOLD CAPITAL O
|
||||
'P': '\U0001d5e3', # 𝗣 MATHEMATICAL SANS-SERIF BOLD CAPITAL P
|
||||
'Q': '\U0001d5e4', # 𝗤 MATHEMATICAL SANS-SERIF BOLD CAPITAL Q
|
||||
'R': '\U0001d5e5', # 𝗥 MATHEMATICAL SANS-SERIF BOLD CAPITAL R
|
||||
'S': '\U0001d5e6', # 𝗦 MATHEMATICAL SANS-SERIF BOLD CAPITAL S
|
||||
'T': '\U0001d5e7', # 𝗧 MATHEMATICAL SANS-SERIF BOLD CAPITAL T
|
||||
'U': '\U0001d5e8', # 𝗨 MATHEMATICAL SANS-SERIF BOLD CAPITAL U
|
||||
'V': '\U0001d5e9', # 𝗩 MATHEMATICAL SANS-SERIF BOLD CAPITAL V
|
||||
'W': '\U0001d5ea', # 𝗪 MATHEMATICAL SANS-SERIF BOLD CAPITAL W
|
||||
'X': '\U0001d5eb', # 𝗫 MATHEMATICAL SANS-SERIF BOLD CAPITAL X
|
||||
'Y': '\U0001d5ec', # 𝗬 MATHEMATICAL SANS-SERIF BOLD CAPITAL Y
|
||||
'Z': '\U0001d5ed', # 𝗭 MATHEMATICAL SANS-SERIF BOLD CAPITAL Z
|
||||
'a': '\U0001d5ee', # 𝗮 MATHEMATICAL SANS-SERIF BOLD SMALL A
|
||||
'b': '\U0001d5ef', # 𝗯 MATHEMATICAL SANS-SERIF BOLD SMALL B
|
||||
'c': '\U0001d5f0', # 𝗰 MATHEMATICAL SANS-SERIF BOLD SMALL C
|
||||
'd': '\U0001d5f1', # 𝗱 MATHEMATICAL SANS-SERIF BOLD SMALL D
|
||||
'e': '\U0001d5f2', # 𝗲 MATHEMATICAL SANS-SERIF BOLD SMALL E
|
||||
'f': '\U0001d5f3', # 𝗳 MATHEMATICAL SANS-SERIF BOLD SMALL F
|
||||
'g': '\U0001d5f4', # 𝗴 MATHEMATICAL SANS-SERIF BOLD SMALL G
|
||||
'h': '\U0001d5f5', # 𝗵 MATHEMATICAL SANS-SERIF BOLD SMALL H
|
||||
'i': '\U0001d5f6', # 𝗶 MATHEMATICAL SANS-SERIF BOLD SMALL I
|
||||
'j': '\U0001d5f7', # 𝗷 MATHEMATICAL SANS-SERIF BOLD SMALL J
|
||||
'k': '\U0001d5f8', # 𝗸 MATHEMATICAL SANS-SERIF BOLD SMALL K
|
||||
'l': '\U0001d5f9', # 𝗹 MATHEMATICAL SANS-SERIF BOLD SMALL L
|
||||
'm': '\U0001d5fa', # 𝗺 MATHEMATICAL SANS-SERIF BOLD SMALL M
|
||||
'n': '\U0001d5fb', # 𝗻 MATHEMATICAL SANS-SERIF BOLD SMALL N
|
||||
'o': '\U0001d5fc', # 𝗼 MATHEMATICAL SANS-SERIF BOLD SMALL O
|
||||
'p': '\U0001d5fd', # 𝗽 MATHEMATICAL SANS-SERIF BOLD SMALL P
|
||||
'q': '\U0001d5fe', # 𝗾 MATHEMATICAL SANS-SERIF BOLD SMALL Q
|
||||
'r': '\U0001d5ff', # 𝗿 MATHEMATICAL SANS-SERIF BOLD SMALL R
|
||||
's': '\U0001d600', # 𝘀 MATHEMATICAL SANS-SERIF BOLD SMALL S
|
||||
't': '\U0001d601', # 𝘁 MATHEMATICAL SANS-SERIF BOLD SMALL T
|
||||
'u': '\U0001d602', # 𝘂 MATHEMATICAL SANS-SERIF BOLD SMALL U
|
||||
'v': '\U0001d603', # 𝘃 MATHEMATICAL SANS-SERIF BOLD SMALL V
|
||||
'w': '\U0001d604', # 𝘄 MATHEMATICAL SANS-SERIF BOLD SMALL W
|
||||
'x': '\U0001d605', # 𝘅 MATHEMATICAL SANS-SERIF BOLD SMALL X
|
||||
'y': '\U0001d606', # 𝘆 MATHEMATICAL SANS-SERIF BOLD SMALL Y
|
||||
'z': '\U0001d607', # 𝘇 MATHEMATICAL SANS-SERIF BOLD SMALL Z
|
||||
'Γ': '\U0001d758', # 𝝘 MATHEMATICAL SANS-SERIF BOLD CAPITAL GAMMA
|
||||
'Δ': '\U0001d759', # 𝝙 MATHEMATICAL SANS-SERIF BOLD CAPITAL DELTA
|
||||
'Θ': '\U0001d75d', # 𝝝 MATHEMATICAL SANS-SERIF BOLD CAPITAL THETA
|
||||
'Λ': '\U0001d760', # 𝝠 MATHEMATICAL SANS-SERIF BOLD CAPITAL LAMDA
|
||||
'Ξ': '\U0001d763', # 𝝣 MATHEMATICAL SANS-SERIF BOLD CAPITAL XI
|
||||
'Π': '\U0001d765', # 𝝥 MATHEMATICAL SANS-SERIF BOLD CAPITAL PI
|
||||
'Σ': '\U0001d768', # 𝝨 MATHEMATICAL SANS-SERIF BOLD CAPITAL SIGMA
|
||||
'Υ': '\U0001d76a', # 𝝪 MATHEMATICAL SANS-SERIF BOLD CAPITAL UPSILON
|
||||
'Φ': '\U0001d76b', # 𝝫 MATHEMATICAL SANS-SERIF BOLD CAPITAL PHI
|
||||
'Ψ': '\U0001d76d', # 𝝭 MATHEMATICAL SANS-SERIF BOLD CAPITAL PSI
|
||||
'Ω': '\U0001d76e', # 𝝮 MATHEMATICAL SANS-SERIF BOLD CAPITAL OMEGA
|
||||
'α': '\U0001d770', # 𝝰 MATHEMATICAL SANS-SERIF BOLD SMALL ALPHA
|
||||
'β': '\U0001d771', # 𝝱 MATHEMATICAL SANS-SERIF BOLD SMALL BETA
|
||||
'γ': '\U0001d772', # 𝝲 MATHEMATICAL SANS-SERIF BOLD SMALL GAMMA
|
||||
'δ': '\U0001d773', # 𝝳 MATHEMATICAL SANS-SERIF BOLD SMALL DELTA
|
||||
'ε': '\U0001d774', # 𝝴 MATHEMATICAL SANS-SERIF BOLD SMALL EPSILON
|
||||
'ζ': '\U0001d775', # 𝝵 MATHEMATICAL SANS-SERIF BOLD SMALL ZETA
|
||||
'η': '\U0001d776', # 𝝶 MATHEMATICAL SANS-SERIF BOLD SMALL ETA
|
||||
'θ': '\U0001d777', # 𝝷 MATHEMATICAL SANS-SERIF BOLD SMALL THETA
|
||||
'ι': '\U0001d778', # 𝝸 MATHEMATICAL SANS-SERIF BOLD SMALL IOTA
|
||||
'κ': '\U0001d779', # 𝝹 MATHEMATICAL SANS-SERIF BOLD SMALL KAPPA
|
||||
'λ': '\U0001d77a', # 𝝺 MATHEMATICAL SANS-SERIF BOLD SMALL LAMDA
|
||||
'μ': '\U0001d77b', # 𝝻 MATHEMATICAL SANS-SERIF BOLD SMALL MU
|
||||
'ν': '\U0001d77c', # 𝝼 MATHEMATICAL SANS-SERIF BOLD SMALL NU
|
||||
'ξ': '\U0001d77d', # 𝝽 MATHEMATICAL SANS-SERIF BOLD SMALL XI
|
||||
'π': '\U0001d77f', # 𝝿 MATHEMATICAL SANS-SERIF BOLD SMALL PI
|
||||
'ρ': '\U0001d780', # 𝞀 MATHEMATICAL SANS-SERIF BOLD SMALL RHO
|
||||
'ς': '\U0001d781', # 𝞁 MATHEMATICAL SANS-SERIF BOLD SMALL FINAL SIGMA
|
||||
'σ': '\U0001d782', # 𝞂 MATHEMATICAL SANS-SERIF BOLD SMALL SIGMA
|
||||
'τ': '\U0001d783', # 𝞃 MATHEMATICAL SANS-SERIF BOLD SMALL TAU
|
||||
'υ': '\U0001d784', # 𝞄 MATHEMATICAL SANS-SERIF BOLD SMALL UPSILON
|
||||
'φ': '\U0001d785', # 𝞅 MATHEMATICAL SANS-SERIF BOLD SMALL PHI
|
||||
'χ': '\U0001d786', # 𝞆 MATHEMATICAL SANS-SERIF BOLD SMALL CHI
|
||||
'ψ': '\U0001d787', # 𝞇 MATHEMATICAL SANS-SERIF BOLD SMALL PSI
|
||||
'ω': '\U0001d788', # 𝞈 MATHEMATICAL SANS-SERIF BOLD SMALL OMEGA
|
||||
'ϑ': '\U0001d78b', # 𝞋 MATHEMATICAL SANS-SERIF BOLD THETA SYMBOL
|
||||
'ϕ': '\U0001d78d', # 𝞍 MATHEMATICAL SANS-SERIF BOLD PHI SYMBOL
|
||||
'ϖ': '\U0001d78f', # 𝞏 MATHEMATICAL SANS-SERIF BOLD PI SYMBOL
|
||||
'ϱ': '\U0001d78e', # 𝞎 MATHEMATICAL SANS-SERIF BOLD RHO SYMBOL
|
||||
'ϵ': '\U0001d78a', # 𝞊 MATHEMATICAL SANS-SERIF BOLD EPSILON SYMBOL
|
||||
'∇': '\U0001d76f', # 𝝯 MATHEMATICAL SANS-SERIF BOLD NABLA
|
||||
}
|
||||
|
||||
mathsfbfit = {
|
||||
'A': '\U0001d63c', # 𝘼 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL A
|
||||
'B': '\U0001d63d', # 𝘽 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL B
|
||||
'C': '\U0001d63e', # 𝘾 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL C
|
||||
'D': '\U0001d63f', # 𝘿 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL D
|
||||
'E': '\U0001d640', # 𝙀 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL E
|
||||
'F': '\U0001d641', # 𝙁 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL F
|
||||
'G': '\U0001d642', # 𝙂 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL G
|
||||
'H': '\U0001d643', # 𝙃 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL H
|
||||
'I': '\U0001d644', # 𝙄 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL I
|
||||
'J': '\U0001d645', # 𝙅 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL J
|
||||
'K': '\U0001d646', # 𝙆 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL K
|
||||
'L': '\U0001d647', # 𝙇 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL L
|
||||
'M': '\U0001d648', # 𝙈 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL M
|
||||
'N': '\U0001d649', # 𝙉 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL N
|
||||
'O': '\U0001d64a', # 𝙊 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL O
|
||||
'P': '\U0001d64b', # 𝙋 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL P
|
||||
'Q': '\U0001d64c', # 𝙌 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL Q
|
||||
'R': '\U0001d64d', # 𝙍 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL R
|
||||
'S': '\U0001d64e', # 𝙎 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL S
|
||||
'T': '\U0001d64f', # 𝙏 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL T
|
||||
'U': '\U0001d650', # 𝙐 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL U
|
||||
'V': '\U0001d651', # 𝙑 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL V
|
||||
'W': '\U0001d652', # 𝙒 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL W
|
||||
'X': '\U0001d653', # 𝙓 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL X
|
||||
'Y': '\U0001d654', # 𝙔 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL Y
|
||||
'Z': '\U0001d655', # 𝙕 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL Z
|
||||
'a': '\U0001d656', # 𝙖 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL A
|
||||
'b': '\U0001d657', # 𝙗 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL B
|
||||
'c': '\U0001d658', # 𝙘 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL C
|
||||
'd': '\U0001d659', # 𝙙 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL D
|
||||
'e': '\U0001d65a', # 𝙚 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL E
|
||||
'f': '\U0001d65b', # 𝙛 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL F
|
||||
'g': '\U0001d65c', # 𝙜 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL G
|
||||
'h': '\U0001d65d', # 𝙝 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL H
|
||||
'i': '\U0001d65e', # 𝙞 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL I
|
||||
'j': '\U0001d65f', # 𝙟 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL J
|
||||
'k': '\U0001d660', # 𝙠 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL K
|
||||
'l': '\U0001d661', # 𝙡 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL L
|
||||
'm': '\U0001d662', # 𝙢 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL M
|
||||
'n': '\U0001d663', # 𝙣 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL N
|
||||
'o': '\U0001d664', # 𝙤 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL O
|
||||
'p': '\U0001d665', # 𝙥 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL P
|
||||
'q': '\U0001d666', # 𝙦 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL Q
|
||||
'r': '\U0001d667', # 𝙧 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL R
|
||||
's': '\U0001d668', # 𝙨 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL S
|
||||
't': '\U0001d669', # 𝙩 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL T
|
||||
'u': '\U0001d66a', # 𝙪 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL U
|
||||
'v': '\U0001d66b', # 𝙫 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL V
|
||||
'w': '\U0001d66c', # 𝙬 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL W
|
||||
'x': '\U0001d66d', # 𝙭 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL X
|
||||
'y': '\U0001d66e', # 𝙮 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL Y
|
||||
'z': '\U0001d66f', # 𝙯 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL Z
|
||||
'Γ': '\U0001d792', # 𝞒 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL GAMMA
|
||||
'Δ': '\U0001d793', # 𝞓 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL DELTA
|
||||
'Θ': '\U0001d797', # 𝞗 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL THETA
|
||||
'Λ': '\U0001d79a', # 𝞚 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL LAMDA
|
||||
'Ξ': '\U0001d79d', # 𝞝 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL XI
|
||||
'Π': '\U0001d79f', # 𝞟 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL PI
|
||||
'Σ': '\U0001d7a2', # 𝞢 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL SIGMA
|
||||
'Υ': '\U0001d7a4', # 𝞤 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL UPSILON
|
||||
'Φ': '\U0001d7a5', # 𝞥 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL PHI
|
||||
'Ψ': '\U0001d7a7', # 𝞧 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL PSI
|
||||
'Ω': '\U0001d7a8', # 𝞨 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL OMEGA
|
||||
'α': '\U0001d7aa', # 𝞪 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL ALPHA
|
||||
'β': '\U0001d7ab', # 𝞫 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL BETA
|
||||
'γ': '\U0001d7ac', # 𝞬 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL GAMMA
|
||||
'δ': '\U0001d7ad', # 𝞭 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL DELTA
|
||||
'ε': '\U0001d7ae', # 𝞮 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL EPSILON
|
||||
'ζ': '\U0001d7af', # 𝞯 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL ZETA
|
||||
'η': '\U0001d7b0', # 𝞰 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL ETA
|
||||
'θ': '\U0001d7b1', # 𝞱 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL THETA
|
||||
'ι': '\U0001d7b2', # 𝞲 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL IOTA
|
||||
'κ': '\U0001d7b3', # 𝞳 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL KAPPA
|
||||
'λ': '\U0001d7b4', # 𝞴 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL LAMDA
|
||||
'μ': '\U0001d7b5', # 𝞵 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL MU
|
||||
'ν': '\U0001d7b6', # 𝞶 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL NU
|
||||
'ξ': '\U0001d7b7', # 𝞷 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL XI
|
||||
'π': '\U0001d7b9', # 𝞹 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL PI
|
||||
'ρ': '\U0001d7ba', # 𝞺 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL RHO
|
||||
'ς': '\U0001d7bb', # 𝞻 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL FINAL SIGMA
|
||||
'σ': '\U0001d7bc', # 𝞼 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL SIGMA
|
||||
'τ': '\U0001d7bd', # 𝞽 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL TAU
|
||||
'υ': '\U0001d7be', # 𝞾 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL UPSILON
|
||||
'φ': '\U0001d7bf', # 𝞿 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL PHI
|
||||
'χ': '\U0001d7c0', # 𝟀 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL CHI
|
||||
'ψ': '\U0001d7c1', # 𝟁 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL PSI
|
||||
'ω': '\U0001d7c2', # 𝟂 MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL OMEGA
|
||||
'ϑ': '\U0001d7c5', # 𝟅 MATHEMATICAL SANS-SERIF BOLD ITALIC THETA SYMBOL
|
||||
'ϕ': '\U0001d7c7', # 𝟇 MATHEMATICAL SANS-SERIF BOLD ITALIC PHI SYMBOL
|
||||
'ϖ': '\U0001d7c9', # 𝟉 MATHEMATICAL SANS-SERIF BOLD ITALIC PI SYMBOL
|
||||
'ϰ': '\U0001d7c6', # 𝟆 MATHEMATICAL SANS-SERIF BOLD ITALIC KAPPA SYMBOL
|
||||
'ϱ': '\U0001d7c8', # 𝟈 MATHEMATICAL SANS-SERIF BOLD ITALIC RHO SYMBOL
|
||||
'ϵ': '\U0001d7c4', # 𝟄 MATHEMATICAL SANS-SERIF BOLD ITALIC EPSILON SYMBOL
|
||||
'∂': '\U0001d7c3', # 𝟃 MATHEMATICAL SANS-SERIF BOLD ITALIC PARTIAL DIFFERENTIAL
|
||||
'∇': '\U0001d7a9', # 𝞩 MATHEMATICAL SANS-SERIF BOLD ITALIC NABLA
|
||||
}
|
||||
|
||||
mathsfit = {
|
||||
'A': '\U0001d608', # 𝘈 MATHEMATICAL SANS-SERIF ITALIC CAPITAL A
|
||||
'B': '\U0001d609', # 𝘉 MATHEMATICAL SANS-SERIF ITALIC CAPITAL B
|
||||
'C': '\U0001d60a', # 𝘊 MATHEMATICAL SANS-SERIF ITALIC CAPITAL C
|
||||
'D': '\U0001d60b', # 𝘋 MATHEMATICAL SANS-SERIF ITALIC CAPITAL D
|
||||
'E': '\U0001d60c', # 𝘌 MATHEMATICAL SANS-SERIF ITALIC CAPITAL E
|
||||
'F': '\U0001d60d', # 𝘍 MATHEMATICAL SANS-SERIF ITALIC CAPITAL F
|
||||
'G': '\U0001d60e', # 𝘎 MATHEMATICAL SANS-SERIF ITALIC CAPITAL G
|
||||
'H': '\U0001d60f', # 𝘏 MATHEMATICAL SANS-SERIF ITALIC CAPITAL H
|
||||
'I': '\U0001d610', # 𝘐 MATHEMATICAL SANS-SERIF ITALIC CAPITAL I
|
||||
'J': '\U0001d611', # 𝘑 MATHEMATICAL SANS-SERIF ITALIC CAPITAL J
|
||||
'K': '\U0001d612', # 𝘒 MATHEMATICAL SANS-SERIF ITALIC CAPITAL K
|
||||
'L': '\U0001d613', # 𝘓 MATHEMATICAL SANS-SERIF ITALIC CAPITAL L
|
||||
'M': '\U0001d614', # 𝘔 MATHEMATICAL SANS-SERIF ITALIC CAPITAL M
|
||||
'N': '\U0001d615', # 𝘕 MATHEMATICAL SANS-SERIF ITALIC CAPITAL N
|
||||
'O': '\U0001d616', # 𝘖 MATHEMATICAL SANS-SERIF ITALIC CAPITAL O
|
||||
'P': '\U0001d617', # 𝘗 MATHEMATICAL SANS-SERIF ITALIC CAPITAL P
|
||||
'Q': '\U0001d618', # 𝘘 MATHEMATICAL SANS-SERIF ITALIC CAPITAL Q
|
||||
'R': '\U0001d619', # 𝘙 MATHEMATICAL SANS-SERIF ITALIC CAPITAL R
|
||||
'S': '\U0001d61a', # 𝘚 MATHEMATICAL SANS-SERIF ITALIC CAPITAL S
|
||||
'T': '\U0001d61b', # 𝘛 MATHEMATICAL SANS-SERIF ITALIC CAPITAL T
|
||||
'U': '\U0001d61c', # 𝘜 MATHEMATICAL SANS-SERIF ITALIC CAPITAL U
|
||||
'V': '\U0001d61d', # 𝘝 MATHEMATICAL SANS-SERIF ITALIC CAPITAL V
|
||||
'W': '\U0001d61e', # 𝘞 MATHEMATICAL SANS-SERIF ITALIC CAPITAL W
|
||||
'X': '\U0001d61f', # 𝘟 MATHEMATICAL SANS-SERIF ITALIC CAPITAL X
|
||||
'Y': '\U0001d620', # 𝘠 MATHEMATICAL SANS-SERIF ITALIC CAPITAL Y
|
||||
'Z': '\U0001d621', # 𝘡 MATHEMATICAL SANS-SERIF ITALIC CAPITAL Z
|
||||
'a': '\U0001d622', # 𝘢 MATHEMATICAL SANS-SERIF ITALIC SMALL A
|
||||
'b': '\U0001d623', # 𝘣 MATHEMATICAL SANS-SERIF ITALIC SMALL B
|
||||
'c': '\U0001d624', # 𝘤 MATHEMATICAL SANS-SERIF ITALIC SMALL C
|
||||
'd': '\U0001d625', # 𝘥 MATHEMATICAL SANS-SERIF ITALIC SMALL D
|
||||
'e': '\U0001d626', # 𝘦 MATHEMATICAL SANS-SERIF ITALIC SMALL E
|
||||
'f': '\U0001d627', # 𝘧 MATHEMATICAL SANS-SERIF ITALIC SMALL F
|
||||
'g': '\U0001d628', # 𝘨 MATHEMATICAL SANS-SERIF ITALIC SMALL G
|
||||
'h': '\U0001d629', # 𝘩 MATHEMATICAL SANS-SERIF ITALIC SMALL H
|
||||
'i': '\U0001d62a', # 𝘪 MATHEMATICAL SANS-SERIF ITALIC SMALL I
|
||||
'j': '\U0001d62b', # 𝘫 MATHEMATICAL SANS-SERIF ITALIC SMALL J
|
||||
'k': '\U0001d62c', # 𝘬 MATHEMATICAL SANS-SERIF ITALIC SMALL K
|
||||
'l': '\U0001d62d', # 𝘭 MATHEMATICAL SANS-SERIF ITALIC SMALL L
|
||||
'm': '\U0001d62e', # 𝘮 MATHEMATICAL SANS-SERIF ITALIC SMALL M
|
||||
'n': '\U0001d62f', # 𝘯 MATHEMATICAL SANS-SERIF ITALIC SMALL N
|
||||
'o': '\U0001d630', # 𝘰 MATHEMATICAL SANS-SERIF ITALIC SMALL O
|
||||
'p': '\U0001d631', # 𝘱 MATHEMATICAL SANS-SERIF ITALIC SMALL P
|
||||
'q': '\U0001d632', # 𝘲 MATHEMATICAL SANS-SERIF ITALIC SMALL Q
|
||||
'r': '\U0001d633', # 𝘳 MATHEMATICAL SANS-SERIF ITALIC SMALL R
|
||||
's': '\U0001d634', # 𝘴 MATHEMATICAL SANS-SERIF ITALIC SMALL S
|
||||
't': '\U0001d635', # 𝘵 MATHEMATICAL SANS-SERIF ITALIC SMALL T
|
||||
'u': '\U0001d636', # 𝘶 MATHEMATICAL SANS-SERIF ITALIC SMALL U
|
||||
'v': '\U0001d637', # 𝘷 MATHEMATICAL SANS-SERIF ITALIC SMALL V
|
||||
'w': '\U0001d638', # 𝘸 MATHEMATICAL SANS-SERIF ITALIC SMALL W
|
||||
'x': '\U0001d639', # 𝘹 MATHEMATICAL SANS-SERIF ITALIC SMALL X
|
||||
'y': '\U0001d63a', # 𝘺 MATHEMATICAL SANS-SERIF ITALIC SMALL Y
|
||||
'z': '\U0001d63b', # 𝘻 MATHEMATICAL SANS-SERIF ITALIC SMALL Z
|
||||
}
|
||||
|
||||
mathtt = {
|
||||
'0': '\U0001d7f6', # 𝟶 MATHEMATICAL MONOSPACE DIGIT ZERO
|
||||
'1': '\U0001d7f7', # 𝟷 MATHEMATICAL MONOSPACE DIGIT ONE
|
||||
'2': '\U0001d7f8', # 𝟸 MATHEMATICAL MONOSPACE DIGIT TWO
|
||||
'3': '\U0001d7f9', # 𝟹 MATHEMATICAL MONOSPACE DIGIT THREE
|
||||
'4': '\U0001d7fa', # 𝟺 MATHEMATICAL MONOSPACE DIGIT FOUR
|
||||
'5': '\U0001d7fb', # 𝟻 MATHEMATICAL MONOSPACE DIGIT FIVE
|
||||
'6': '\U0001d7fc', # 𝟼 MATHEMATICAL MONOSPACE DIGIT SIX
|
||||
'7': '\U0001d7fd', # 𝟽 MATHEMATICAL MONOSPACE DIGIT SEVEN
|
||||
'8': '\U0001d7fe', # 𝟾 MATHEMATICAL MONOSPACE DIGIT EIGHT
|
||||
'9': '\U0001d7ff', # 𝟿 MATHEMATICAL MONOSPACE DIGIT NINE
|
||||
'A': '\U0001d670', # 𝙰 MATHEMATICAL MONOSPACE CAPITAL A
|
||||
'B': '\U0001d671', # 𝙱 MATHEMATICAL MONOSPACE CAPITAL B
|
||||
'C': '\U0001d672', # 𝙲 MATHEMATICAL MONOSPACE CAPITAL C
|
||||
'D': '\U0001d673', # 𝙳 MATHEMATICAL MONOSPACE CAPITAL D
|
||||
'E': '\U0001d674', # 𝙴 MATHEMATICAL MONOSPACE CAPITAL E
|
||||
'F': '\U0001d675', # 𝙵 MATHEMATICAL MONOSPACE CAPITAL F
|
||||
'G': '\U0001d676', # 𝙶 MATHEMATICAL MONOSPACE CAPITAL G
|
||||
'H': '\U0001d677', # 𝙷 MATHEMATICAL MONOSPACE CAPITAL H
|
||||
'I': '\U0001d678', # 𝙸 MATHEMATICAL MONOSPACE CAPITAL I
|
||||
'J': '\U0001d679', # 𝙹 MATHEMATICAL MONOSPACE CAPITAL J
|
||||
'K': '\U0001d67a', # 𝙺 MATHEMATICAL MONOSPACE CAPITAL K
|
||||
'L': '\U0001d67b', # 𝙻 MATHEMATICAL MONOSPACE CAPITAL L
|
||||
'M': '\U0001d67c', # 𝙼 MATHEMATICAL MONOSPACE CAPITAL M
|
||||
'N': '\U0001d67d', # 𝙽 MATHEMATICAL MONOSPACE CAPITAL N
|
||||
'O': '\U0001d67e', # 𝙾 MATHEMATICAL MONOSPACE CAPITAL O
|
||||
'P': '\U0001d67f', # 𝙿 MATHEMATICAL MONOSPACE CAPITAL P
|
||||
'Q': '\U0001d680', # 𝚀 MATHEMATICAL MONOSPACE CAPITAL Q
|
||||
'R': '\U0001d681', # 𝚁 MATHEMATICAL MONOSPACE CAPITAL R
|
||||
'S': '\U0001d682', # 𝚂 MATHEMATICAL MONOSPACE CAPITAL S
|
||||
'T': '\U0001d683', # 𝚃 MATHEMATICAL MONOSPACE CAPITAL T
|
||||
'U': '\U0001d684', # 𝚄 MATHEMATICAL MONOSPACE CAPITAL U
|
||||
'V': '\U0001d685', # 𝚅 MATHEMATICAL MONOSPACE CAPITAL V
|
||||
'W': '\U0001d686', # 𝚆 MATHEMATICAL MONOSPACE CAPITAL W
|
||||
'X': '\U0001d687', # 𝚇 MATHEMATICAL MONOSPACE CAPITAL X
|
||||
'Y': '\U0001d688', # 𝚈 MATHEMATICAL MONOSPACE CAPITAL Y
|
||||
'Z': '\U0001d689', # 𝚉 MATHEMATICAL MONOSPACE CAPITAL Z
|
||||
'a': '\U0001d68a', # 𝚊 MATHEMATICAL MONOSPACE SMALL A
|
||||
'b': '\U0001d68b', # 𝚋 MATHEMATICAL MONOSPACE SMALL B
|
||||
'c': '\U0001d68c', # 𝚌 MATHEMATICAL MONOSPACE SMALL C
|
||||
'd': '\U0001d68d', # 𝚍 MATHEMATICAL MONOSPACE SMALL D
|
||||
'e': '\U0001d68e', # 𝚎 MATHEMATICAL MONOSPACE SMALL E
|
||||
'f': '\U0001d68f', # 𝚏 MATHEMATICAL MONOSPACE SMALL F
|
||||
'g': '\U0001d690', # 𝚐 MATHEMATICAL MONOSPACE SMALL G
|
||||
'h': '\U0001d691', # 𝚑 MATHEMATICAL MONOSPACE SMALL H
|
||||
'i': '\U0001d692', # 𝚒 MATHEMATICAL MONOSPACE SMALL I
|
||||
'j': '\U0001d693', # 𝚓 MATHEMATICAL MONOSPACE SMALL J
|
||||
'k': '\U0001d694', # 𝚔 MATHEMATICAL MONOSPACE SMALL K
|
||||
'l': '\U0001d695', # 𝚕 MATHEMATICAL MONOSPACE SMALL L
|
||||
'm': '\U0001d696', # 𝚖 MATHEMATICAL MONOSPACE SMALL M
|
||||
'n': '\U0001d697', # 𝚗 MATHEMATICAL MONOSPACE SMALL N
|
||||
'o': '\U0001d698', # 𝚘 MATHEMATICAL MONOSPACE SMALL O
|
||||
'p': '\U0001d699', # 𝚙 MATHEMATICAL MONOSPACE SMALL P
|
||||
'q': '\U0001d69a', # 𝚚 MATHEMATICAL MONOSPACE SMALL Q
|
||||
'r': '\U0001d69b', # 𝚛 MATHEMATICAL MONOSPACE SMALL R
|
||||
's': '\U0001d69c', # 𝚜 MATHEMATICAL MONOSPACE SMALL S
|
||||
't': '\U0001d69d', # 𝚝 MATHEMATICAL MONOSPACE SMALL T
|
||||
'u': '\U0001d69e', # 𝚞 MATHEMATICAL MONOSPACE SMALL U
|
||||
'v': '\U0001d69f', # 𝚟 MATHEMATICAL MONOSPACE SMALL V
|
||||
'w': '\U0001d6a0', # 𝚠 MATHEMATICAL MONOSPACE SMALL W
|
||||
'x': '\U0001d6a1', # 𝚡 MATHEMATICAL MONOSPACE SMALL X
|
||||
'y': '\U0001d6a2', # 𝚢 MATHEMATICAL MONOSPACE SMALL Y
|
||||
'z': '\U0001d6a3', # 𝚣 MATHEMATICAL MONOSPACE SMALL Z
|
||||
}
|
||||
478
env/lib/python3.10/site-packages/docutils/utils/math/mathml_elements.py
vendored
Normal file
478
env/lib/python3.10/site-packages/docutils/utils/math/mathml_elements.py
vendored
Normal file
@@ -0,0 +1,478 @@
|
||||
# :Id: $Id: mathml_elements.py 9561 2024-03-14 16:34:48Z milde $
|
||||
# :Copyright: 2024 Günter Milde.
|
||||
#
|
||||
# :License: Released under the terms of the `2-Clause BSD license`_, in short:
|
||||
#
|
||||
# Copying and distribution of this file, with or without modification,
|
||||
# are permitted in any medium without royalty provided the copyright
|
||||
# notice and this notice are preserved.
|
||||
# This file is offered as-is, without any warranty.
|
||||
#
|
||||
# .. _2-Clause BSD license: https://opensource.org/licenses/BSD-2-Clause
|
||||
|
||||
"""MathML element classes based on `xml.etree`.
|
||||
|
||||
The module is intended for programmatic generation of MathML
|
||||
and covers the part of `MathML Core`_ that is required by
|
||||
Docutil's *TeX math to MathML* converter.
|
||||
|
||||
This module is PROVISIONAL:
|
||||
the API is not settled and may change with any minor Docutils version.
|
||||
|
||||
.. _MathML Core: https://www.w3.org/TR/mathml-core/
|
||||
"""
|
||||
|
||||
# Usage:
|
||||
#
|
||||
# >>> from mathml_elements import *
|
||||
|
||||
import numbers
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
|
||||
GLOBAL_ATTRIBUTES = (
|
||||
'class', # space-separated list of element classes
|
||||
# 'data-*', # custom data attributes (see HTML)
|
||||
'dir', # directionality ('ltr', 'rtl')
|
||||
'displaystyle', # True: normal, False: compact
|
||||
'id', # unique identifier
|
||||
# 'mathbackground', # color definition, deprecated
|
||||
# 'mathcolor', # color definition, deprecated
|
||||
# 'mathsize', # font-size, deprecated
|
||||
'nonce', # cryptographic nonce ("number used once")
|
||||
'scriptlevel', # math-depth for the element
|
||||
'style', # CSS styling declarations
|
||||
'tabindex', # indicate if the element takes input focus
|
||||
)
|
||||
"""Global MathML attributes
|
||||
|
||||
https://w3c.github.io/mathml-core/#global-attributes
|
||||
"""
|
||||
|
||||
|
||||
# Base classes
|
||||
# ------------
|
||||
|
||||
class MathElement(ET.Element):
|
||||
"""Base class for MathML elements."""
|
||||
|
||||
nchildren = None
|
||||
"""Expected number of children or None"""
|
||||
# cf. https://www.w3.org/TR/MathML3/chapter3.html#id.3.1.3.2
|
||||
parent = None
|
||||
"""Parent node in MathML element tree."""
|
||||
|
||||
def __init__(self, *children, **attributes):
|
||||
"""Set up node with `children` and `attributes`.
|
||||
|
||||
Attribute names are normalised to lowercase.
|
||||
You may use "CLASS" to set a "class" attribute.
|
||||
Attribute values are converted to strings
|
||||
(with True -> "true" and False -> "false").
|
||||
|
||||
>>> math(CLASS='test', level=3, split=True)
|
||||
math(class='test', level='3', split='true')
|
||||
>>> math(CLASS='test', level=3, split=True).toxml()
|
||||
'<math class="test" level="3" split="true"></math>'
|
||||
|
||||
"""
|
||||
attrib = {k.lower(): self.a_str(v) for k, v in attributes.items()}
|
||||
super().__init__(self.__class__.__name__, **attrib)
|
||||
self.extend(children)
|
||||
|
||||
@staticmethod
|
||||
def a_str(v):
|
||||
# Return string representation for attribute value `v`.
|
||||
if isinstance(v, bool):
|
||||
return str(v).lower()
|
||||
return str(v)
|
||||
|
||||
def __repr__(self):
|
||||
"""Return full string representation."""
|
||||
args = [repr(child) for child in self]
|
||||
if self.text:
|
||||
args.append(repr(self.text))
|
||||
if self.nchildren != self.__class__.nchildren:
|
||||
args.append(f'nchildren={self.nchildren}')
|
||||
if getattr(self, 'switch', None):
|
||||
args.append('switch=True')
|
||||
args += [f'{k}={v!r}' for k, v in self.items() if v is not None]
|
||||
return f'{self.tag}({", ".join(args)})'
|
||||
|
||||
def __str__(self):
|
||||
"""Return concise, informal string representation."""
|
||||
if self.text:
|
||||
args = repr(self.text)
|
||||
else:
|
||||
args = ', '.join(f'{child}' for child in self)
|
||||
return f'{self.tag}({args})'
|
||||
|
||||
def set(self, key, value):
|
||||
super().set(key, self.a_str(value))
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
if self.nchildren == 0:
|
||||
raise TypeError(f'Element "{self}" does not take children.')
|
||||
if isinstance(value, MathElement):
|
||||
value.parent = self
|
||||
else: # value may be an iterable
|
||||
if self.nchildren and len(self) + len(value) > self.nchildren:
|
||||
raise TypeError(f'Element "{self}" takes only {self.nchildren}'
|
||||
' children')
|
||||
for e in value:
|
||||
e.parent = self
|
||||
super().__setitem__(key, value)
|
||||
|
||||
def is_full(self):
|
||||
"""Return boolean indicating whether children may be appended."""
|
||||
return self.nchildren is not None and len(self) >= self.nchildren
|
||||
|
||||
def close(self):
|
||||
"""Close element and return first non-full anchestor or None."""
|
||||
self.nchildren = len(self) # mark node as full
|
||||
parent = self.parent
|
||||
while parent is not None and parent.is_full():
|
||||
parent = parent.parent
|
||||
return parent
|
||||
|
||||
def append(self, element):
|
||||
"""Append `element` and return new "current node" (insertion point).
|
||||
|
||||
Append as child element and set the internal `parent` attribute.
|
||||
|
||||
If self is already full, raise TypeError.
|
||||
|
||||
If self is full after appending, call `self.close()`
|
||||
(returns first non-full anchestor or None) else return `self`.
|
||||
"""
|
||||
if self.is_full():
|
||||
if self.nchildren:
|
||||
status = f'takes only {self.nchildren} children'
|
||||
else:
|
||||
status = 'does not take children'
|
||||
raise TypeError(f'Element "{self}" {status}.')
|
||||
super().append(element)
|
||||
element.parent = self
|
||||
if self.is_full():
|
||||
return self.close()
|
||||
return self
|
||||
|
||||
def extend(self, elements):
|
||||
"""Sequentially append `elements`. Return new "current node".
|
||||
|
||||
Raise TypeError if overfull.
|
||||
"""
|
||||
current_node = self
|
||||
for element in elements:
|
||||
current_node = self.append(element)
|
||||
return current_node
|
||||
|
||||
def pop(self, index=-1):
|
||||
element = self[index]
|
||||
del self[index]
|
||||
return element
|
||||
|
||||
def in_block(self):
|
||||
"""Return True, if `self` or an ancestor has ``display='block'``.
|
||||
|
||||
Used to find out whether we are in inline vs. displayed maths.
|
||||
"""
|
||||
if self.get('display') is None:
|
||||
try:
|
||||
return self.parent.in_block()
|
||||
except AttributeError:
|
||||
return False
|
||||
return self.get('display') == 'block'
|
||||
|
||||
# XML output:
|
||||
|
||||
def indent_xml(self, space=' ', level=0):
|
||||
"""Format XML output with indents.
|
||||
|
||||
Use with care:
|
||||
Formatting whitespace is permanently added to the
|
||||
`text` and `tail` attributes of `self` and anchestors!
|
||||
"""
|
||||
ET.indent(self, space, level)
|
||||
|
||||
def unindent_xml(self):
|
||||
"""Strip whitespace at the end of `text` and `tail` attributes...
|
||||
|
||||
to revert changes made by the `indent_xml()` method.
|
||||
Use with care, trailing whitespace from the original may be lost.
|
||||
"""
|
||||
for e in self.iter():
|
||||
if not isinstance(e, MathToken) and e.text:
|
||||
e.text = e.text.rstrip()
|
||||
if e.tail:
|
||||
e.tail = e.tail.rstrip()
|
||||
|
||||
def toxml(self, encoding=None):
|
||||
"""Return an XML representation of the element.
|
||||
|
||||
By default, the return value is a `str` instance. With an explicit
|
||||
`encoding` argument, the result is a `bytes` instance in the
|
||||
specified encoding. The XML default encoding is UTF-8, any other
|
||||
encoding must be specified in an XML document header.
|
||||
|
||||
Name and encoding handling match `xml.dom.minidom.Node.toxml()`
|
||||
while `etree.Element.tostring()` returns `bytes` by default.
|
||||
"""
|
||||
xml = ET.tostring(self, encoding or 'unicode',
|
||||
short_empty_elements=False)
|
||||
# Visible representation for "Apply Function" character:
|
||||
try:
|
||||
xml = xml.replace('\u2061', '⁡')
|
||||
except TypeError:
|
||||
xml = xml.replace('\u2061'.encode(encoding), b'⁡')
|
||||
return xml
|
||||
|
||||
|
||||
# Group sub-expressions in a horizontal row
|
||||
#
|
||||
# The elements <msqrt>, <mstyle>, <merror>, <mpadded>, <mphantom>,
|
||||
# <menclose>, <mtd>, <mscarry>, and <math> treat their contents
|
||||
# as a single inferred mrow formed from all their children.
|
||||
# (https://www.w3.org/TR/mathml4/#presm_inferredmrow)
|
||||
#
|
||||
# MathML Core uses the term "anonymous mrow element".
|
||||
|
||||
class MathRow(MathElement):
|
||||
"""Base class for elements treating content as a single mrow."""
|
||||
|
||||
|
||||
# 2d Schemata
|
||||
|
||||
class MathSchema(MathElement):
|
||||
"""Base class for schemata expecting 2 or more children.
|
||||
|
||||
The special attribute `switch` indicates that the last two child
|
||||
elements are in reversed order and must be switched before XML-export.
|
||||
See `msub` for an example.
|
||||
"""
|
||||
nchildren = 2
|
||||
|
||||
def __init__(self, *children, **kwargs):
|
||||
self.switch = kwargs.pop('switch', False)
|
||||
super().__init__(*children, **kwargs)
|
||||
|
||||
def append(self, element):
|
||||
"""Append element. Normalize order and close if full."""
|
||||
current_node = super().append(element)
|
||||
if self.switch and self.is_full():
|
||||
self[-1], self[-2] = self[-2], self[-1]
|
||||
self.switch = False
|
||||
return current_node
|
||||
|
||||
|
||||
# Token elements represent the smallest units of mathematical notation which
|
||||
# carry meaning.
|
||||
|
||||
class MathToken(MathElement):
|
||||
"""Token Element: contains textual data instead of children.
|
||||
|
||||
Expect text data on initialisation.
|
||||
"""
|
||||
nchildren = 0
|
||||
|
||||
def __init__(self, text, **attributes):
|
||||
super().__init__(**attributes)
|
||||
if not isinstance(text, (str, numbers.Number)):
|
||||
raise ValueError('MathToken element expects `str` or number,'
|
||||
f' not "{text}".')
|
||||
self.text = str(text)
|
||||
|
||||
|
||||
# MathML element classes
|
||||
# ----------------------
|
||||
|
||||
class math(MathRow):
|
||||
"""Top-level MathML element, a single mathematical formula."""
|
||||
|
||||
|
||||
# Token elements
|
||||
# ~~~~~~~~~~~~~~
|
||||
|
||||
class mtext(MathToken):
|
||||
"""Arbitrary text with no notational meaning."""
|
||||
|
||||
|
||||
class mi(MathToken):
|
||||
"""Identifier, such as a function name, variable or symbolic constant."""
|
||||
|
||||
|
||||
class mn(MathToken):
|
||||
"""Numeric literal.
|
||||
|
||||
>>> mn(3.41).toxml()
|
||||
'<mn>3.41</mn>'
|
||||
|
||||
Normally a sequence of digits with a possible separator (a dot or a comma).
|
||||
(Values with comma must be specified as `str`.)
|
||||
"""
|
||||
|
||||
|
||||
class mo(MathToken):
|
||||
"""Operator, Fence, Separator, or Accent.
|
||||
|
||||
>>> mo('<').toxml()
|
||||
'<mo><</mo>'
|
||||
|
||||
Besides operators in strict mathematical meaning, this element also
|
||||
includes "operators" like parentheses, separators like comma and
|
||||
semicolon, or "absolute value" bars.
|
||||
"""
|
||||
|
||||
|
||||
class mspace(MathElement):
|
||||
"""Blank space, whose size is set by its attributes.
|
||||
|
||||
Takes additional attributes `depth`, `height`, `width`.
|
||||
Takes no children and no text.
|
||||
|
||||
See also `mphantom`.
|
||||
"""
|
||||
nchildren = 0
|
||||
|
||||
|
||||
# General Layout Schemata
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
class mrow(MathRow):
|
||||
"""Generic element to group children as a horizontal row.
|
||||
|
||||
Removed on closing if not required (see `mrow.close()`).
|
||||
"""
|
||||
|
||||
def transfer_attributes(self, other):
|
||||
"""Transfer attributes from self to other.
|
||||
|
||||
"List values" (class, style) are appended to existing values,
|
||||
other values replace existing values.
|
||||
"""
|
||||
delimiters = {'class': ' ', 'style': '; '}
|
||||
for k, v in self.items():
|
||||
if k in ('class', 'style') and v:
|
||||
if other.get(k):
|
||||
v = delimiters[k].join(
|
||||
(other.get(k).rstrip(delimiters[k]), v))
|
||||
other.set(k, v)
|
||||
|
||||
def close(self):
|
||||
"""Close element and return first non-full anchestor or None.
|
||||
|
||||
Remove <mrow> if it has only one child element.
|
||||
"""
|
||||
parent = self.parent
|
||||
# replace `self` with single child
|
||||
if parent is not None and len(self) == 1:
|
||||
child = self[0]
|
||||
try:
|
||||
parent[list(parent).index(self)] = child
|
||||
child.parent = parent
|
||||
except (AttributeError, ValueError):
|
||||
return None
|
||||
self.transfer_attributes(child)
|
||||
return super().close()
|
||||
|
||||
|
||||
class mfrac(MathSchema):
|
||||
"""Fractions or fraction-like objects such as binomial coefficients."""
|
||||
|
||||
|
||||
class msqrt(MathRow):
|
||||
"""Square root. See also `mroot`."""
|
||||
nchildren = 1 # \sqrt expects one argument or a group
|
||||
|
||||
|
||||
class mroot(MathSchema):
|
||||
"""Roots with an explicit index. See also `msqrt`."""
|
||||
|
||||
|
||||
class mstyle(MathRow):
|
||||
"""Style Change.
|
||||
|
||||
In modern browsers, <mstyle> is equivalent to an <mrow> element.
|
||||
However, <mstyle> may still be relevant for compatibility with
|
||||
MathML implementations outside browsers.
|
||||
"""
|
||||
|
||||
|
||||
class merror(MathRow):
|
||||
"""Display contents as error messages."""
|
||||
|
||||
|
||||
class menclose(MathRow):
|
||||
"""Renders content inside an enclosing notation...
|
||||
|
||||
... specified by the notation attribute.
|
||||
|
||||
Non-standard but still required by Firefox for boxed expressions.
|
||||
"""
|
||||
nchildren = 1 # \boxed expects one argument or a group
|
||||
|
||||
|
||||
class mpadded(MathRow):
|
||||
"""Adjust space around content."""
|
||||
# nchildren = 1 # currently not used by latex2mathml
|
||||
|
||||
|
||||
class mphantom(MathRow):
|
||||
"""Placeholder: Rendered invisibly but dimensions are kept."""
|
||||
nchildren = 1 # \phantom expects one argument or a group
|
||||
|
||||
|
||||
# Script and Limit Schemata
|
||||
# ~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
class msub(MathSchema):
|
||||
"""Attach a subscript to an expression."""
|
||||
|
||||
|
||||
class msup(MathSchema):
|
||||
"""Attach a superscript to an expression."""
|
||||
|
||||
|
||||
class msubsup(MathSchema):
|
||||
"""Attach both a subscript and a superscript to an expression."""
|
||||
nchildren = 3
|
||||
|
||||
# Examples:
|
||||
#
|
||||
# The `switch` attribute reverses the order of the last two children:
|
||||
# >>> msub(mn(1), mn(2)).toxml()
|
||||
# '<msub><mn>1</mn><mn>2</mn></msub>'
|
||||
# >>> msub(mn(1), mn(2), switch=True).toxml()
|
||||
# '<msub><mn>2</mn><mn>1</mn></msub>'
|
||||
#
|
||||
# >>> msubsup(mi('base'), mn(1), mn(2)).toxml()
|
||||
# '<msubsup><mi>base</mi><mn>1</mn><mn>2</mn></msubsup>'
|
||||
# >>> msubsup(mi('base'), mn(1), mn(2), switch=True).toxml()
|
||||
# '<msubsup><mi>base</mi><mn>2</mn><mn>1</mn></msubsup>'
|
||||
|
||||
|
||||
class munder(msub):
|
||||
"""Attach an accent or a limit under an expression."""
|
||||
|
||||
|
||||
class mover(msup):
|
||||
"""Attach an accent or a limit over an expression."""
|
||||
|
||||
|
||||
class munderover(msubsup):
|
||||
"""Attach accents or limits both under and over an expression."""
|
||||
|
||||
|
||||
# Tabular Math
|
||||
# ~~~~~~~~~~~~
|
||||
|
||||
class mtable(MathElement):
|
||||
"""Table or matrix element."""
|
||||
|
||||
|
||||
class mtr(MathRow):
|
||||
"""Row in a table or a matrix."""
|
||||
|
||||
|
||||
class mtd(MathRow):
|
||||
"""Cell in a table or a matrix"""
|
||||
261
env/lib/python3.10/site-packages/docutils/utils/math/tex2mathml_extern.py
vendored
Normal file
261
env/lib/python3.10/site-packages/docutils/utils/math/tex2mathml_extern.py
vendored
Normal file
@@ -0,0 +1,261 @@
|
||||
# :Id: $Id: tex2mathml_extern.py 9536 2024-02-01 13:04:22Z milde $
|
||||
# :Copyright: © 2015 Günter Milde.
|
||||
# :License: Released under the terms of the `2-Clause BSD license`__, in short:
|
||||
#
|
||||
# Copying and distribution of this file, with or without modification,
|
||||
# are permitted in any medium without royalty provided the copyright
|
||||
# notice and this notice are preserved.
|
||||
# This file is offered as-is, without any warranty.
|
||||
#
|
||||
# __ https://opensource.org/licenses/BSD-2-Clause
|
||||
|
||||
"""Wrappers for TeX->MathML conversion by external tools
|
||||
|
||||
This module is provisional:
|
||||
the API is not settled and may change with any minor Docutils version.
|
||||
"""
|
||||
|
||||
import subprocess
|
||||
|
||||
from docutils import nodes
|
||||
from docutils.utils.math import MathError, wrap_math_code
|
||||
|
||||
# `latexml` expects a complete document:
|
||||
document_template = r"""\documentclass{article}
|
||||
\begin{document}
|
||||
%s
|
||||
\end{document}
|
||||
"""
|
||||
|
||||
|
||||
def _check_result(result, details=[]):
|
||||
# raise MathError if the conversion went wrong
|
||||
# :details: list of doctree nodes with additional info
|
||||
msg = ''
|
||||
if not details and result.stderr:
|
||||
details = [nodes.paragraph('', result.stderr, classes=['pre-wrap'])]
|
||||
if details:
|
||||
msg = f'TeX to MathML converter `{result.args[0]}` failed:'
|
||||
elif result.returncode:
|
||||
msg = (f'TeX to MathMl converter `{result.args[0]}` '
|
||||
f'exited with Errno {result.returncode}.')
|
||||
elif not result.stdout:
|
||||
msg = f'TeX to MathML converter `{result.args[0]}` returned no MathML.'
|
||||
if msg:
|
||||
raise MathError(msg, details=details)
|
||||
|
||||
|
||||
def blahtexml(math_code, as_block=False):
|
||||
"""Convert LaTeX math code to MathML with blahtexml__.
|
||||
|
||||
__ http://gva.noekeon.org/blahtexml/
|
||||
"""
|
||||
args = ['blahtexml',
|
||||
'--mathml',
|
||||
'--indented',
|
||||
'--spacing', 'moderate',
|
||||
'--mathml-encoding', 'raw',
|
||||
'--other-encoding', 'raw',
|
||||
'--doctype-xhtml+mathml',
|
||||
'--annotate-TeX',
|
||||
]
|
||||
# "blahtexml" expects LaTeX code without math-mode-switch.
|
||||
# We still need to tell it about displayed equation(s).
|
||||
mathml_args = ' display="block"' if as_block else ''
|
||||
_wrapped = wrap_math_code(math_code, as_block)
|
||||
if '{align*}' in _wrapped:
|
||||
math_code = _wrapped.replace('{align*}', '{aligned}')
|
||||
|
||||
result = subprocess.run(args, input=math_code,
|
||||
capture_output=True, text=True)
|
||||
|
||||
# blahtexml writes <error> messages to stdout
|
||||
if '<error>' in result.stdout:
|
||||
result.stderr = result.stdout[result.stdout.find('<message>')+9:
|
||||
result.stdout.find('</message>')]
|
||||
else:
|
||||
result.stdout = result.stdout[result.stdout.find('<markup>')+9:
|
||||
result.stdout.find('</markup>')]
|
||||
_check_result(result)
|
||||
return (f'<math xmlns="http://www.w3.org/1998/Math/MathML"{mathml_args}>'
|
||||
f'\n{result.stdout}</math>')
|
||||
|
||||
|
||||
def latexml(math_code, as_block=False):
|
||||
"""Convert LaTeX math code to MathML with LaTeXML__.
|
||||
|
||||
Comprehensive macro support but **very** slow.
|
||||
|
||||
__ http://dlmf.nist.gov/LaTeXML/
|
||||
"""
|
||||
|
||||
# LaTeXML works in 2 stages, expects complete documents.
|
||||
#
|
||||
# The `latexmlmath`__ convenience wrapper does not support block-level
|
||||
# (displayed) equations.
|
||||
#
|
||||
# __ https://metacpan.org/dist/LaTeXML/view/bin/latexmlmath
|
||||
args1 = ['latexml',
|
||||
'-', # read from stdin
|
||||
'--preload=amsmath',
|
||||
'--preload=amssymb', # also loads amsfonts
|
||||
'--inputencoding=utf8',
|
||||
'--',
|
||||
]
|
||||
math_code = document_template % wrap_math_code(math_code, as_block)
|
||||
|
||||
result1 = subprocess.run(args1, input=math_code,
|
||||
capture_output=True, text=True)
|
||||
if result1.stderr:
|
||||
result1.stderr = '\n'.join(line for line in result1.stderr.splitlines()
|
||||
if line.startswith('Error:')
|
||||
or line.startswith('Warning:')
|
||||
or line.startswith('Fatal:'))
|
||||
_check_result(result1)
|
||||
|
||||
args2 = ['latexmlpost',
|
||||
'-',
|
||||
'--nonumbersections',
|
||||
'--format=html5', # maths included as MathML
|
||||
'--omitdoctype', # Make it simple, we only need the maths.
|
||||
'--noscan', # ...
|
||||
'--nocrossref',
|
||||
'--nographicimages',
|
||||
'--nopictureimages',
|
||||
'--nodefaultresources', # do not copy *.css files to output dir
|
||||
'--'
|
||||
]
|
||||
result2 = subprocess.run(args2, input=result1.stdout,
|
||||
capture_output=True, text=True)
|
||||
# Extract MathML from HTML document:
|
||||
# <table> with <math> in cells for "align", <math> element else.
|
||||
start = result2.stdout.find('<table class="ltx_equationgroup')
|
||||
if start != -1:
|
||||
stop = result2.stdout.find('</table>', start)+8
|
||||
result2.stdout = result2.stdout[start:stop].replace(
|
||||
'ltx_equationgroup', 'borderless align-center')
|
||||
else:
|
||||
result2.stdout = result2.stdout[result2.stdout.find('<math'):
|
||||
result2.stdout.find('</math>')+7]
|
||||
# Search for error messages
|
||||
if result2.stdout:
|
||||
_msg_source = result2.stdout # latexmlpost reports errors in output
|
||||
else:
|
||||
_msg_source = result2.stderr # just in case
|
||||
result2.stderr = '\n'.join(line for line in _msg_source.splitlines()
|
||||
if line.startswith('Error:')
|
||||
or line.startswith('Warning:')
|
||||
or line.startswith('Fatal:'))
|
||||
_check_result(result2)
|
||||
return result2.stdout
|
||||
|
||||
|
||||
def pandoc(math_code, as_block=False):
|
||||
"""Convert LaTeX math code to MathML with pandoc__.
|
||||
|
||||
__ https://pandoc.org/
|
||||
"""
|
||||
args = ['pandoc',
|
||||
'--mathml',
|
||||
'--from=latex',
|
||||
]
|
||||
result = subprocess.run(args, input=wrap_math_code(math_code, as_block),
|
||||
capture_output=True, text=True)
|
||||
|
||||
result.stdout = result.stdout[result.stdout.find('<math'):
|
||||
result.stdout.find('</math>')+7]
|
||||
# Pandoc (2.9.2.1) messages are pre-formatted for the terminal:
|
||||
# 1. summary
|
||||
# 2. math source (part)
|
||||
# 3. error spot indicator '^' (works only in a literal block)
|
||||
# 4. assumed problem
|
||||
# 5. assumed solution (may be wrong or confusing)
|
||||
# Construct a "details" list:
|
||||
details = []
|
||||
if result.stderr:
|
||||
lines = result.stderr.splitlines()
|
||||
details.append(nodes.paragraph('', lines[0]))
|
||||
details.append(nodes.literal_block('', '\n'.join(lines[1:3])))
|
||||
details.append(nodes.paragraph('', '\n'.join(lines[3:]),
|
||||
classes=['pre-wrap']))
|
||||
_check_result(result, details=details)
|
||||
return result.stdout
|
||||
|
||||
|
||||
def ttm(math_code, as_block=False):
|
||||
"""Convert LaTeX math code to MathML with TtM__.
|
||||
|
||||
Aged, limited, but fast.
|
||||
|
||||
__ http://silas.psfc.mit.edu/tth/mml/
|
||||
"""
|
||||
args = ['ttm',
|
||||
'-L', # source is LaTeX snippet
|
||||
'-r'] # output MathML snippet
|
||||
math_code = wrap_math_code(math_code, as_block)
|
||||
|
||||
# "ttm" does not support UTF-8 input. (Docutils converts most math
|
||||
# characters to LaTeX commands before calling this function.)
|
||||
try:
|
||||
result = subprocess.run(args, input=math_code,
|
||||
capture_output=True, text=True,
|
||||
encoding='ISO-8859-1')
|
||||
except UnicodeEncodeError as err:
|
||||
raise MathError(err)
|
||||
|
||||
result.stdout = result.stdout[result.stdout.find('<math'):
|
||||
result.stdout.find('</math>')+7]
|
||||
if as_block:
|
||||
result.stdout = result.stdout.replace('<math xmlns=',
|
||||
'<math display="block" xmlns=')
|
||||
result.stderr = '\n'.join(line[5:] + '.'
|
||||
for line in result.stderr.splitlines()
|
||||
if line.startswith('**** '))
|
||||
_check_result(result)
|
||||
return result.stdout
|
||||
|
||||
|
||||
# self-test
|
||||
|
||||
if __name__ == "__main__":
|
||||
example = (r'\frac{\partial \sin^2(\alpha)}{\partial \vec r}'
|
||||
r'\varpi \mathbb{R} \, \text{Grüße}')
|
||||
|
||||
print("""<!DOCTYPE html>
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
|
||||
<head>
|
||||
<title>test external mathml converters</title>
|
||||
</head>
|
||||
<body>
|
||||
<p>Test external converters</p>
|
||||
<p>
|
||||
""")
|
||||
print(f'latexml: {latexml(example)},')
|
||||
print(f'ttm: {ttm(example.replace("mathbb", "mathbf"))},')
|
||||
print(f'blahtexml: {blahtexml(example)},')
|
||||
print(f'pandoc: {pandoc(example)}.')
|
||||
print('</p>')
|
||||
|
||||
print('<p>latexml:</p>')
|
||||
print(latexml(example, as_block=True))
|
||||
print('<p>ttm:</p>')
|
||||
print(ttm(example.replace('mathbb', 'mathbf'), as_block=True))
|
||||
print('<p>blahtexml:</p>')
|
||||
print(blahtexml(example, as_block=True))
|
||||
print('<p>pandoc:</p>')
|
||||
print(pandoc(example, as_block=True))
|
||||
|
||||
print('</main>\n</body>\n</html>')
|
||||
|
||||
buggy = r'\sinc \phy'
|
||||
# buggy = '\sqrt[e]'
|
||||
try:
|
||||
# print(blahtexml(buggy))
|
||||
# print(latexml(f'${buggy}$'))
|
||||
print(pandoc(f'${buggy}$'))
|
||||
# print(ttm(f'${buggy}$'))
|
||||
except MathError as err:
|
||||
print(err)
|
||||
print(err.details)
|
||||
for node in err.details:
|
||||
print(node.astext())
|
||||
730
env/lib/python3.10/site-packages/docutils/utils/math/tex2unichar.py
vendored
Normal file
730
env/lib/python3.10/site-packages/docutils/utils/math/tex2unichar.py
vendored
Normal file
@@ -0,0 +1,730 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# LaTeX math to Unicode symbols translation dictionaries.
|
||||
# Generated with ``write_tex2unichar.py`` from the data in
|
||||
# http://milde.users.sourceforge.net/LUCR/Math/
|
||||
|
||||
# Includes commands from:
|
||||
# standard LaTeX
|
||||
# amssymb
|
||||
# amsmath
|
||||
# amsxtra
|
||||
# bbold
|
||||
# esint
|
||||
# mathabx
|
||||
# mathdots
|
||||
# txfonts
|
||||
# stmaryrd
|
||||
# wasysym
|
||||
|
||||
mathaccent = {
|
||||
'acute': '\u0301', # ́ COMBINING ACUTE ACCENT
|
||||
'bar': '\u0304', # ̄ COMBINING MACRON
|
||||
'breve': '\u0306', # ̆ COMBINING BREVE
|
||||
'check': '\u030c', # ̌ COMBINING CARON
|
||||
'ddddot': '\u20dc', # ⃜ COMBINING FOUR DOTS ABOVE
|
||||
'dddot': '\u20db', # ⃛ COMBINING THREE DOTS ABOVE
|
||||
'ddot': '\u0308', # ̈ COMBINING DIAERESIS
|
||||
'dot': '\u0307', # ̇ COMBINING DOT ABOVE
|
||||
'grave': '\u0300', # ̀ COMBINING GRAVE ACCENT
|
||||
'hat': '\u0302', # ̂ COMBINING CIRCUMFLEX ACCENT
|
||||
'mathring': '\u030a', # ̊ COMBINING RING ABOVE
|
||||
'not': '\u0338', # ̸ COMBINING LONG SOLIDUS OVERLAY
|
||||
'overleftrightarrow': '\u20e1', # ⃡ COMBINING LEFT RIGHT ARROW ABOVE
|
||||
'overline': '\u0305', # ̅ COMBINING OVERLINE
|
||||
'tilde': '\u0303', # ̃ COMBINING TILDE
|
||||
'underbar': '\u0331', # ̱ COMBINING MACRON BELOW
|
||||
'underleftarrow': '\u20ee', # ⃮ COMBINING LEFT ARROW BELOW
|
||||
'underline': '\u0332', # ̲ COMBINING LOW LINE
|
||||
'underrightarrow': '\u20ef', # ⃯ COMBINING RIGHT ARROW BELOW
|
||||
'vec': '\u20d7', # ⃗ COMBINING RIGHT ARROW ABOVE
|
||||
}
|
||||
|
||||
mathalpha = {
|
||||
'Bbbk': '\U0001d55c', # 𝕜 MATHEMATICAL DOUBLE-STRUCK SMALL K
|
||||
'Delta': '\u0394', # Δ GREEK CAPITAL LETTER DELTA
|
||||
'Gamma': '\u0393', # Γ GREEK CAPITAL LETTER GAMMA
|
||||
'Im': '\u2111', # ℑ BLACK-LETTER CAPITAL I
|
||||
'Lambda': '\u039b', # Λ GREEK CAPITAL LETTER LAMDA
|
||||
'Omega': '\u03a9', # Ω GREEK CAPITAL LETTER OMEGA
|
||||
'Phi': '\u03a6', # Φ GREEK CAPITAL LETTER PHI
|
||||
'Pi': '\u03a0', # Π GREEK CAPITAL LETTER PI
|
||||
'Psi': '\u03a8', # Ψ GREEK CAPITAL LETTER PSI
|
||||
'Re': '\u211c', # ℜ BLACK-LETTER CAPITAL R
|
||||
'Sigma': '\u03a3', # Σ GREEK CAPITAL LETTER SIGMA
|
||||
'Theta': '\u0398', # Θ GREEK CAPITAL LETTER THETA
|
||||
'Upsilon': '\u03a5', # Υ GREEK CAPITAL LETTER UPSILON
|
||||
'Xi': '\u039e', # Ξ GREEK CAPITAL LETTER XI
|
||||
'aleph': '\u2135', # ℵ ALEF SYMBOL
|
||||
'alpha': '\u03b1', # α GREEK SMALL LETTER ALPHA
|
||||
'beta': '\u03b2', # β GREEK SMALL LETTER BETA
|
||||
'beth': '\u2136', # ℶ BET SYMBOL
|
||||
'chi': '\u03c7', # χ GREEK SMALL LETTER CHI
|
||||
'daleth': '\u2138', # ℸ DALET SYMBOL
|
||||
'delta': '\u03b4', # δ GREEK SMALL LETTER DELTA
|
||||
'digamma': '\u03dd', # ϝ GREEK SMALL LETTER DIGAMMA
|
||||
'ell': '\u2113', # ℓ SCRIPT SMALL L
|
||||
'epsilon': '\u03f5', # ϵ GREEK LUNATE EPSILON SYMBOL
|
||||
'eta': '\u03b7', # η GREEK SMALL LETTER ETA
|
||||
'eth': '\xf0', # ð LATIN SMALL LETTER ETH
|
||||
'gamma': '\u03b3', # γ GREEK SMALL LETTER GAMMA
|
||||
'gimel': '\u2137', # ℷ GIMEL SYMBOL
|
||||
'imath': '\u0131', # ı LATIN SMALL LETTER DOTLESS I
|
||||
'iota': '\u03b9', # ι GREEK SMALL LETTER IOTA
|
||||
'jmath': '\u0237', # ȷ LATIN SMALL LETTER DOTLESS J
|
||||
'kappa': '\u03ba', # κ GREEK SMALL LETTER KAPPA
|
||||
'lambda': '\u03bb', # λ GREEK SMALL LETTER LAMDA
|
||||
'mu': '\u03bc', # μ GREEK SMALL LETTER MU
|
||||
'nu': '\u03bd', # ν GREEK SMALL LETTER NU
|
||||
'omega': '\u03c9', # ω GREEK SMALL LETTER OMEGA
|
||||
'phi': '\u03d5', # ϕ GREEK PHI SYMBOL
|
||||
'pi': '\u03c0', # π GREEK SMALL LETTER PI
|
||||
'psi': '\u03c8', # ψ GREEK SMALL LETTER PSI
|
||||
'rho': '\u03c1', # ρ GREEK SMALL LETTER RHO
|
||||
'sigma': '\u03c3', # σ GREEK SMALL LETTER SIGMA
|
||||
'tau': '\u03c4', # τ GREEK SMALL LETTER TAU
|
||||
'theta': '\u03b8', # θ GREEK SMALL LETTER THETA
|
||||
'upsilon': '\u03c5', # υ GREEK SMALL LETTER UPSILON
|
||||
'varDelta': '\U0001d6e5', # 𝛥 MATHEMATICAL ITALIC CAPITAL DELTA
|
||||
'varGamma': '\U0001d6e4', # 𝛤 MATHEMATICAL ITALIC CAPITAL GAMMA
|
||||
'varLambda': '\U0001d6ec', # 𝛬 MATHEMATICAL ITALIC CAPITAL LAMDA
|
||||
'varOmega': '\U0001d6fa', # 𝛺 MATHEMATICAL ITALIC CAPITAL OMEGA
|
||||
'varPhi': '\U0001d6f7', # 𝛷 MATHEMATICAL ITALIC CAPITAL PHI
|
||||
'varPi': '\U0001d6f1', # 𝛱 MATHEMATICAL ITALIC CAPITAL PI
|
||||
'varPsi': '\U0001d6f9', # 𝛹 MATHEMATICAL ITALIC CAPITAL PSI
|
||||
'varSigma': '\U0001d6f4', # 𝛴 MATHEMATICAL ITALIC CAPITAL SIGMA
|
||||
'varTheta': '\U0001d6e9', # 𝛩 MATHEMATICAL ITALIC CAPITAL THETA
|
||||
'varUpsilon': '\U0001d6f6', # 𝛶 MATHEMATICAL ITALIC CAPITAL UPSILON
|
||||
'varXi': '\U0001d6ef', # 𝛯 MATHEMATICAL ITALIC CAPITAL XI
|
||||
'varepsilon': '\u03b5', # ε GREEK SMALL LETTER EPSILON
|
||||
'varkappa': '\u03f0', # ϰ GREEK KAPPA SYMBOL
|
||||
'varphi': '\u03c6', # φ GREEK SMALL LETTER PHI
|
||||
'varpi': '\u03d6', # ϖ GREEK PI SYMBOL
|
||||
'varrho': '\u03f1', # ϱ GREEK RHO SYMBOL
|
||||
'varsigma': '\u03c2', # ς GREEK SMALL LETTER FINAL SIGMA
|
||||
'vartheta': '\u03d1', # ϑ GREEK THETA SYMBOL
|
||||
'wp': '\u2118', # ℘ SCRIPT CAPITAL P
|
||||
'xi': '\u03be', # ξ GREEK SMALL LETTER XI
|
||||
'zeta': '\u03b6', # ζ GREEK SMALL LETTER ZETA
|
||||
}
|
||||
|
||||
mathbin = {
|
||||
'Cap': '\u22d2', # ⋒ DOUBLE INTERSECTION
|
||||
'Circle': '\u25cb', # ○ WHITE CIRCLE
|
||||
'Cup': '\u22d3', # ⋓ DOUBLE UNION
|
||||
'LHD': '\u25c0', # ◀ BLACK LEFT-POINTING TRIANGLE
|
||||
'RHD': '\u25b6', # ▶ BLACK RIGHT-POINTING TRIANGLE
|
||||
'amalg': '\u2a3f', # ⨿ AMALGAMATION OR COPRODUCT
|
||||
'ast': '\u2217', # ∗ ASTERISK OPERATOR
|
||||
'barwedge': '\u22bc', # ⊼ NAND
|
||||
'bigcirc': '\u25ef', # ◯ LARGE CIRCLE
|
||||
'bigtriangledown': '\u25bd', # ▽ WHITE DOWN-POINTING TRIANGLE
|
||||
'bigtriangleup': '\u25b3', # △ WHITE UP-POINTING TRIANGLE
|
||||
'bindnasrepma': '\u214b', # ⅋ TURNED AMPERSAND
|
||||
'blacklozenge': '\u29eb', # ⧫ BLACK LOZENGE
|
||||
'boxast': '\u29c6', # ⧆ SQUARED ASTERISK
|
||||
'boxbar': '\u25eb', # ◫ WHITE SQUARE WITH VERTICAL BISECTING LINE
|
||||
'boxbox': '\u29c8', # ⧈ SQUARED SQUARE
|
||||
'boxbslash': '\u29c5', # ⧅ SQUARED FALLING DIAGONAL SLASH
|
||||
'boxcircle': '\u29c7', # ⧇ SQUARED SMALL CIRCLE
|
||||
'boxdot': '\u22a1', # ⊡ SQUARED DOT OPERATOR
|
||||
'boxminus': '\u229f', # ⊟ SQUARED MINUS
|
||||
'boxplus': '\u229e', # ⊞ SQUARED PLUS
|
||||
'boxslash': '\u29c4', # ⧄ SQUARED RISING DIAGONAL SLASH
|
||||
'boxtimes': '\u22a0', # ⊠ SQUARED TIMES
|
||||
'bullet': '\u2022', # • BULLET
|
||||
'cap': '\u2229', # ∩ INTERSECTION
|
||||
'cdot': '\u22c5', # ⋅ DOT OPERATOR
|
||||
'circ': '\u2218', # ∘ RING OPERATOR
|
||||
'circledast': '\u229b', # ⊛ CIRCLED ASTERISK OPERATOR
|
||||
'circledbslash': '\u29b8', # ⦸ CIRCLED REVERSE SOLIDUS
|
||||
'circledcirc': '\u229a', # ⊚ CIRCLED RING OPERATOR
|
||||
'circleddash': '\u229d', # ⊝ CIRCLED DASH
|
||||
'circledgtr': '\u29c1', # ⧁ CIRCLED GREATER-THAN
|
||||
'circledless': '\u29c0', # ⧀ CIRCLED LESS-THAN
|
||||
'cup': '\u222a', # ∪ UNION
|
||||
'curlyvee': '\u22ce', # ⋎ CURLY LOGICAL OR
|
||||
'curlywedge': '\u22cf', # ⋏ CURLY LOGICAL AND
|
||||
'dagger': '\u2020', # † DAGGER
|
||||
'ddagger': '\u2021', # ‡ DOUBLE DAGGER
|
||||
'diamond': '\u22c4', # ⋄ DIAMOND OPERATOR
|
||||
'div': '\xf7', # ÷ DIVISION SIGN
|
||||
'divideontimes': '\u22c7', # ⋇ DIVISION TIMES
|
||||
'dotplus': '\u2214', # ∔ DOT PLUS
|
||||
'doublebarwedge': '\u2a5e', # ⩞ LOGICAL AND WITH DOUBLE OVERBAR
|
||||
'gtrdot': '\u22d7', # ⋗ GREATER-THAN WITH DOT
|
||||
'intercal': '\u22ba', # ⊺ INTERCALATE
|
||||
'interleave': '\u2af4', # ⫴ TRIPLE VERTICAL BAR BINARY RELATION
|
||||
'invamp': '\u214b', # ⅋ TURNED AMPERSAND
|
||||
'land': '\u2227', # ∧ LOGICAL AND
|
||||
'leftthreetimes': '\u22cb', # ⋋ LEFT SEMIDIRECT PRODUCT
|
||||
'lessdot': '\u22d6', # ⋖ LESS-THAN WITH DOT
|
||||
'lor': '\u2228', # ∨ LOGICAL OR
|
||||
'ltimes': '\u22c9', # ⋉ LEFT NORMAL FACTOR SEMIDIRECT PRODUCT
|
||||
'mp': '\u2213', # ∓ MINUS-OR-PLUS SIGN
|
||||
'odot': '\u2299', # ⊙ CIRCLED DOT OPERATOR
|
||||
'ominus': '\u2296', # ⊖ CIRCLED MINUS
|
||||
'oplus': '\u2295', # ⊕ CIRCLED PLUS
|
||||
'oslash': '\u2298', # ⊘ CIRCLED DIVISION SLASH
|
||||
'otimes': '\u2297', # ⊗ CIRCLED TIMES
|
||||
'pm': '\xb1', # ± PLUS-MINUS SIGN
|
||||
'rightthreetimes': '\u22cc', # ⋌ RIGHT SEMIDIRECT PRODUCT
|
||||
'rtimes': '\u22ca', # ⋊ RIGHT NORMAL FACTOR SEMIDIRECT PRODUCT
|
||||
'setminus': '\u29f5', # ⧵ REVERSE SOLIDUS OPERATOR
|
||||
'slash': '\u2215', # ∕ DIVISION SLASH
|
||||
'smallsetminus': '\u2216', # ∖ SET MINUS
|
||||
'smalltriangledown': '\u25bf', # ▿ WHITE DOWN-POINTING SMALL TRIANGLE
|
||||
'smalltriangleleft': '\u25c3', # ◃ WHITE LEFT-POINTING SMALL TRIANGLE
|
||||
'smalltriangleright': '\u25b9', # ▹ WHITE RIGHT-POINTING SMALL TRIANGLE
|
||||
'sqcap': '\u2293', # ⊓ SQUARE CAP
|
||||
'sqcup': '\u2294', # ⊔ SQUARE CUP
|
||||
'sslash': '\u2afd', # ⫽ DOUBLE SOLIDUS OPERATOR
|
||||
'star': '\u22c6', # ⋆ STAR OPERATOR
|
||||
'talloblong': '\u2afe', # ⫾ WHITE VERTICAL BAR
|
||||
'times': '\xd7', # × MULTIPLICATION SIGN
|
||||
'triangleleft': '\u25c3', # ◃ WHITE LEFT-POINTING SMALL TRIANGLE
|
||||
'triangleright': '\u25b9', # ▹ WHITE RIGHT-POINTING SMALL TRIANGLE
|
||||
'uplus': '\u228e', # ⊎ MULTISET UNION
|
||||
'vee': '\u2228', # ∨ LOGICAL OR
|
||||
'veebar': '\u22bb', # ⊻ XOR
|
||||
'wedge': '\u2227', # ∧ LOGICAL AND
|
||||
'wr': '\u2240', # ≀ WREATH PRODUCT
|
||||
}
|
||||
|
||||
mathclose = {
|
||||
'Rbag': '\u27c6', # ⟆ RIGHT S-SHAPED BAG DELIMITER
|
||||
'lrcorner': '\u231f', # ⌟ BOTTOM RIGHT CORNER
|
||||
'rangle': '\u27e9', # ⟩ MATHEMATICAL RIGHT ANGLE BRACKET
|
||||
'rbag': '\u27c6', # ⟆ RIGHT S-SHAPED BAG DELIMITER
|
||||
'rbrace': '}', # } RIGHT CURLY BRACKET
|
||||
'rbrack': ']', # ] RIGHT SQUARE BRACKET
|
||||
'rceil': '\u2309', # ⌉ RIGHT CEILING
|
||||
'rfloor': '\u230b', # ⌋ RIGHT FLOOR
|
||||
'rgroup': '\u27ef', # ⟯ MATHEMATICAL RIGHT FLATTENED PARENTHESIS
|
||||
'rrbracket': '\u27e7', # ⟧ MATHEMATICAL RIGHT WHITE SQUARE BRACKET
|
||||
'rrparenthesis': '\u2988', # ⦈ Z NOTATION RIGHT IMAGE BRACKET
|
||||
'urcorner': '\u231d', # ⌝ TOP RIGHT CORNER
|
||||
'}': '}', # } RIGHT CURLY BRACKET
|
||||
}
|
||||
|
||||
mathfence = {
|
||||
'Vert': '\u2016', # ‖ DOUBLE VERTICAL LINE
|
||||
'vert': '|', # | VERTICAL LINE
|
||||
'|': '\u2016', # ‖ DOUBLE VERTICAL LINE
|
||||
}
|
||||
|
||||
mathop = {
|
||||
'bigcap': '\u22c2', # ⋂ N-ARY INTERSECTION
|
||||
'bigcup': '\u22c3', # ⋃ N-ARY UNION
|
||||
'biginterleave': '\u2afc', # ⫼ LARGE TRIPLE VERTICAL BAR OPERATOR
|
||||
'bigodot': '\u2a00', # ⨀ N-ARY CIRCLED DOT OPERATOR
|
||||
'bigoplus': '\u2a01', # ⨁ N-ARY CIRCLED PLUS OPERATOR
|
||||
'bigotimes': '\u2a02', # ⨂ N-ARY CIRCLED TIMES OPERATOR
|
||||
'bigsqcap': '\u2a05', # ⨅ N-ARY SQUARE INTERSECTION OPERATOR
|
||||
'bigsqcup': '\u2a06', # ⨆ N-ARY SQUARE UNION OPERATOR
|
||||
'biguplus': '\u2a04', # ⨄ N-ARY UNION OPERATOR WITH PLUS
|
||||
'bigvee': '\u22c1', # ⋁ N-ARY LOGICAL OR
|
||||
'bigwedge': '\u22c0', # ⋀ N-ARY LOGICAL AND
|
||||
'coprod': '\u2210', # ∐ N-ARY COPRODUCT
|
||||
'fatsemi': '\u2a1f', # ⨟ Z NOTATION SCHEMA COMPOSITION
|
||||
'fint': '\u2a0f', # ⨏ INTEGRAL AVERAGE WITH SLASH
|
||||
'iiiint': '\u2a0c', # ⨌ QUADRUPLE INTEGRAL OPERATOR
|
||||
'iiint': '\u222d', # ∭ TRIPLE INTEGRAL
|
||||
'iint': '\u222c', # ∬ DOUBLE INTEGRAL
|
||||
'int': '\u222b', # ∫ INTEGRAL
|
||||
'intop': '\u222b', # ∫ INTEGRAL
|
||||
'oiiint': '\u2230', # ∰ VOLUME INTEGRAL
|
||||
'oiint': '\u222f', # ∯ SURFACE INTEGRAL
|
||||
'oint': '\u222e', # ∮ CONTOUR INTEGRAL
|
||||
'ointctrclockwise': '\u2233', # ∳ ANTICLOCKWISE CONTOUR INTEGRAL
|
||||
'ointop': '\u222e', # ∮ CONTOUR INTEGRAL
|
||||
'prod': '\u220f', # ∏ N-ARY PRODUCT
|
||||
'sqint': '\u2a16', # ⨖ QUATERNION INTEGRAL OPERATOR
|
||||
'sum': '\u2211', # ∑ N-ARY SUMMATION
|
||||
'varointclockwise': '\u2232', # ∲ CLOCKWISE CONTOUR INTEGRAL
|
||||
'varprod': '\u2a09', # ⨉ N-ARY TIMES OPERATOR
|
||||
}
|
||||
|
||||
mathopen = {
|
||||
'Lbag': '\u27c5', # ⟅ LEFT S-SHAPED BAG DELIMITER
|
||||
'langle': '\u27e8', # ⟨ MATHEMATICAL LEFT ANGLE BRACKET
|
||||
'lbag': '\u27c5', # ⟅ LEFT S-SHAPED BAG DELIMITER
|
||||
'lbrace': '{', # { LEFT CURLY BRACKET
|
||||
'lbrack': '[', # [ LEFT SQUARE BRACKET
|
||||
'lceil': '\u2308', # ⌈ LEFT CEILING
|
||||
'lfloor': '\u230a', # ⌊ LEFT FLOOR
|
||||
'lgroup': '\u27ee', # ⟮ MATHEMATICAL LEFT FLATTENED PARENTHESIS
|
||||
'llbracket': '\u27e6', # ⟦ MATHEMATICAL LEFT WHITE SQUARE BRACKET
|
||||
'llcorner': '\u231e', # ⌞ BOTTOM LEFT CORNER
|
||||
'llparenthesis': '\u2987', # ⦇ Z NOTATION LEFT IMAGE BRACKET
|
||||
'ulcorner': '\u231c', # ⌜ TOP LEFT CORNER
|
||||
'{': '{', # { LEFT CURLY BRACKET
|
||||
}
|
||||
|
||||
mathord = {
|
||||
'#': '#', # # NUMBER SIGN
|
||||
'$': '$', # $ DOLLAR SIGN
|
||||
'%': '%', # % PERCENT SIGN
|
||||
'&': '&', # & AMPERSAND
|
||||
'AC': '\u223f', # ∿ SINE WAVE
|
||||
'APLcomment': '\u235d', # ⍝ APL FUNCTIONAL SYMBOL UP SHOE JOT
|
||||
'APLdownarrowbox': '\u2357', # ⍗ APL FUNCTIONAL SYMBOL QUAD DOWNWARDS ARROW
|
||||
'APLinput': '\u235e', # ⍞ APL FUNCTIONAL SYMBOL QUOTE QUAD
|
||||
'APLinv': '\u2339', # ⌹ APL FUNCTIONAL SYMBOL QUAD DIVIDE
|
||||
'APLleftarrowbox': '\u2347', # ⍇ APL FUNCTIONAL SYMBOL QUAD LEFTWARDS ARROW
|
||||
'APLlog': '\u235f', # ⍟ APL FUNCTIONAL SYMBOL CIRCLE STAR
|
||||
'APLrightarrowbox': '\u2348', # ⍈ APL FUNCTIONAL SYMBOL QUAD RIGHTWARDS ARROW
|
||||
'APLuparrowbox': '\u2350', # ⍐ APL FUNCTIONAL SYMBOL QUAD UPWARDS ARROW
|
||||
'Aries': '\u2648', # ♈ ARIES
|
||||
'Box': '\u2b1c', # ⬜ WHITE LARGE SQUARE
|
||||
'CIRCLE': '\u25cf', # ● BLACK CIRCLE
|
||||
'CheckedBox': '\u2611', # ☑ BALLOT BOX WITH CHECK
|
||||
'Diamond': '\u25c7', # ◇ WHITE DIAMOND
|
||||
'Diamondblack': '\u25c6', # ◆ BLACK DIAMOND
|
||||
'Diamonddot': '\u27d0', # ⟐ WHITE DIAMOND WITH CENTRED DOT
|
||||
'Finv': '\u2132', # Ⅎ TURNED CAPITAL F
|
||||
'Game': '\u2141', # ⅁ TURNED SANS-SERIF CAPITAL G
|
||||
'Gemini': '\u264a', # ♊ GEMINI
|
||||
'Jupiter': '\u2643', # ♃ JUPITER
|
||||
'LEFTCIRCLE': '\u25d6', # ◖ LEFT HALF BLACK CIRCLE
|
||||
'LEFTcircle': '\u25d0', # ◐ CIRCLE WITH LEFT HALF BLACK
|
||||
'Leo': '\u264c', # ♌ LEO
|
||||
'Libra': '\u264e', # ♎ LIBRA
|
||||
'Mars': '\u2642', # ♂ MALE SIGN
|
||||
'Mercury': '\u263f', # ☿ MERCURY
|
||||
'Neptune': '\u2646', # ♆ NEPTUNE
|
||||
'P': '\xb6', # ¶ PILCROW SIGN
|
||||
'Pluto': '\u2647', # ♇ PLUTO
|
||||
'RIGHTCIRCLE': '\u25d7', # ◗ RIGHT HALF BLACK CIRCLE
|
||||
'RIGHTcircle': '\u25d1', # ◑ CIRCLE WITH RIGHT HALF BLACK
|
||||
'S': '\xa7', # § SECTION SIGN
|
||||
'Saturn': '\u2644', # ♄ SATURN
|
||||
'Scorpio': '\u264f', # ♏ SCORPIUS
|
||||
'Square': '\u2610', # ☐ BALLOT BOX
|
||||
'Sun': '\u2609', # ☉ SUN
|
||||
'Taurus': '\u2649', # ♉ TAURUS
|
||||
'Uranus': '\u2645', # ♅ URANUS
|
||||
'Venus': '\u2640', # ♀ FEMALE SIGN
|
||||
'XBox': '\u2612', # ☒ BALLOT BOX WITH X
|
||||
'Yup': '\u2144', # ⅄ TURNED SANS-SERIF CAPITAL Y
|
||||
'_': '_', # _ LOW LINE
|
||||
'angle': '\u2220', # ∠ ANGLE
|
||||
'aquarius': '\u2652', # ♒ AQUARIUS
|
||||
'aries': '\u2648', # ♈ ARIES
|
||||
'arrowvert': '\u23d0', # ⏐ VERTICAL LINE EXTENSION
|
||||
'backprime': '\u2035', # ‵ REVERSED PRIME
|
||||
'backslash': '\\', # \ REVERSE SOLIDUS
|
||||
'bigstar': '\u2605', # ★ BLACK STAR
|
||||
'blacksmiley': '\u263b', # ☻ BLACK SMILING FACE
|
||||
'blacksquare': '\u25fc', # ◼ BLACK MEDIUM SQUARE
|
||||
'blacktriangle': '\u25b4', # ▴ BLACK UP-POINTING SMALL TRIANGLE
|
||||
'blacktriangledown': '\u25be', # ▾ BLACK DOWN-POINTING SMALL TRIANGLE
|
||||
'blacktriangleup': '\u25b4', # ▴ BLACK UP-POINTING SMALL TRIANGLE
|
||||
'bot': '\u22a5', # ⊥ UP TACK
|
||||
'boy': '\u2642', # ♂ MALE SIGN
|
||||
'bracevert': '\u23aa', # ⎪ CURLY BRACKET EXTENSION
|
||||
'cancer': '\u264b', # ♋ CANCER
|
||||
'capricornus': '\u2651', # ♑ CAPRICORN
|
||||
'cdots': '\u22ef', # ⋯ MIDLINE HORIZONTAL ELLIPSIS
|
||||
'cent': '\xa2', # ¢ CENT SIGN
|
||||
'checkmark': '\u2713', # ✓ CHECK MARK
|
||||
'circledR': '\u24c7', # Ⓡ CIRCLED LATIN CAPITAL LETTER R
|
||||
'circledS': '\u24c8', # Ⓢ CIRCLED LATIN CAPITAL LETTER S
|
||||
'clubsuit': '\u2663', # ♣ BLACK CLUB SUIT
|
||||
'complement': '\u2201', # ∁ COMPLEMENT
|
||||
'diagdown': '\u27cd', # ⟍ MATHEMATICAL FALLING DIAGONAL
|
||||
'diagup': '\u27cb', # ⟋ MATHEMATICAL RISING DIAGONAL
|
||||
'diameter': '\u2300', # ⌀ DIAMETER SIGN
|
||||
'diamondsuit': '\u2662', # ♢ WHITE DIAMOND SUIT
|
||||
'earth': '\u2641', # ♁ EARTH
|
||||
'emptyset': '\u2205', # ∅ EMPTY SET
|
||||
'exists': '\u2203', # ∃ THERE EXISTS
|
||||
'female': '\u2640', # ♀ FEMALE SIGN
|
||||
'flat': '\u266d', # ♭ MUSIC FLAT SIGN
|
||||
'forall': '\u2200', # ∀ FOR ALL
|
||||
'fourth': '\u2057', # ⁗ QUADRUPLE PRIME
|
||||
'frownie': '\u2639', # ☹ WHITE FROWNING FACE
|
||||
'gemini': '\u264a', # ♊ GEMINI
|
||||
'girl': '\u2640', # ♀ FEMALE SIGN
|
||||
'heartsuit': '\u2661', # ♡ WHITE HEART SUIT
|
||||
'hslash': '\u210f', # ℏ PLANCK CONSTANT OVER TWO PI
|
||||
'infty': '\u221e', # ∞ INFINITY
|
||||
'invdiameter': '\u2349', # ⍉ APL FUNCTIONAL SYMBOL CIRCLE BACKSLASH
|
||||
'invneg': '\u2310', # ⌐ REVERSED NOT SIGN
|
||||
'jupiter': '\u2643', # ♃ JUPITER
|
||||
'ldots': '\u2026', # … HORIZONTAL ELLIPSIS
|
||||
'leftmoon': '\u263e', # ☾ LAST QUARTER MOON
|
||||
'leo': '\u264c', # ♌ LEO
|
||||
'libra': '\u264e', # ♎ LIBRA
|
||||
'lmoustache': '\u23b0', # ⎰ UPPER LEFT OR LOWER RIGHT CURLY BRACKET SECTION
|
||||
'lnot': '\xac', # ¬ NOT SIGN
|
||||
'lozenge': '\u25ca', # ◊ LOZENGE
|
||||
'male': '\u2642', # ♂ MALE SIGN
|
||||
'maltese': '\u2720', # ✠ MALTESE CROSS
|
||||
'mathcent': '\xa2', # ¢ CENT SIGN
|
||||
'mathdollar': '$', # $ DOLLAR SIGN
|
||||
'mathsterling': '\xa3', # £ POUND SIGN
|
||||
'measuredangle': '\u2221', # ∡ MEASURED ANGLE
|
||||
'medbullet': '\u26ab', # ⚫ MEDIUM BLACK CIRCLE
|
||||
'medcirc': '\u26aa', # ⚪ MEDIUM WHITE CIRCLE
|
||||
'mercury': '\u263f', # ☿ MERCURY
|
||||
'mho': '\u2127', # ℧ INVERTED OHM SIGN
|
||||
'nabla': '\u2207', # ∇ NABLA
|
||||
'natural': '\u266e', # ♮ MUSIC NATURAL SIGN
|
||||
'neg': '\xac', # ¬ NOT SIGN
|
||||
'neptune': '\u2646', # ♆ NEPTUNE
|
||||
'nexists': '\u2204', # ∄ THERE DOES NOT EXIST
|
||||
'notbackslash': '\u2340', # ⍀ APL FUNCTIONAL SYMBOL BACKSLASH BAR
|
||||
'partial': '\u2202', # ∂ PARTIAL DIFFERENTIAL
|
||||
'pisces': '\u2653', # ♓ PISCES
|
||||
'pluto': '\u2647', # ♇ PLUTO
|
||||
'pounds': '\xa3', # £ POUND SIGN
|
||||
'prime': '\u2032', # ′ PRIME
|
||||
'quarternote': '\u2669', # ♩ QUARTER NOTE
|
||||
'rightmoon': '\u263d', # ☽ FIRST QUARTER MOON
|
||||
'rmoustache': '\u23b1', # ⎱ UPPER RIGHT OR LOWER LEFT CURLY BRACKET SECTION
|
||||
'sagittarius': '\u2650', # ♐ SAGITTARIUS
|
||||
'saturn': '\u2644', # ♄ SATURN
|
||||
'scorpio': '\u264f', # ♏ SCORPIUS
|
||||
'second': '\u2033', # ″ DOUBLE PRIME
|
||||
'sharp': '\u266f', # ♯ MUSIC SHARP SIGN
|
||||
'smiley': '\u263a', # ☺ WHITE SMILING FACE
|
||||
'spadesuit': '\u2660', # ♠ BLACK SPADE SUIT
|
||||
'spddot': '\xa8', # ¨ DIAERESIS
|
||||
'sphat': '^', # ^ CIRCUMFLEX ACCENT
|
||||
'sphericalangle': '\u2222', # ∢ SPHERICAL ANGLE
|
||||
'sptilde': '~', # ~ TILDE
|
||||
'square': '\u25fb', # ◻ WHITE MEDIUM SQUARE
|
||||
'sun': '\u263c', # ☼ WHITE SUN WITH RAYS
|
||||
'surd': '\u221a', # √ SQUARE ROOT
|
||||
'taurus': '\u2649', # ♉ TAURUS
|
||||
'third': '\u2034', # ‴ TRIPLE PRIME
|
||||
'top': '\u22a4', # ⊤ DOWN TACK
|
||||
'twonotes': '\u266b', # ♫ BEAMED EIGHTH NOTES
|
||||
'uranus': '\u2645', # ♅ URANUS
|
||||
'varEarth': '\u2641', # ♁ EARTH
|
||||
'varclubsuit': '\u2667', # ♧ WHITE CLUB SUIT
|
||||
'vardiamondsuit': '\u2666', # ♦ BLACK DIAMOND SUIT
|
||||
'varheartsuit': '\u2665', # ♥ BLACK HEART SUIT
|
||||
'varspadesuit': '\u2664', # ♤ WHITE SPADE SUIT
|
||||
'virgo': '\u264d', # ♍ VIRGO
|
||||
'wasylozenge': '\u2311', # ⌑ SQUARE LOZENGE
|
||||
'yen': '\xa5', # ¥ YEN SIGN
|
||||
}
|
||||
|
||||
mathover = {
|
||||
'overbrace': '\u23de', # ⏞ TOP CURLY BRACKET
|
||||
'wideparen': '\u23dc', # ⏜ TOP PARENTHESIS
|
||||
}
|
||||
|
||||
mathpunct = {
|
||||
'ddots': '\u22f1', # ⋱ DOWN RIGHT DIAGONAL ELLIPSIS
|
||||
'vdots': '\u22ee', # ⋮ VERTICAL ELLIPSIS
|
||||
}
|
||||
|
||||
mathradical = {
|
||||
'sqrt[3]': '\u221b', # ∛ CUBE ROOT
|
||||
'sqrt[4]': '\u221c', # ∜ FOURTH ROOT
|
||||
}
|
||||
|
||||
mathrel = {
|
||||
'Bot': '\u2aeb', # ⫫ DOUBLE UP TACK
|
||||
'Bumpeq': '\u224e', # ≎ GEOMETRICALLY EQUIVALENT TO
|
||||
'Coloneqq': '\u2a74', # ⩴ DOUBLE COLON EQUAL
|
||||
'Doteq': '\u2251', # ≑ GEOMETRICALLY EQUAL TO
|
||||
'Downarrow': '\u21d3', # ⇓ DOWNWARDS DOUBLE ARROW
|
||||
'Leftarrow': '\u21d0', # ⇐ LEFTWARDS DOUBLE ARROW
|
||||
'Leftrightarrow': '\u21d4', # ⇔ LEFT RIGHT DOUBLE ARROW
|
||||
'Lleftarrow': '\u21da', # ⇚ LEFTWARDS TRIPLE ARROW
|
||||
'Longleftarrow': '\u27f8', # ⟸ LONG LEFTWARDS DOUBLE ARROW
|
||||
'Longleftrightarrow': '\u27fa', # ⟺ LONG LEFT RIGHT DOUBLE ARROW
|
||||
'Longmapsfrom': '\u27fd', # ⟽ LONG LEFTWARDS DOUBLE ARROW FROM BAR
|
||||
'Longmapsto': '\u27fe', # ⟾ LONG RIGHTWARDS DOUBLE ARROW FROM BAR
|
||||
'Longrightarrow': '\u27f9', # ⟹ LONG RIGHTWARDS DOUBLE ARROW
|
||||
'Lsh': '\u21b0', # ↰ UPWARDS ARROW WITH TIP LEFTWARDS
|
||||
'Mapsfrom': '\u2906', # ⤆ LEFTWARDS DOUBLE ARROW FROM BAR
|
||||
'Mapsto': '\u2907', # ⤇ RIGHTWARDS DOUBLE ARROW FROM BAR
|
||||
'Nearrow': '\u21d7', # ⇗ NORTH EAST DOUBLE ARROW
|
||||
'Nwarrow': '\u21d6', # ⇖ NORTH WEST DOUBLE ARROW
|
||||
'Perp': '\u2aeb', # ⫫ DOUBLE UP TACK
|
||||
'Rightarrow': '\u21d2', # ⇒ RIGHTWARDS DOUBLE ARROW
|
||||
'Rrightarrow': '\u21db', # ⇛ RIGHTWARDS TRIPLE ARROW
|
||||
'Rsh': '\u21b1', # ↱ UPWARDS ARROW WITH TIP RIGHTWARDS
|
||||
'Searrow': '\u21d8', # ⇘ SOUTH EAST DOUBLE ARROW
|
||||
'Subset': '\u22d0', # ⋐ DOUBLE SUBSET
|
||||
'Supset': '\u22d1', # ⋑ DOUBLE SUPERSET
|
||||
'Swarrow': '\u21d9', # ⇙ SOUTH WEST DOUBLE ARROW
|
||||
'Top': '\u2aea', # ⫪ DOUBLE DOWN TACK
|
||||
'Uparrow': '\u21d1', # ⇑ UPWARDS DOUBLE ARROW
|
||||
'Updownarrow': '\u21d5', # ⇕ UP DOWN DOUBLE ARROW
|
||||
'VDash': '\u22ab', # ⊫ DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE
|
||||
'Vdash': '\u22a9', # ⊩ FORCES
|
||||
'Vvdash': '\u22aa', # ⊪ TRIPLE VERTICAL BAR RIGHT TURNSTILE
|
||||
'apprge': '\u2273', # ≳ GREATER-THAN OR EQUIVALENT TO
|
||||
'apprle': '\u2272', # ≲ LESS-THAN OR EQUIVALENT TO
|
||||
'approx': '\u2248', # ≈ ALMOST EQUAL TO
|
||||
'approxeq': '\u224a', # ≊ ALMOST EQUAL OR EQUAL TO
|
||||
'asymp': '\u224d', # ≍ EQUIVALENT TO
|
||||
'backepsilon': '\u220d', # ∍ SMALL CONTAINS AS MEMBER
|
||||
'backsim': '\u223d', # ∽ REVERSED TILDE
|
||||
'backsimeq': '\u22cd', # ⋍ REVERSED TILDE EQUALS
|
||||
'barin': '\u22f6', # ⋶ ELEMENT OF WITH OVERBAR
|
||||
'barleftharpoon': '\u296b', # ⥫ LEFTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH
|
||||
'barrightharpoon': '\u296d', # ⥭ RIGHTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH
|
||||
'because': '\u2235', # ∵ BECAUSE
|
||||
'between': '\u226c', # ≬ BETWEEN
|
||||
'blacktriangleleft': '\u25c2', # ◂ BLACK LEFT-POINTING SMALL TRIANGLE
|
||||
'blacktriangleright': '\u25b8', # ▸ BLACK RIGHT-POINTING SMALL TRIANGLE
|
||||
'bowtie': '\u22c8', # ⋈ BOWTIE
|
||||
'bumpeq': '\u224f', # ≏ DIFFERENCE BETWEEN
|
||||
'circeq': '\u2257', # ≗ RING EQUAL TO
|
||||
'circlearrowleft': '\u21ba', # ↺ ANTICLOCKWISE OPEN CIRCLE ARROW
|
||||
'circlearrowright': '\u21bb', # ↻ CLOCKWISE OPEN CIRCLE ARROW
|
||||
'coloneq': '\u2254', # ≔ COLON EQUALS
|
||||
'coloneqq': '\u2254', # ≔ COLON EQUALS
|
||||
'cong': '\u2245', # ≅ APPROXIMATELY EQUAL TO
|
||||
'corresponds': '\u2259', # ≙ ESTIMATES
|
||||
'curlyeqprec': '\u22de', # ⋞ EQUAL TO OR PRECEDES
|
||||
'curlyeqsucc': '\u22df', # ⋟ EQUAL TO OR SUCCEEDS
|
||||
'curvearrowleft': '\u21b6', # ↶ ANTICLOCKWISE TOP SEMICIRCLE ARROW
|
||||
'curvearrowright': '\u21b7', # ↷ CLOCKWISE TOP SEMICIRCLE ARROW
|
||||
'dasharrow': '\u21e2', # ⇢ RIGHTWARDS DASHED ARROW
|
||||
'dashleftarrow': '\u21e0', # ⇠ LEFTWARDS DASHED ARROW
|
||||
'dashrightarrow': '\u21e2', # ⇢ RIGHTWARDS DASHED ARROW
|
||||
'dashv': '\u22a3', # ⊣ LEFT TACK
|
||||
'dlsh': '\u21b2', # ↲ DOWNWARDS ARROW WITH TIP LEFTWARDS
|
||||
'doteq': '\u2250', # ≐ APPROACHES THE LIMIT
|
||||
'doteqdot': '\u2251', # ≑ GEOMETRICALLY EQUAL TO
|
||||
'downarrow': '\u2193', # ↓ DOWNWARDS ARROW
|
||||
'downdownarrows': '\u21ca', # ⇊ DOWNWARDS PAIRED ARROWS
|
||||
'downdownharpoons': '\u2965', # ⥥ DOWNWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT
|
||||
'downharpoonleft': '\u21c3', # ⇃ DOWNWARDS HARPOON WITH BARB LEFTWARDS
|
||||
'downharpoonright': '\u21c2', # ⇂ DOWNWARDS HARPOON WITH BARB RIGHTWARDS
|
||||
'downuparrows': '\u21f5', # ⇵ DOWNWARDS ARROW LEFTWARDS OF UPWARDS ARROW
|
||||
'downupharpoons': '\u296f', # ⥯ DOWNWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON WITH BARB RIGHT
|
||||
'drsh': '\u21b3', # ↳ DOWNWARDS ARROW WITH TIP RIGHTWARDS
|
||||
'eqcirc': '\u2256', # ≖ RING IN EQUAL TO
|
||||
'eqcolon': '\u2255', # ≕ EQUALS COLON
|
||||
'eqqcolon': '\u2255', # ≕ EQUALS COLON
|
||||
'eqsim': '\u2242', # ≂ MINUS TILDE
|
||||
'eqslantgtr': '\u2a96', # ⪖ SLANTED EQUAL TO OR GREATER-THAN
|
||||
'eqslantless': '\u2a95', # ⪕ SLANTED EQUAL TO OR LESS-THAN
|
||||
'equiv': '\u2261', # ≡ IDENTICAL TO
|
||||
'fallingdotseq': '\u2252', # ≒ APPROXIMATELY EQUAL TO OR THE IMAGE OF
|
||||
'frown': '\u2322', # ⌢ FROWN
|
||||
'ge': '\u2265', # ≥ GREATER-THAN OR EQUAL TO
|
||||
'geq': '\u2265', # ≥ GREATER-THAN OR EQUAL TO
|
||||
'geqq': '\u2267', # ≧ GREATER-THAN OVER EQUAL TO
|
||||
'geqslant': '\u2a7e', # ⩾ GREATER-THAN OR SLANTED EQUAL TO
|
||||
'gets': '\u2190', # ← LEFTWARDS ARROW
|
||||
'gg': '\u226b', # ≫ MUCH GREATER-THAN
|
||||
'ggcurly': '\u2abc', # ⪼ DOUBLE SUCCEEDS
|
||||
'ggg': '\u22d9', # ⋙ VERY MUCH GREATER-THAN
|
||||
'gggtr': '\u22d9', # ⋙ VERY MUCH GREATER-THAN
|
||||
'gnapprox': '\u2a8a', # ⪊ GREATER-THAN AND NOT APPROXIMATE
|
||||
'gneq': '\u2a88', # ⪈ GREATER-THAN AND SINGLE-LINE NOT EQUAL TO
|
||||
'gneqq': '\u2269', # ≩ GREATER-THAN BUT NOT EQUAL TO
|
||||
'gnsim': '\u22e7', # ⋧ GREATER-THAN BUT NOT EQUIVALENT TO
|
||||
'gtrapprox': '\u2a86', # ⪆ GREATER-THAN OR APPROXIMATE
|
||||
'gtreqless': '\u22db', # ⋛ GREATER-THAN EQUAL TO OR LESS-THAN
|
||||
'gtreqqless': '\u2a8c', # ⪌ GREATER-THAN ABOVE DOUBLE-LINE EQUAL ABOVE LESS-THAN
|
||||
'gtrless': '\u2277', # ≷ GREATER-THAN OR LESS-THAN
|
||||
'gtrsim': '\u2273', # ≳ GREATER-THAN OR EQUIVALENT TO
|
||||
'hash': '\u22d5', # ⋕ EQUAL AND PARALLEL TO
|
||||
'hookleftarrow': '\u21a9', # ↩ LEFTWARDS ARROW WITH HOOK
|
||||
'hookrightarrow': '\u21aa', # ↪ RIGHTWARDS ARROW WITH HOOK
|
||||
'iddots': '\u22f0', # ⋰ UP RIGHT DIAGONAL ELLIPSIS
|
||||
'impliedby': '\u27f8', # ⟸ LONG LEFTWARDS DOUBLE ARROW
|
||||
'implies': '\u27f9', # ⟹ LONG RIGHTWARDS DOUBLE ARROW
|
||||
'in': '\u2208', # ∈ ELEMENT OF
|
||||
'le': '\u2264', # ≤ LESS-THAN OR EQUAL TO
|
||||
'leadsto': '\u2933', # ⤳ WAVE ARROW POINTING DIRECTLY RIGHT
|
||||
'leftarrow': '\u2190', # ← LEFTWARDS ARROW
|
||||
'leftarrowtail': '\u21a2', # ↢ LEFTWARDS ARROW WITH TAIL
|
||||
'leftarrowtriangle': '\u21fd', # ⇽ LEFTWARDS OPEN-HEADED ARROW
|
||||
'leftbarharpoon': '\u296a', # ⥪ LEFTWARDS HARPOON WITH BARB UP ABOVE LONG DASH
|
||||
'leftharpoondown': '\u21bd', # ↽ LEFTWARDS HARPOON WITH BARB DOWNWARDS
|
||||
'leftharpoonup': '\u21bc', # ↼ LEFTWARDS HARPOON WITH BARB UPWARDS
|
||||
'leftleftarrows': '\u21c7', # ⇇ LEFTWARDS PAIRED ARROWS
|
||||
'leftleftharpoons': '\u2962', # ⥢ LEFTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOON WITH BARB DOWN
|
||||
'leftrightarrow': '\u2194', # ↔ LEFT RIGHT ARROW
|
||||
'leftrightarrows': '\u21c6', # ⇆ LEFTWARDS ARROW OVER RIGHTWARDS ARROW
|
||||
'leftrightarrowtriangle': '\u21ff', # ⇿ LEFT RIGHT OPEN-HEADED ARROW
|
||||
'leftrightharpoon': '\u294a', # ⥊ LEFT BARB UP RIGHT BARB DOWN HARPOON
|
||||
'leftrightharpoons': '\u21cb', # ⇋ LEFTWARDS HARPOON OVER RIGHTWARDS HARPOON
|
||||
'leftrightsquigarrow': '\u21ad', # ↭ LEFT RIGHT WAVE ARROW
|
||||
'leftslice': '\u2aa6', # ⪦ LESS-THAN CLOSED BY CURVE
|
||||
'leftsquigarrow': '\u21dc', # ⇜ LEFTWARDS SQUIGGLE ARROW
|
||||
'leftturn': '\u21ba', # ↺ ANTICLOCKWISE OPEN CIRCLE ARROW
|
||||
'leq': '\u2264', # ≤ LESS-THAN OR EQUAL TO
|
||||
'leqq': '\u2266', # ≦ LESS-THAN OVER EQUAL TO
|
||||
'leqslant': '\u2a7d', # ⩽ LESS-THAN OR SLANTED EQUAL TO
|
||||
'lessapprox': '\u2a85', # ⪅ LESS-THAN OR APPROXIMATE
|
||||
'lesseqgtr': '\u22da', # ⋚ LESS-THAN EQUAL TO OR GREATER-THAN
|
||||
'lesseqqgtr': '\u2a8b', # ⪋ LESS-THAN ABOVE DOUBLE-LINE EQUAL ABOVE GREATER-THAN
|
||||
'lessgtr': '\u2276', # ≶ LESS-THAN OR GREATER-THAN
|
||||
'lesssim': '\u2272', # ≲ LESS-THAN OR EQUIVALENT TO
|
||||
'lhd': '\u22b2', # ⊲ NORMAL SUBGROUP OF
|
||||
'lightning': '\u21af', # ↯ DOWNWARDS ZIGZAG ARROW
|
||||
'll': '\u226a', # ≪ MUCH LESS-THAN
|
||||
'llcurly': '\u2abb', # ⪻ DOUBLE PRECEDES
|
||||
'lll': '\u22d8', # ⋘ VERY MUCH LESS-THAN
|
||||
'llless': '\u22d8', # ⋘ VERY MUCH LESS-THAN
|
||||
'lnapprox': '\u2a89', # ⪉ LESS-THAN AND NOT APPROXIMATE
|
||||
'lneq': '\u2a87', # ⪇ LESS-THAN AND SINGLE-LINE NOT EQUAL TO
|
||||
'lneqq': '\u2268', # ≨ LESS-THAN BUT NOT EQUAL TO
|
||||
'lnsim': '\u22e6', # ⋦ LESS-THAN BUT NOT EQUIVALENT TO
|
||||
'longleftarrow': '\u27f5', # ⟵ LONG LEFTWARDS ARROW
|
||||
'longleftrightarrow': '\u27f7', # ⟷ LONG LEFT RIGHT ARROW
|
||||
'longmapsfrom': '\u27fb', # ⟻ LONG LEFTWARDS ARROW FROM BAR
|
||||
'longmapsto': '\u27fc', # ⟼ LONG RIGHTWARDS ARROW FROM BAR
|
||||
'longrightarrow': '\u27f6', # ⟶ LONG RIGHTWARDS ARROW
|
||||
'looparrowleft': '\u21ab', # ↫ LEFTWARDS ARROW WITH LOOP
|
||||
'looparrowright': '\u21ac', # ↬ RIGHTWARDS ARROW WITH LOOP
|
||||
'lrtimes': '\u22c8', # ⋈ BOWTIE
|
||||
'mapsfrom': '\u21a4', # ↤ LEFTWARDS ARROW FROM BAR
|
||||
'mapsto': '\u21a6', # ↦ RIGHTWARDS ARROW FROM BAR
|
||||
'mid': '\u2223', # ∣ DIVIDES
|
||||
'models': '\u22a7', # ⊧ MODELS
|
||||
'multimap': '\u22b8', # ⊸ MULTIMAP
|
||||
'multimapboth': '\u29df', # ⧟ DOUBLE-ENDED MULTIMAP
|
||||
'multimapdotbothA': '\u22b6', # ⊶ ORIGINAL OF
|
||||
'multimapdotbothB': '\u22b7', # ⊷ IMAGE OF
|
||||
'multimapinv': '\u27dc', # ⟜ LEFT MULTIMAP
|
||||
'nLeftarrow': '\u21cd', # ⇍ LEFTWARDS DOUBLE ARROW WITH STROKE
|
||||
'nLeftrightarrow': '\u21ce', # ⇎ LEFT RIGHT DOUBLE ARROW WITH STROKE
|
||||
'nRightarrow': '\u21cf', # ⇏ RIGHTWARDS DOUBLE ARROW WITH STROKE
|
||||
'nVDash': '\u22af', # ⊯ NEGATED DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE
|
||||
'nVdash': '\u22ae', # ⊮ DOES NOT FORCE
|
||||
'ncong': '\u2247', # ≇ NEITHER APPROXIMATELY NOR ACTUALLY EQUAL TO
|
||||
'ne': '\u2260', # ≠ NOT EQUAL TO
|
||||
'nearrow': '\u2197', # ↗ NORTH EAST ARROW
|
||||
'neq': '\u2260', # ≠ NOT EQUAL TO
|
||||
'ngeq': '\u2271', # ≱ NEITHER GREATER-THAN NOR EQUAL TO
|
||||
'ngtr': '\u226f', # ≯ NOT GREATER-THAN
|
||||
'ngtrless': '\u2279', # ≹ NEITHER GREATER-THAN NOR LESS-THAN
|
||||
'ni': '\u220b', # ∋ CONTAINS AS MEMBER
|
||||
'nleftarrow': '\u219a', # ↚ LEFTWARDS ARROW WITH STROKE
|
||||
'nleftrightarrow': '\u21ae', # ↮ LEFT RIGHT ARROW WITH STROKE
|
||||
'nleq': '\u2270', # ≰ NEITHER LESS-THAN NOR EQUAL TO
|
||||
'nless': '\u226e', # ≮ NOT LESS-THAN
|
||||
'nlessgtr': '\u2278', # ≸ NEITHER LESS-THAN NOR GREATER-THAN
|
||||
'nmid': '\u2224', # ∤ DOES NOT DIVIDE
|
||||
'notasymp': '\u226d', # ≭ NOT EQUIVALENT TO
|
||||
'notin': '\u2209', # ∉ NOT AN ELEMENT OF
|
||||
'notni': '\u220c', # ∌ DOES NOT CONTAIN AS MEMBER
|
||||
'notowner': '\u220c', # ∌ DOES NOT CONTAIN AS MEMBER
|
||||
'notslash': '\u233f', # ⌿ APL FUNCTIONAL SYMBOL SLASH BAR
|
||||
'nparallel': '\u2226', # ∦ NOT PARALLEL TO
|
||||
'nprec': '\u2280', # ⊀ DOES NOT PRECEDE
|
||||
'npreceq': '\u22e0', # ⋠ DOES NOT PRECEDE OR EQUAL
|
||||
'nrightarrow': '\u219b', # ↛ RIGHTWARDS ARROW WITH STROKE
|
||||
'nsim': '\u2241', # ≁ NOT TILDE
|
||||
'nsimeq': '\u2244', # ≄ NOT ASYMPTOTICALLY EQUAL TO
|
||||
'nsubseteq': '\u2288', # ⊈ NEITHER A SUBSET OF NOR EQUAL TO
|
||||
'nsucc': '\u2281', # ⊁ DOES NOT SUCCEED
|
||||
'nsucceq': '\u22e1', # ⋡ DOES NOT SUCCEED OR EQUAL
|
||||
'nsupseteq': '\u2289', # ⊉ NEITHER A SUPERSET OF NOR EQUAL TO
|
||||
'ntriangleleft': '\u22ea', # ⋪ NOT NORMAL SUBGROUP OF
|
||||
'ntrianglelefteq': '\u22ec', # ⋬ NOT NORMAL SUBGROUP OF OR EQUAL TO
|
||||
'ntriangleright': '\u22eb', # ⋫ DOES NOT CONTAIN AS NORMAL SUBGROUP
|
||||
'ntrianglerighteq': '\u22ed', # ⋭ DOES NOT CONTAIN AS NORMAL SUBGROUP OR EQUAL
|
||||
'nvDash': '\u22ad', # ⊭ NOT TRUE
|
||||
'nvdash': '\u22ac', # ⊬ DOES NOT PROVE
|
||||
'nwarrow': '\u2196', # ↖ NORTH WEST ARROW
|
||||
'owns': '\u220b', # ∋ CONTAINS AS MEMBER
|
||||
'parallel': '\u2225', # ∥ PARALLEL TO
|
||||
'perp': '\u27c2', # ⟂ PERPENDICULAR
|
||||
'pitchfork': '\u22d4', # ⋔ PITCHFORK
|
||||
'prec': '\u227a', # ≺ PRECEDES
|
||||
'precapprox': '\u2ab7', # ⪷ PRECEDES ABOVE ALMOST EQUAL TO
|
||||
'preccurlyeq': '\u227c', # ≼ PRECEDES OR EQUAL TO
|
||||
'preceq': '\u2aaf', # ⪯ PRECEDES ABOVE SINGLE-LINE EQUALS SIGN
|
||||
'preceqq': '\u2ab3', # ⪳ PRECEDES ABOVE EQUALS SIGN
|
||||
'precnapprox': '\u2ab9', # ⪹ PRECEDES ABOVE NOT ALMOST EQUAL TO
|
||||
'precneqq': '\u2ab5', # ⪵ PRECEDES ABOVE NOT EQUAL TO
|
||||
'precnsim': '\u22e8', # ⋨ PRECEDES BUT NOT EQUIVALENT TO
|
||||
'precsim': '\u227e', # ≾ PRECEDES OR EQUIVALENT TO
|
||||
'propto': '\u221d', # ∝ PROPORTIONAL TO
|
||||
'restriction': '\u21be', # ↾ UPWARDS HARPOON WITH BARB RIGHTWARDS
|
||||
'rhd': '\u22b3', # ⊳ CONTAINS AS NORMAL SUBGROUP
|
||||
'rightarrow': '\u2192', # → RIGHTWARDS ARROW
|
||||
'rightarrowtail': '\u21a3', # ↣ RIGHTWARDS ARROW WITH TAIL
|
||||
'rightarrowtriangle': '\u21fe', # ⇾ RIGHTWARDS OPEN-HEADED ARROW
|
||||
'rightbarharpoon': '\u296c', # ⥬ RIGHTWARDS HARPOON WITH BARB UP ABOVE LONG DASH
|
||||
'rightharpoondown': '\u21c1', # ⇁ RIGHTWARDS HARPOON WITH BARB DOWNWARDS
|
||||
'rightharpoonup': '\u21c0', # ⇀ RIGHTWARDS HARPOON WITH BARB UPWARDS
|
||||
'rightleftarrows': '\u21c4', # ⇄ RIGHTWARDS ARROW OVER LEFTWARDS ARROW
|
||||
'rightleftharpoon': '\u294b', # ⥋ LEFT BARB DOWN RIGHT BARB UP HARPOON
|
||||
'rightleftharpoons': '\u21cc', # ⇌ RIGHTWARDS HARPOON OVER LEFTWARDS HARPOON
|
||||
'rightrightarrows': '\u21c9', # ⇉ RIGHTWARDS PAIRED ARROWS
|
||||
'rightrightharpoons': '\u2964', # ⥤ RIGHTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPOON WITH BARB DOWN
|
||||
'rightslice': '\u2aa7', # ⪧ GREATER-THAN CLOSED BY CURVE
|
||||
'rightsquigarrow': '\u21dd', # ⇝ RIGHTWARDS SQUIGGLE ARROW
|
||||
'rightturn': '\u21bb', # ↻ CLOCKWISE OPEN CIRCLE ARROW
|
||||
'risingdotseq': '\u2253', # ≓ IMAGE OF OR APPROXIMATELY EQUAL TO
|
||||
'searrow': '\u2198', # ↘ SOUTH EAST ARROW
|
||||
'sim': '\u223c', # ∼ TILDE OPERATOR
|
||||
'simeq': '\u2243', # ≃ ASYMPTOTICALLY EQUAL TO
|
||||
'smile': '\u2323', # ⌣ SMILE
|
||||
'sqsubset': '\u228f', # ⊏ SQUARE IMAGE OF
|
||||
'sqsubseteq': '\u2291', # ⊑ SQUARE IMAGE OF OR EQUAL TO
|
||||
'sqsupset': '\u2290', # ⊐ SQUARE ORIGINAL OF
|
||||
'sqsupseteq': '\u2292', # ⊒ SQUARE ORIGINAL OF OR EQUAL TO
|
||||
'strictfi': '\u297c', # ⥼ LEFT FISH TAIL
|
||||
'strictif': '\u297d', # ⥽ RIGHT FISH TAIL
|
||||
'subset': '\u2282', # ⊂ SUBSET OF
|
||||
'subseteq': '\u2286', # ⊆ SUBSET OF OR EQUAL TO
|
||||
'subseteqq': '\u2ac5', # ⫅ SUBSET OF ABOVE EQUALS SIGN
|
||||
'subsetneq': '\u228a', # ⊊ SUBSET OF WITH NOT EQUAL TO
|
||||
'subsetneqq': '\u2acb', # ⫋ SUBSET OF ABOVE NOT EQUAL TO
|
||||
'succ': '\u227b', # ≻ SUCCEEDS
|
||||
'succapprox': '\u2ab8', # ⪸ SUCCEEDS ABOVE ALMOST EQUAL TO
|
||||
'succcurlyeq': '\u227d', # ≽ SUCCEEDS OR EQUAL TO
|
||||
'succeq': '\u2ab0', # ⪰ SUCCEEDS ABOVE SINGLE-LINE EQUALS SIGN
|
||||
'succeqq': '\u2ab4', # ⪴ SUCCEEDS ABOVE EQUALS SIGN
|
||||
'succnapprox': '\u2aba', # ⪺ SUCCEEDS ABOVE NOT ALMOST EQUAL TO
|
||||
'succneqq': '\u2ab6', # ⪶ SUCCEEDS ABOVE NOT EQUAL TO
|
||||
'succnsim': '\u22e9', # ⋩ SUCCEEDS BUT NOT EQUIVALENT TO
|
||||
'succsim': '\u227f', # ≿ SUCCEEDS OR EQUIVALENT TO
|
||||
'supset': '\u2283', # ⊃ SUPERSET OF
|
||||
'supseteq': '\u2287', # ⊇ SUPERSET OF OR EQUAL TO
|
||||
'supseteqq': '\u2ac6', # ⫆ SUPERSET OF ABOVE EQUALS SIGN
|
||||
'supsetneq': '\u228b', # ⊋ SUPERSET OF WITH NOT EQUAL TO
|
||||
'supsetneqq': '\u2acc', # ⫌ SUPERSET OF ABOVE NOT EQUAL TO
|
||||
'swarrow': '\u2199', # ↙ SOUTH WEST ARROW
|
||||
'therefore': '\u2234', # ∴ THEREFORE
|
||||
'to': '\u2192', # → RIGHTWARDS ARROW
|
||||
'trianglelefteq': '\u22b4', # ⊴ NORMAL SUBGROUP OF OR EQUAL TO
|
||||
'triangleq': '\u225c', # ≜ DELTA EQUAL TO
|
||||
'trianglerighteq': '\u22b5', # ⊵ CONTAINS AS NORMAL SUBGROUP OR EQUAL TO
|
||||
'twoheadleftarrow': '\u219e', # ↞ LEFTWARDS TWO HEADED ARROW
|
||||
'twoheadrightarrow': '\u21a0', # ↠ RIGHTWARDS TWO HEADED ARROW
|
||||
'uparrow': '\u2191', # ↑ UPWARDS ARROW
|
||||
'updownarrow': '\u2195', # ↕ UP DOWN ARROW
|
||||
'updownarrows': '\u21c5', # ⇅ UPWARDS ARROW LEFTWARDS OF DOWNWARDS ARROW
|
||||
'updownharpoons': '\u296e', # ⥮ UPWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT
|
||||
'upharpoonleft': '\u21bf', # ↿ UPWARDS HARPOON WITH BARB LEFTWARDS
|
||||
'upharpoonright': '\u21be', # ↾ UPWARDS HARPOON WITH BARB RIGHTWARDS
|
||||
'upuparrows': '\u21c8', # ⇈ UPWARDS PAIRED ARROWS
|
||||
'upupharpoons': '\u2963', # ⥣ UPWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON WITH BARB RIGHT
|
||||
'vDash': '\u22a8', # ⊨ TRUE
|
||||
'vartriangle': '\u25b5', # ▵ WHITE UP-POINTING SMALL TRIANGLE
|
||||
'vartriangleleft': '\u22b2', # ⊲ NORMAL SUBGROUP OF
|
||||
'vartriangleright': '\u22b3', # ⊳ CONTAINS AS NORMAL SUBGROUP
|
||||
'vdash': '\u22a2', # ⊢ RIGHT TACK
|
||||
'wasytherefore': '\u2234', # ∴ THEREFORE
|
||||
}
|
||||
|
||||
mathunder = {
|
||||
'underbrace': '\u23df', # ⏟ BOTTOM CURLY BRACKET
|
||||
}
|
||||
|
||||
space = {
|
||||
' ': ' ', # SPACE
|
||||
',': '\u2006', # SIX-PER-EM SPACE
|
||||
':': '\u205f', # MEDIUM MATHEMATICAL SPACE
|
||||
'medspace': '\u205f', # MEDIUM MATHEMATICAL SPACE
|
||||
'quad': '\u2001', # EM QUAD
|
||||
'thinspace': '\u2006', # SIX-PER-EM SPACE
|
||||
}
|
||||
808
env/lib/python3.10/site-packages/docutils/utils/math/unichar2tex.py
vendored
Normal file
808
env/lib/python3.10/site-packages/docutils/utils/math/unichar2tex.py
vendored
Normal file
@@ -0,0 +1,808 @@
|
||||
# LaTeX math to Unicode symbols translation table
|
||||
# for use with the translate() method of unicode objects.
|
||||
# Generated with ``write_unichar2tex.py`` from the data in
|
||||
# http://milde.users.sourceforge.net/LUCR/Math/
|
||||
|
||||
# Includes commands from: standard LaTeX, amssymb, amsmath
|
||||
|
||||
uni2tex_table = {
|
||||
0xa0: '~',
|
||||
0xa3: '\\pounds ',
|
||||
0xa5: '\\yen ',
|
||||
0xa7: '\\S ',
|
||||
0xac: '\\neg ',
|
||||
0xb1: '\\pm ',
|
||||
0xb6: '\\P ',
|
||||
0xd7: '\\times ',
|
||||
0xf0: '\\eth ',
|
||||
0xf7: '\\div ',
|
||||
0x131: '\\imath ',
|
||||
0x237: '\\jmath ',
|
||||
0x393: '\\Gamma ',
|
||||
0x394: '\\Delta ',
|
||||
0x398: '\\Theta ',
|
||||
0x39b: '\\Lambda ',
|
||||
0x39e: '\\Xi ',
|
||||
0x3a0: '\\Pi ',
|
||||
0x3a3: '\\Sigma ',
|
||||
0x3a5: '\\Upsilon ',
|
||||
0x3a6: '\\Phi ',
|
||||
0x3a8: '\\Psi ',
|
||||
0x3a9: '\\Omega ',
|
||||
0x3b1: '\\alpha ',
|
||||
0x3b2: '\\beta ',
|
||||
0x3b3: '\\gamma ',
|
||||
0x3b4: '\\delta ',
|
||||
0x3b5: '\\varepsilon ',
|
||||
0x3b6: '\\zeta ',
|
||||
0x3b7: '\\eta ',
|
||||
0x3b8: '\\theta ',
|
||||
0x3b9: '\\iota ',
|
||||
0x3ba: '\\kappa ',
|
||||
0x3bb: '\\lambda ',
|
||||
0x3bc: '\\mu ',
|
||||
0x3bd: '\\nu ',
|
||||
0x3be: '\\xi ',
|
||||
0x3c0: '\\pi ',
|
||||
0x3c1: '\\rho ',
|
||||
0x3c2: '\\varsigma ',
|
||||
0x3c3: '\\sigma ',
|
||||
0x3c4: '\\tau ',
|
||||
0x3c5: '\\upsilon ',
|
||||
0x3c6: '\\varphi ',
|
||||
0x3c7: '\\chi ',
|
||||
0x3c8: '\\psi ',
|
||||
0x3c9: '\\omega ',
|
||||
0x3d1: '\\vartheta ',
|
||||
0x3d5: '\\phi ',
|
||||
0x3d6: '\\varpi ',
|
||||
0x3dd: '\\digamma ',
|
||||
0x3f0: '\\varkappa ',
|
||||
0x3f1: '\\varrho ',
|
||||
0x3f5: '\\epsilon ',
|
||||
0x3f6: '\\backepsilon ',
|
||||
0x2001: '\\quad ',
|
||||
0x2003: '\\quad ',
|
||||
0x2006: '\\, ',
|
||||
0x2016: '\\| ',
|
||||
0x2020: '\\dagger ',
|
||||
0x2021: '\\ddagger ',
|
||||
0x2022: '\\bullet ',
|
||||
0x2026: '\\ldots ',
|
||||
0x2032: '\\prime ',
|
||||
0x2035: '\\backprime ',
|
||||
0x205f: '\\: ',
|
||||
0x2102: '\\mathbb{C}',
|
||||
0x210b: '\\mathcal{H}',
|
||||
0x210c: '\\mathfrak{H}',
|
||||
0x210d: '\\mathbb{H}',
|
||||
0x210f: '\\hslash ',
|
||||
0x2110: '\\mathcal{I}',
|
||||
0x2111: '\\Im ',
|
||||
0x2112: '\\mathcal{L}',
|
||||
0x2113: '\\ell ',
|
||||
0x2115: '\\mathbb{N}',
|
||||
0x2118: '\\wp ',
|
||||
0x2119: '\\mathbb{P}',
|
||||
0x211a: '\\mathbb{Q}',
|
||||
0x211b: '\\mathcal{R}',
|
||||
0x211c: '\\Re ',
|
||||
0x211d: '\\mathbb{R}',
|
||||
0x2124: '\\mathbb{Z}',
|
||||
0x2127: '\\mho ',
|
||||
0x2128: '\\mathfrak{Z}',
|
||||
0x212c: '\\mathcal{B}',
|
||||
0x212d: '\\mathfrak{C}',
|
||||
0x2130: '\\mathcal{E}',
|
||||
0x2131: '\\mathcal{F}',
|
||||
0x2132: '\\Finv ',
|
||||
0x2133: '\\mathcal{M}',
|
||||
0x2135: '\\aleph ',
|
||||
0x2136: '\\beth ',
|
||||
0x2137: '\\gimel ',
|
||||
0x2138: '\\daleth ',
|
||||
0x2190: '\\leftarrow ',
|
||||
0x2191: '\\uparrow ',
|
||||
0x2192: '\\rightarrow ',
|
||||
0x2193: '\\downarrow ',
|
||||
0x2194: '\\leftrightarrow ',
|
||||
0x2195: '\\updownarrow ',
|
||||
0x2196: '\\nwarrow ',
|
||||
0x2197: '\\nearrow ',
|
||||
0x2198: '\\searrow ',
|
||||
0x2199: '\\swarrow ',
|
||||
0x219a: '\\nleftarrow ',
|
||||
0x219b: '\\nrightarrow ',
|
||||
0x219e: '\\twoheadleftarrow ',
|
||||
0x21a0: '\\twoheadrightarrow ',
|
||||
0x21a2: '\\leftarrowtail ',
|
||||
0x21a3: '\\rightarrowtail ',
|
||||
0x21a6: '\\mapsto ',
|
||||
0x21a9: '\\hookleftarrow ',
|
||||
0x21aa: '\\hookrightarrow ',
|
||||
0x21ab: '\\looparrowleft ',
|
||||
0x21ac: '\\looparrowright ',
|
||||
0x21ad: '\\leftrightsquigarrow ',
|
||||
0x21ae: '\\nleftrightarrow ',
|
||||
0x21b0: '\\Lsh ',
|
||||
0x21b1: '\\Rsh ',
|
||||
0x21b6: '\\curvearrowleft ',
|
||||
0x21b7: '\\curvearrowright ',
|
||||
0x21ba: '\\circlearrowleft ',
|
||||
0x21bb: '\\circlearrowright ',
|
||||
0x21bc: '\\leftharpoonup ',
|
||||
0x21bd: '\\leftharpoondown ',
|
||||
0x21be: '\\upharpoonright ',
|
||||
0x21bf: '\\upharpoonleft ',
|
||||
0x21c0: '\\rightharpoonup ',
|
||||
0x21c1: '\\rightharpoondown ',
|
||||
0x21c2: '\\downharpoonright ',
|
||||
0x21c3: '\\downharpoonleft ',
|
||||
0x21c4: '\\rightleftarrows ',
|
||||
0x21c6: '\\leftrightarrows ',
|
||||
0x21c7: '\\leftleftarrows ',
|
||||
0x21c8: '\\upuparrows ',
|
||||
0x21c9: '\\rightrightarrows ',
|
||||
0x21ca: '\\downdownarrows ',
|
||||
0x21cb: '\\leftrightharpoons ',
|
||||
0x21cc: '\\rightleftharpoons ',
|
||||
0x21cd: '\\nLeftarrow ',
|
||||
0x21ce: '\\nLeftrightarrow ',
|
||||
0x21cf: '\\nRightarrow ',
|
||||
0x21d0: '\\Leftarrow ',
|
||||
0x21d1: '\\Uparrow ',
|
||||
0x21d2: '\\Rightarrow ',
|
||||
0x21d3: '\\Downarrow ',
|
||||
0x21d4: '\\Leftrightarrow ',
|
||||
0x21d5: '\\Updownarrow ',
|
||||
0x21da: '\\Lleftarrow ',
|
||||
0x21db: '\\Rrightarrow ',
|
||||
0x21dd: '\\rightsquigarrow ',
|
||||
0x21e0: '\\dashleftarrow ',
|
||||
0x21e2: '\\dashrightarrow ',
|
||||
0x2200: '\\forall ',
|
||||
0x2201: '\\complement ',
|
||||
0x2202: '\\partial ',
|
||||
0x2203: '\\exists ',
|
||||
0x2204: '\\nexists ',
|
||||
0x2205: '\\emptyset ',
|
||||
0x2207: '\\nabla ',
|
||||
0x2208: '\\in ',
|
||||
0x2209: '\\notin ',
|
||||
0x220b: '\\ni ',
|
||||
0x220f: '\\prod ',
|
||||
0x2210: '\\coprod ',
|
||||
0x2211: '\\sum ',
|
||||
0x2212: '-',
|
||||
0x2213: '\\mp ',
|
||||
0x2214: '\\dotplus ',
|
||||
0x2215: '\\slash ',
|
||||
0x2216: '\\smallsetminus ',
|
||||
0x2217: '\\ast ',
|
||||
0x2218: '\\circ ',
|
||||
0x2219: '\\bullet ',
|
||||
0x221a: '\\surd ',
|
||||
0x221b: '\\sqrt[3] ',
|
||||
0x221c: '\\sqrt[4] ',
|
||||
0x221d: '\\propto ',
|
||||
0x221e: '\\infty ',
|
||||
0x2220: '\\angle ',
|
||||
0x2221: '\\measuredangle ',
|
||||
0x2222: '\\sphericalangle ',
|
||||
0x2223: '\\mid ',
|
||||
0x2224: '\\nmid ',
|
||||
0x2225: '\\parallel ',
|
||||
0x2226: '\\nparallel ',
|
||||
0x2227: '\\wedge ',
|
||||
0x2228: '\\vee ',
|
||||
0x2229: '\\cap ',
|
||||
0x222a: '\\cup ',
|
||||
0x222b: '\\int ',
|
||||
0x222c: '\\iint ',
|
||||
0x222d: '\\iiint ',
|
||||
0x222e: '\\oint ',
|
||||
0x2234: '\\therefore ',
|
||||
0x2235: '\\because ',
|
||||
0x2236: ':',
|
||||
0x223c: '\\sim ',
|
||||
0x223d: '\\backsim ',
|
||||
0x2240: '\\wr ',
|
||||
0x2241: '\\nsim ',
|
||||
0x2242: '\\eqsim ',
|
||||
0x2243: '\\simeq ',
|
||||
0x2245: '\\cong ',
|
||||
0x2247: '\\ncong ',
|
||||
0x2248: '\\approx ',
|
||||
0x224a: '\\approxeq ',
|
||||
0x224d: '\\asymp ',
|
||||
0x224e: '\\Bumpeq ',
|
||||
0x224f: '\\bumpeq ',
|
||||
0x2250: '\\doteq ',
|
||||
0x2251: '\\Doteq ',
|
||||
0x2252: '\\fallingdotseq ',
|
||||
0x2253: '\\risingdotseq ',
|
||||
0x2256: '\\eqcirc ',
|
||||
0x2257: '\\circeq ',
|
||||
0x225c: '\\triangleq ',
|
||||
0x2260: '\\neq ',
|
||||
0x2261: '\\equiv ',
|
||||
0x2264: '\\leq ',
|
||||
0x2265: '\\geq ',
|
||||
0x2266: '\\leqq ',
|
||||
0x2267: '\\geqq ',
|
||||
0x2268: '\\lneqq ',
|
||||
0x2269: '\\gneqq ',
|
||||
0x226a: '\\ll ',
|
||||
0x226b: '\\gg ',
|
||||
0x226c: '\\between ',
|
||||
0x226e: '\\nless ',
|
||||
0x226f: '\\ngtr ',
|
||||
0x2270: '\\nleq ',
|
||||
0x2271: '\\ngeq ',
|
||||
0x2272: '\\lesssim ',
|
||||
0x2273: '\\gtrsim ',
|
||||
0x2276: '\\lessgtr ',
|
||||
0x2277: '\\gtrless ',
|
||||
0x227a: '\\prec ',
|
||||
0x227b: '\\succ ',
|
||||
0x227c: '\\preccurlyeq ',
|
||||
0x227d: '\\succcurlyeq ',
|
||||
0x227e: '\\precsim ',
|
||||
0x227f: '\\succsim ',
|
||||
0x2280: '\\nprec ',
|
||||
0x2281: '\\nsucc ',
|
||||
0x2282: '\\subset ',
|
||||
0x2283: '\\supset ',
|
||||
0x2286: '\\subseteq ',
|
||||
0x2287: '\\supseteq ',
|
||||
0x2288: '\\nsubseteq ',
|
||||
0x2289: '\\nsupseteq ',
|
||||
0x228a: '\\subsetneq ',
|
||||
0x228b: '\\supsetneq ',
|
||||
0x228e: '\\uplus ',
|
||||
0x228f: '\\sqsubset ',
|
||||
0x2290: '\\sqsupset ',
|
||||
0x2291: '\\sqsubseteq ',
|
||||
0x2292: '\\sqsupseteq ',
|
||||
0x2293: '\\sqcap ',
|
||||
0x2294: '\\sqcup ',
|
||||
0x2295: '\\oplus ',
|
||||
0x2296: '\\ominus ',
|
||||
0x2297: '\\otimes ',
|
||||
0x2298: '\\oslash ',
|
||||
0x2299: '\\odot ',
|
||||
0x229a: '\\circledcirc ',
|
||||
0x229b: '\\circledast ',
|
||||
0x229d: '\\circleddash ',
|
||||
0x229e: '\\boxplus ',
|
||||
0x229f: '\\boxminus ',
|
||||
0x22a0: '\\boxtimes ',
|
||||
0x22a1: '\\boxdot ',
|
||||
0x22a2: '\\vdash ',
|
||||
0x22a3: '\\dashv ',
|
||||
0x22a4: '\\top ',
|
||||
0x22a5: '\\bot ',
|
||||
0x22a7: '\\models ',
|
||||
0x22a8: '\\vDash ',
|
||||
0x22a9: '\\Vdash ',
|
||||
0x22aa: '\\Vvdash ',
|
||||
0x22ac: '\\nvdash ',
|
||||
0x22ad: '\\nvDash ',
|
||||
0x22ae: '\\nVdash ',
|
||||
0x22af: '\\nVDash ',
|
||||
0x22b2: '\\vartriangleleft ',
|
||||
0x22b3: '\\vartriangleright ',
|
||||
0x22b4: '\\trianglelefteq ',
|
||||
0x22b5: '\\trianglerighteq ',
|
||||
0x22b8: '\\multimap ',
|
||||
0x22ba: '\\intercal ',
|
||||
0x22bb: '\\veebar ',
|
||||
0x22bc: '\\barwedge ',
|
||||
0x22c0: '\\bigwedge ',
|
||||
0x22c1: '\\bigvee ',
|
||||
0x22c2: '\\bigcap ',
|
||||
0x22c3: '\\bigcup ',
|
||||
0x22c4: '\\diamond ',
|
||||
0x22c5: '\\cdot ',
|
||||
0x22c6: '\\star ',
|
||||
0x22c7: '\\divideontimes ',
|
||||
0x22c8: '\\bowtie ',
|
||||
0x22c9: '\\ltimes ',
|
||||
0x22ca: '\\rtimes ',
|
||||
0x22cb: '\\leftthreetimes ',
|
||||
0x22cc: '\\rightthreetimes ',
|
||||
0x22cd: '\\backsimeq ',
|
||||
0x22ce: '\\curlyvee ',
|
||||
0x22cf: '\\curlywedge ',
|
||||
0x22d0: '\\Subset ',
|
||||
0x22d1: '\\Supset ',
|
||||
0x22d2: '\\Cap ',
|
||||
0x22d3: '\\Cup ',
|
||||
0x22d4: '\\pitchfork ',
|
||||
0x22d6: '\\lessdot ',
|
||||
0x22d7: '\\gtrdot ',
|
||||
0x22d8: '\\lll ',
|
||||
0x22d9: '\\ggg ',
|
||||
0x22da: '\\lesseqgtr ',
|
||||
0x22db: '\\gtreqless ',
|
||||
0x22de: '\\curlyeqprec ',
|
||||
0x22df: '\\curlyeqsucc ',
|
||||
0x22e0: '\\npreceq ',
|
||||
0x22e1: '\\nsucceq ',
|
||||
0x22e6: '\\lnsim ',
|
||||
0x22e7: '\\gnsim ',
|
||||
0x22e8: '\\precnsim ',
|
||||
0x22e9: '\\succnsim ',
|
||||
0x22ea: '\\ntriangleleft ',
|
||||
0x22eb: '\\ntriangleright ',
|
||||
0x22ec: '\\ntrianglelefteq ',
|
||||
0x22ed: '\\ntrianglerighteq ',
|
||||
0x22ee: '\\vdots ',
|
||||
0x22ef: '\\cdots ',
|
||||
0x22f1: '\\ddots ',
|
||||
0x2308: '\\lceil ',
|
||||
0x2309: '\\rceil ',
|
||||
0x230a: '\\lfloor ',
|
||||
0x230b: '\\rfloor ',
|
||||
0x231c: '\\ulcorner ',
|
||||
0x231d: '\\urcorner ',
|
||||
0x231e: '\\llcorner ',
|
||||
0x231f: '\\lrcorner ',
|
||||
0x2322: '\\frown ',
|
||||
0x2323: '\\smile ',
|
||||
0x23aa: '\\bracevert ',
|
||||
0x23b0: '\\lmoustache ',
|
||||
0x23b1: '\\rmoustache ',
|
||||
0x23d0: '\\arrowvert ',
|
||||
0x23de: '\\overbrace ',
|
||||
0x23df: '\\underbrace ',
|
||||
0x24c7: '\\circledR ',
|
||||
0x24c8: '\\circledS ',
|
||||
0x25b2: '\\blacktriangle ',
|
||||
0x25b3: '\\bigtriangleup ',
|
||||
0x25b7: '\\triangleright ',
|
||||
0x25bc: '\\blacktriangledown ',
|
||||
0x25bd: '\\bigtriangledown ',
|
||||
0x25c1: '\\triangleleft ',
|
||||
0x25c7: '\\Diamond ',
|
||||
0x25ca: '\\lozenge ',
|
||||
0x25ef: '\\bigcirc ',
|
||||
0x25fb: '\\square ',
|
||||
0x25fc: '\\blacksquare ',
|
||||
0x2605: '\\bigstar ',
|
||||
0x2660: '\\spadesuit ',
|
||||
0x2661: '\\heartsuit ',
|
||||
0x2662: '\\diamondsuit ',
|
||||
0x2663: '\\clubsuit ',
|
||||
0x266d: '\\flat ',
|
||||
0x266e: '\\natural ',
|
||||
0x266f: '\\sharp ',
|
||||
0x2713: '\\checkmark ',
|
||||
0x2720: '\\maltese ',
|
||||
0x27c2: '\\perp ',
|
||||
0x27cb: '\\diagup ',
|
||||
0x27cd: '\\diagdown ',
|
||||
0x27e8: '\\langle ',
|
||||
0x27e9: '\\rangle ',
|
||||
0x27ee: '\\lgroup ',
|
||||
0x27ef: '\\rgroup ',
|
||||
0x27f5: '\\longleftarrow ',
|
||||
0x27f6: '\\longrightarrow ',
|
||||
0x27f7: '\\longleftrightarrow ',
|
||||
0x27f8: '\\Longleftarrow ',
|
||||
0x27f9: '\\Longrightarrow ',
|
||||
0x27fa: '\\Longleftrightarrow ',
|
||||
0x27fc: '\\longmapsto ',
|
||||
0x29eb: '\\blacklozenge ',
|
||||
0x29f5: '\\setminus ',
|
||||
0x2a00: '\\bigodot ',
|
||||
0x2a01: '\\bigoplus ',
|
||||
0x2a02: '\\bigotimes ',
|
||||
0x2a04: '\\biguplus ',
|
||||
0x2a06: '\\bigsqcup ',
|
||||
0x2a0c: '\\iiiint ',
|
||||
0x2a3f: '\\amalg ',
|
||||
0x2a5e: '\\doublebarwedge ',
|
||||
0x2a7d: '\\leqslant ',
|
||||
0x2a7e: '\\geqslant ',
|
||||
0x2a85: '\\lessapprox ',
|
||||
0x2a86: '\\gtrapprox ',
|
||||
0x2a87: '\\lneq ',
|
||||
0x2a88: '\\gneq ',
|
||||
0x2a89: '\\lnapprox ',
|
||||
0x2a8a: '\\gnapprox ',
|
||||
0x2a8b: '\\lesseqqgtr ',
|
||||
0x2a8c: '\\gtreqqless ',
|
||||
0x2a95: '\\eqslantless ',
|
||||
0x2a96: '\\eqslantgtr ',
|
||||
0x2aaf: '\\preceq ',
|
||||
0x2ab0: '\\succeq ',
|
||||
0x2ab5: '\\precneqq ',
|
||||
0x2ab6: '\\succneqq ',
|
||||
0x2ab7: '\\precapprox ',
|
||||
0x2ab8: '\\succapprox ',
|
||||
0x2ab9: '\\precnapprox ',
|
||||
0x2aba: '\\succnapprox ',
|
||||
0x2ac5: '\\subseteqq ',
|
||||
0x2ac6: '\\supseteqq ',
|
||||
0x2acb: '\\subsetneqq ',
|
||||
0x2acc: '\\supsetneqq ',
|
||||
0x2b1c: '\\Box ',
|
||||
0x1d400: '\\mathbf{A}',
|
||||
0x1d401: '\\mathbf{B}',
|
||||
0x1d402: '\\mathbf{C}',
|
||||
0x1d403: '\\mathbf{D}',
|
||||
0x1d404: '\\mathbf{E}',
|
||||
0x1d405: '\\mathbf{F}',
|
||||
0x1d406: '\\mathbf{G}',
|
||||
0x1d407: '\\mathbf{H}',
|
||||
0x1d408: '\\mathbf{I}',
|
||||
0x1d409: '\\mathbf{J}',
|
||||
0x1d40a: '\\mathbf{K}',
|
||||
0x1d40b: '\\mathbf{L}',
|
||||
0x1d40c: '\\mathbf{M}',
|
||||
0x1d40d: '\\mathbf{N}',
|
||||
0x1d40e: '\\mathbf{O}',
|
||||
0x1d40f: '\\mathbf{P}',
|
||||
0x1d410: '\\mathbf{Q}',
|
||||
0x1d411: '\\mathbf{R}',
|
||||
0x1d412: '\\mathbf{S}',
|
||||
0x1d413: '\\mathbf{T}',
|
||||
0x1d414: '\\mathbf{U}',
|
||||
0x1d415: '\\mathbf{V}',
|
||||
0x1d416: '\\mathbf{W}',
|
||||
0x1d417: '\\mathbf{X}',
|
||||
0x1d418: '\\mathbf{Y}',
|
||||
0x1d419: '\\mathbf{Z}',
|
||||
0x1d41a: '\\mathbf{a}',
|
||||
0x1d41b: '\\mathbf{b}',
|
||||
0x1d41c: '\\mathbf{c}',
|
||||
0x1d41d: '\\mathbf{d}',
|
||||
0x1d41e: '\\mathbf{e}',
|
||||
0x1d41f: '\\mathbf{f}',
|
||||
0x1d420: '\\mathbf{g}',
|
||||
0x1d421: '\\mathbf{h}',
|
||||
0x1d422: '\\mathbf{i}',
|
||||
0x1d423: '\\mathbf{j}',
|
||||
0x1d424: '\\mathbf{k}',
|
||||
0x1d425: '\\mathbf{l}',
|
||||
0x1d426: '\\mathbf{m}',
|
||||
0x1d427: '\\mathbf{n}',
|
||||
0x1d428: '\\mathbf{o}',
|
||||
0x1d429: '\\mathbf{p}',
|
||||
0x1d42a: '\\mathbf{q}',
|
||||
0x1d42b: '\\mathbf{r}',
|
||||
0x1d42c: '\\mathbf{s}',
|
||||
0x1d42d: '\\mathbf{t}',
|
||||
0x1d42e: '\\mathbf{u}',
|
||||
0x1d42f: '\\mathbf{v}',
|
||||
0x1d430: '\\mathbf{w}',
|
||||
0x1d431: '\\mathbf{x}',
|
||||
0x1d432: '\\mathbf{y}',
|
||||
0x1d433: '\\mathbf{z}',
|
||||
0x1d434: 'A',
|
||||
0x1d435: 'B',
|
||||
0x1d436: 'C',
|
||||
0x1d437: 'D',
|
||||
0x1d438: 'E',
|
||||
0x1d439: 'F',
|
||||
0x1d43a: 'G',
|
||||
0x1d43b: 'H',
|
||||
0x1d43c: 'I',
|
||||
0x1d43d: 'J',
|
||||
0x1d43e: 'K',
|
||||
0x1d43f: 'L',
|
||||
0x1d440: 'M',
|
||||
0x1d441: 'N',
|
||||
0x1d442: 'O',
|
||||
0x1d443: 'P',
|
||||
0x1d444: 'Q',
|
||||
0x1d445: 'R',
|
||||
0x1d446: 'S',
|
||||
0x1d447: 'T',
|
||||
0x1d448: 'U',
|
||||
0x1d449: 'V',
|
||||
0x1d44a: 'W',
|
||||
0x1d44b: 'X',
|
||||
0x1d44c: 'Y',
|
||||
0x1d44d: 'Z',
|
||||
0x1d44e: 'a',
|
||||
0x1d44f: 'b',
|
||||
0x1d450: 'c',
|
||||
0x1d451: 'd',
|
||||
0x1d452: 'e',
|
||||
0x1d453: 'f',
|
||||
0x1d454: 'g',
|
||||
0x1d456: 'i',
|
||||
0x1d457: 'j',
|
||||
0x1d458: 'k',
|
||||
0x1d459: 'l',
|
||||
0x1d45a: 'm',
|
||||
0x1d45b: 'n',
|
||||
0x1d45c: 'o',
|
||||
0x1d45d: 'p',
|
||||
0x1d45e: 'q',
|
||||
0x1d45f: 'r',
|
||||
0x1d460: 's',
|
||||
0x1d461: 't',
|
||||
0x1d462: 'u',
|
||||
0x1d463: 'v',
|
||||
0x1d464: 'w',
|
||||
0x1d465: 'x',
|
||||
0x1d466: 'y',
|
||||
0x1d467: 'z',
|
||||
0x1d49c: '\\mathcal{A}',
|
||||
0x1d49e: '\\mathcal{C}',
|
||||
0x1d49f: '\\mathcal{D}',
|
||||
0x1d4a2: '\\mathcal{G}',
|
||||
0x1d4a5: '\\mathcal{J}',
|
||||
0x1d4a6: '\\mathcal{K}',
|
||||
0x1d4a9: '\\mathcal{N}',
|
||||
0x1d4aa: '\\mathcal{O}',
|
||||
0x1d4ab: '\\mathcal{P}',
|
||||
0x1d4ac: '\\mathcal{Q}',
|
||||
0x1d4ae: '\\mathcal{S}',
|
||||
0x1d4af: '\\mathcal{T}',
|
||||
0x1d4b0: '\\mathcal{U}',
|
||||
0x1d4b1: '\\mathcal{V}',
|
||||
0x1d4b2: '\\mathcal{W}',
|
||||
0x1d4b3: '\\mathcal{X}',
|
||||
0x1d4b4: '\\mathcal{Y}',
|
||||
0x1d4b5: '\\mathcal{Z}',
|
||||
0x1d504: '\\mathfrak{A}',
|
||||
0x1d505: '\\mathfrak{B}',
|
||||
0x1d507: '\\mathfrak{D}',
|
||||
0x1d508: '\\mathfrak{E}',
|
||||
0x1d509: '\\mathfrak{F}',
|
||||
0x1d50a: '\\mathfrak{G}',
|
||||
0x1d50d: '\\mathfrak{J}',
|
||||
0x1d50e: '\\mathfrak{K}',
|
||||
0x1d50f: '\\mathfrak{L}',
|
||||
0x1d510: '\\mathfrak{M}',
|
||||
0x1d511: '\\mathfrak{N}',
|
||||
0x1d512: '\\mathfrak{O}',
|
||||
0x1d513: '\\mathfrak{P}',
|
||||
0x1d514: '\\mathfrak{Q}',
|
||||
0x1d516: '\\mathfrak{S}',
|
||||
0x1d517: '\\mathfrak{T}',
|
||||
0x1d518: '\\mathfrak{U}',
|
||||
0x1d519: '\\mathfrak{V}',
|
||||
0x1d51a: '\\mathfrak{W}',
|
||||
0x1d51b: '\\mathfrak{X}',
|
||||
0x1d51c: '\\mathfrak{Y}',
|
||||
0x1d51e: '\\mathfrak{a}',
|
||||
0x1d51f: '\\mathfrak{b}',
|
||||
0x1d520: '\\mathfrak{c}',
|
||||
0x1d521: '\\mathfrak{d}',
|
||||
0x1d522: '\\mathfrak{e}',
|
||||
0x1d523: '\\mathfrak{f}',
|
||||
0x1d524: '\\mathfrak{g}',
|
||||
0x1d525: '\\mathfrak{h}',
|
||||
0x1d526: '\\mathfrak{i}',
|
||||
0x1d527: '\\mathfrak{j}',
|
||||
0x1d528: '\\mathfrak{k}',
|
||||
0x1d529: '\\mathfrak{l}',
|
||||
0x1d52a: '\\mathfrak{m}',
|
||||
0x1d52b: '\\mathfrak{n}',
|
||||
0x1d52c: '\\mathfrak{o}',
|
||||
0x1d52d: '\\mathfrak{p}',
|
||||
0x1d52e: '\\mathfrak{q}',
|
||||
0x1d52f: '\\mathfrak{r}',
|
||||
0x1d530: '\\mathfrak{s}',
|
||||
0x1d531: '\\mathfrak{t}',
|
||||
0x1d532: '\\mathfrak{u}',
|
||||
0x1d533: '\\mathfrak{v}',
|
||||
0x1d534: '\\mathfrak{w}',
|
||||
0x1d535: '\\mathfrak{x}',
|
||||
0x1d536: '\\mathfrak{y}',
|
||||
0x1d537: '\\mathfrak{z}',
|
||||
0x1d538: '\\mathbb{A}',
|
||||
0x1d539: '\\mathbb{B}',
|
||||
0x1d53b: '\\mathbb{D}',
|
||||
0x1d53c: '\\mathbb{E}',
|
||||
0x1d53d: '\\mathbb{F}',
|
||||
0x1d53e: '\\mathbb{G}',
|
||||
0x1d540: '\\mathbb{I}',
|
||||
0x1d541: '\\mathbb{J}',
|
||||
0x1d542: '\\mathbb{K}',
|
||||
0x1d543: '\\mathbb{L}',
|
||||
0x1d544: '\\mathbb{M}',
|
||||
0x1d546: '\\mathbb{O}',
|
||||
0x1d54a: '\\mathbb{S}',
|
||||
0x1d54b: '\\mathbb{T}',
|
||||
0x1d54c: '\\mathbb{U}',
|
||||
0x1d54d: '\\mathbb{V}',
|
||||
0x1d54e: '\\mathbb{W}',
|
||||
0x1d54f: '\\mathbb{X}',
|
||||
0x1d550: '\\mathbb{Y}',
|
||||
0x1d55c: '\\Bbbk ',
|
||||
0x1d5a0: '\\mathsf{A}',
|
||||
0x1d5a1: '\\mathsf{B}',
|
||||
0x1d5a2: '\\mathsf{C}',
|
||||
0x1d5a3: '\\mathsf{D}',
|
||||
0x1d5a4: '\\mathsf{E}',
|
||||
0x1d5a5: '\\mathsf{F}',
|
||||
0x1d5a6: '\\mathsf{G}',
|
||||
0x1d5a7: '\\mathsf{H}',
|
||||
0x1d5a8: '\\mathsf{I}',
|
||||
0x1d5a9: '\\mathsf{J}',
|
||||
0x1d5aa: '\\mathsf{K}',
|
||||
0x1d5ab: '\\mathsf{L}',
|
||||
0x1d5ac: '\\mathsf{M}',
|
||||
0x1d5ad: '\\mathsf{N}',
|
||||
0x1d5ae: '\\mathsf{O}',
|
||||
0x1d5af: '\\mathsf{P}',
|
||||
0x1d5b0: '\\mathsf{Q}',
|
||||
0x1d5b1: '\\mathsf{R}',
|
||||
0x1d5b2: '\\mathsf{S}',
|
||||
0x1d5b3: '\\mathsf{T}',
|
||||
0x1d5b4: '\\mathsf{U}',
|
||||
0x1d5b5: '\\mathsf{V}',
|
||||
0x1d5b6: '\\mathsf{W}',
|
||||
0x1d5b7: '\\mathsf{X}',
|
||||
0x1d5b8: '\\mathsf{Y}',
|
||||
0x1d5b9: '\\mathsf{Z}',
|
||||
0x1d5ba: '\\mathsf{a}',
|
||||
0x1d5bb: '\\mathsf{b}',
|
||||
0x1d5bc: '\\mathsf{c}',
|
||||
0x1d5bd: '\\mathsf{d}',
|
||||
0x1d5be: '\\mathsf{e}',
|
||||
0x1d5bf: '\\mathsf{f}',
|
||||
0x1d5c0: '\\mathsf{g}',
|
||||
0x1d5c1: '\\mathsf{h}',
|
||||
0x1d5c2: '\\mathsf{i}',
|
||||
0x1d5c3: '\\mathsf{j}',
|
||||
0x1d5c4: '\\mathsf{k}',
|
||||
0x1d5c5: '\\mathsf{l}',
|
||||
0x1d5c6: '\\mathsf{m}',
|
||||
0x1d5c7: '\\mathsf{n}',
|
||||
0x1d5c8: '\\mathsf{o}',
|
||||
0x1d5c9: '\\mathsf{p}',
|
||||
0x1d5ca: '\\mathsf{q}',
|
||||
0x1d5cb: '\\mathsf{r}',
|
||||
0x1d5cc: '\\mathsf{s}',
|
||||
0x1d5cd: '\\mathsf{t}',
|
||||
0x1d5ce: '\\mathsf{u}',
|
||||
0x1d5cf: '\\mathsf{v}',
|
||||
0x1d5d0: '\\mathsf{w}',
|
||||
0x1d5d1: '\\mathsf{x}',
|
||||
0x1d5d2: '\\mathsf{y}',
|
||||
0x1d5d3: '\\mathsf{z}',
|
||||
0x1d670: '\\mathtt{A}',
|
||||
0x1d671: '\\mathtt{B}',
|
||||
0x1d672: '\\mathtt{C}',
|
||||
0x1d673: '\\mathtt{D}',
|
||||
0x1d674: '\\mathtt{E}',
|
||||
0x1d675: '\\mathtt{F}',
|
||||
0x1d676: '\\mathtt{G}',
|
||||
0x1d677: '\\mathtt{H}',
|
||||
0x1d678: '\\mathtt{I}',
|
||||
0x1d679: '\\mathtt{J}',
|
||||
0x1d67a: '\\mathtt{K}',
|
||||
0x1d67b: '\\mathtt{L}',
|
||||
0x1d67c: '\\mathtt{M}',
|
||||
0x1d67d: '\\mathtt{N}',
|
||||
0x1d67e: '\\mathtt{O}',
|
||||
0x1d67f: '\\mathtt{P}',
|
||||
0x1d680: '\\mathtt{Q}',
|
||||
0x1d681: '\\mathtt{R}',
|
||||
0x1d682: '\\mathtt{S}',
|
||||
0x1d683: '\\mathtt{T}',
|
||||
0x1d684: '\\mathtt{U}',
|
||||
0x1d685: '\\mathtt{V}',
|
||||
0x1d686: '\\mathtt{W}',
|
||||
0x1d687: '\\mathtt{X}',
|
||||
0x1d688: '\\mathtt{Y}',
|
||||
0x1d689: '\\mathtt{Z}',
|
||||
0x1d68a: '\\mathtt{a}',
|
||||
0x1d68b: '\\mathtt{b}',
|
||||
0x1d68c: '\\mathtt{c}',
|
||||
0x1d68d: '\\mathtt{d}',
|
||||
0x1d68e: '\\mathtt{e}',
|
||||
0x1d68f: '\\mathtt{f}',
|
||||
0x1d690: '\\mathtt{g}',
|
||||
0x1d691: '\\mathtt{h}',
|
||||
0x1d692: '\\mathtt{i}',
|
||||
0x1d693: '\\mathtt{j}',
|
||||
0x1d694: '\\mathtt{k}',
|
||||
0x1d695: '\\mathtt{l}',
|
||||
0x1d696: '\\mathtt{m}',
|
||||
0x1d697: '\\mathtt{n}',
|
||||
0x1d698: '\\mathtt{o}',
|
||||
0x1d699: '\\mathtt{p}',
|
||||
0x1d69a: '\\mathtt{q}',
|
||||
0x1d69b: '\\mathtt{r}',
|
||||
0x1d69c: '\\mathtt{s}',
|
||||
0x1d69d: '\\mathtt{t}',
|
||||
0x1d69e: '\\mathtt{u}',
|
||||
0x1d69f: '\\mathtt{v}',
|
||||
0x1d6a0: '\\mathtt{w}',
|
||||
0x1d6a1: '\\mathtt{x}',
|
||||
0x1d6a2: '\\mathtt{y}',
|
||||
0x1d6a3: '\\mathtt{z}',
|
||||
0x1d6a4: '\\imath ',
|
||||
0x1d6a5: '\\jmath ',
|
||||
0x1d6aa: '\\mathbf{\\Gamma}',
|
||||
0x1d6ab: '\\mathbf{\\Delta}',
|
||||
0x1d6af: '\\mathbf{\\Theta}',
|
||||
0x1d6b2: '\\mathbf{\\Lambda}',
|
||||
0x1d6b5: '\\mathbf{\\Xi}',
|
||||
0x1d6b7: '\\mathbf{\\Pi}',
|
||||
0x1d6ba: '\\mathbf{\\Sigma}',
|
||||
0x1d6bc: '\\mathbf{\\Upsilon}',
|
||||
0x1d6bd: '\\mathbf{\\Phi}',
|
||||
0x1d6bf: '\\mathbf{\\Psi}',
|
||||
0x1d6c0: '\\mathbf{\\Omega}',
|
||||
0x1d6e4: '\\mathit{\\Gamma}',
|
||||
0x1d6e5: '\\mathit{\\Delta}',
|
||||
0x1d6e9: '\\mathit{\\Theta}',
|
||||
0x1d6ec: '\\mathit{\\Lambda}',
|
||||
0x1d6ef: '\\mathit{\\Xi}',
|
||||
0x1d6f1: '\\mathit{\\Pi}',
|
||||
0x1d6f4: '\\mathit{\\Sigma}',
|
||||
0x1d6f6: '\\mathit{\\Upsilon}',
|
||||
0x1d6f7: '\\mathit{\\Phi}',
|
||||
0x1d6f9: '\\mathit{\\Psi}',
|
||||
0x1d6fa: '\\mathit{\\Omega}',
|
||||
0x1d6fc: '\\alpha ',
|
||||
0x1d6fd: '\\beta ',
|
||||
0x1d6fe: '\\gamma ',
|
||||
0x1d6ff: '\\delta ',
|
||||
0x1d700: '\\varepsilon ',
|
||||
0x1d701: '\\zeta ',
|
||||
0x1d702: '\\eta ',
|
||||
0x1d703: '\\theta ',
|
||||
0x1d704: '\\iota ',
|
||||
0x1d705: '\\kappa ',
|
||||
0x1d706: '\\lambda ',
|
||||
0x1d707: '\\mu ',
|
||||
0x1d708: '\\nu ',
|
||||
0x1d709: '\\xi ',
|
||||
0x1d70b: '\\pi ',
|
||||
0x1d70c: '\\rho ',
|
||||
0x1d70d: '\\varsigma ',
|
||||
0x1d70e: '\\sigma ',
|
||||
0x1d70f: '\\tau ',
|
||||
0x1d710: '\\upsilon ',
|
||||
0x1d711: '\\varphi ',
|
||||
0x1d712: '\\chi ',
|
||||
0x1d713: '\\psi ',
|
||||
0x1d714: '\\omega ',
|
||||
0x1d715: '\\partial ',
|
||||
0x1d716: '\\epsilon ',
|
||||
0x1d717: '\\vartheta ',
|
||||
0x1d718: '\\varkappa ',
|
||||
0x1d719: '\\phi ',
|
||||
0x1d71a: '\\varrho ',
|
||||
0x1d71b: '\\varpi ',
|
||||
0x1d7ce: '\\mathbf{0}',
|
||||
0x1d7cf: '\\mathbf{1}',
|
||||
0x1d7d0: '\\mathbf{2}',
|
||||
0x1d7d1: '\\mathbf{3}',
|
||||
0x1d7d2: '\\mathbf{4}',
|
||||
0x1d7d3: '\\mathbf{5}',
|
||||
0x1d7d4: '\\mathbf{6}',
|
||||
0x1d7d5: '\\mathbf{7}',
|
||||
0x1d7d6: '\\mathbf{8}',
|
||||
0x1d7d7: '\\mathbf{9}',
|
||||
0x1d7e2: '\\mathsf{0}',
|
||||
0x1d7e3: '\\mathsf{1}',
|
||||
0x1d7e4: '\\mathsf{2}',
|
||||
0x1d7e5: '\\mathsf{3}',
|
||||
0x1d7e6: '\\mathsf{4}',
|
||||
0x1d7e7: '\\mathsf{5}',
|
||||
0x1d7e8: '\\mathsf{6}',
|
||||
0x1d7e9: '\\mathsf{7}',
|
||||
0x1d7ea: '\\mathsf{8}',
|
||||
0x1d7eb: '\\mathsf{9}',
|
||||
0x1d7f6: '\\mathtt{0}',
|
||||
0x1d7f7: '\\mathtt{1}',
|
||||
0x1d7f8: '\\mathtt{2}',
|
||||
0x1d7f9: '\\mathtt{3}',
|
||||
0x1d7fa: '\\mathtt{4}',
|
||||
0x1d7fb: '\\mathtt{5}',
|
||||
0x1d7fc: '\\mathtt{6}',
|
||||
0x1d7fd: '\\mathtt{7}',
|
||||
0x1d7fe: '\\mathtt{8}',
|
||||
0x1d7ff: '\\mathtt{9}',
|
||||
}
|
||||
Reference in New Issue
Block a user