183 lines
5.5 KiB
Python
183 lines
5.5 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright 2024 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
"""The vertexai resources module."""
|
|
|
|
from google.cloud.aiplatform import initializer
|
|
|
|
from google.cloud.aiplatform.datasets import (
|
|
ImageDataset,
|
|
TabularDataset,
|
|
TextDataset,
|
|
TimeSeriesDataset,
|
|
VideoDataset,
|
|
)
|
|
from google.cloud.aiplatform import explain
|
|
from google.cloud.aiplatform import gapic
|
|
from google.cloud.aiplatform import hyperparameter_tuning
|
|
from google.cloud.aiplatform.featurestore import (
|
|
EntityType,
|
|
Feature,
|
|
Featurestore,
|
|
)
|
|
from google.cloud.aiplatform.matching_engine import (
|
|
MatchingEngineIndex,
|
|
MatchingEngineIndexEndpoint,
|
|
)
|
|
from google.cloud.aiplatform import metadata
|
|
from google.cloud.aiplatform.tensorboard import uploader_tracker
|
|
from google.cloud.aiplatform.models import DeploymentResourcePool
|
|
from google.cloud.aiplatform.models import Endpoint
|
|
from google.cloud.aiplatform.models import PrivateEndpoint
|
|
from google.cloud.aiplatform.models import Model
|
|
from google.cloud.aiplatform.models import ModelRegistry
|
|
from google.cloud.aiplatform.model_evaluation import ModelEvaluation
|
|
from google.cloud.aiplatform.jobs import (
|
|
BatchPredictionJob,
|
|
CustomJob,
|
|
HyperparameterTuningJob,
|
|
ModelDeploymentMonitoringJob,
|
|
)
|
|
from google.cloud.aiplatform.pipeline_jobs import PipelineJob
|
|
from google.cloud.aiplatform.pipeline_job_schedules import (
|
|
PipelineJobSchedule,
|
|
)
|
|
from google.cloud.aiplatform.tensorboard import (
|
|
Tensorboard,
|
|
TensorboardExperiment,
|
|
TensorboardRun,
|
|
TensorboardTimeSeries,
|
|
)
|
|
from google.cloud.aiplatform.training_jobs import (
|
|
CustomTrainingJob,
|
|
CustomContainerTrainingJob,
|
|
CustomPythonPackageTrainingJob,
|
|
AutoMLTabularTrainingJob,
|
|
AutoMLForecastingTrainingJob,
|
|
SequenceToSequencePlusForecastingTrainingJob,
|
|
TemporalFusionTransformerForecastingTrainingJob,
|
|
TimeSeriesDenseEncoderForecastingTrainingJob,
|
|
AutoMLImageTrainingJob,
|
|
AutoMLTextTrainingJob,
|
|
AutoMLVideoTrainingJob,
|
|
)
|
|
|
|
from google.cloud.aiplatform import helpers
|
|
|
|
"""
|
|
Usage:
|
|
import vertexai
|
|
|
|
vertexai.init(project='my_project')
|
|
"""
|
|
init = initializer.global_config.init
|
|
|
|
get_pipeline_df = metadata.metadata._LegacyExperimentService.get_pipeline_df
|
|
|
|
log_params = metadata.metadata._experiment_tracker.log_params
|
|
log_metrics = metadata.metadata._experiment_tracker.log_metrics
|
|
log_classification_metrics = (
|
|
metadata.metadata._experiment_tracker.log_classification_metrics
|
|
)
|
|
log_model = metadata.metadata._experiment_tracker.log_model
|
|
get_experiment_df = metadata.metadata._experiment_tracker.get_experiment_df
|
|
start_run = metadata.metadata._experiment_tracker.start_run
|
|
autolog = metadata.metadata._experiment_tracker.autolog
|
|
start_execution = metadata.metadata._experiment_tracker.start_execution
|
|
log = metadata.metadata._experiment_tracker.log
|
|
log_time_series_metrics = metadata.metadata._experiment_tracker.log_time_series_metrics
|
|
end_run = metadata.metadata._experiment_tracker.end_run
|
|
|
|
upload_tb_log = uploader_tracker._tensorboard_tracker.upload_tb_log
|
|
start_upload_tb_log = uploader_tracker._tensorboard_tracker.start_upload_tb_log
|
|
end_upload_tb_log = uploader_tracker._tensorboard_tracker.end_upload_tb_log
|
|
|
|
save_model = metadata._models.save_model
|
|
get_experiment_model = metadata.schema.google.artifact_schema.ExperimentModel.get
|
|
|
|
Experiment = metadata.experiment_resources.Experiment
|
|
ExperimentRun = metadata.experiment_run_resource.ExperimentRun
|
|
Artifact = metadata.artifact.Artifact
|
|
Execution = metadata.execution.Execution
|
|
Context = metadata.context.Context
|
|
|
|
|
|
__all__ = (
|
|
"end_run",
|
|
"explain",
|
|
"gapic",
|
|
"init",
|
|
"helpers",
|
|
"hyperparameter_tuning",
|
|
"log",
|
|
"log_params",
|
|
"log_metrics",
|
|
"log_classification_metrics",
|
|
"log_model",
|
|
"log_time_series_metrics",
|
|
"get_experiment_df",
|
|
"get_pipeline_df",
|
|
"start_run",
|
|
"start_execution",
|
|
"save_model",
|
|
"get_experiment_model",
|
|
"autolog",
|
|
"upload_tb_log",
|
|
"start_upload_tb_log",
|
|
"end_upload_tb_log",
|
|
"Artifact",
|
|
"AutoMLImageTrainingJob",
|
|
"AutoMLTabularTrainingJob",
|
|
"AutoMLForecastingTrainingJob",
|
|
"AutoMLTextTrainingJob",
|
|
"AutoMLVideoTrainingJob",
|
|
"BatchPredictionJob",
|
|
"CustomJob",
|
|
"CustomTrainingJob",
|
|
"CustomContainerTrainingJob",
|
|
"CustomPythonPackageTrainingJob",
|
|
"DeploymentResourcePool",
|
|
"Endpoint",
|
|
"EntityType",
|
|
"Execution",
|
|
"Experiment",
|
|
"ExperimentRun",
|
|
"Feature",
|
|
"Featurestore",
|
|
"MatchingEngineIndex",
|
|
"MatchingEngineIndexEndpoint",
|
|
"ImageDataset",
|
|
"HyperparameterTuningJob",
|
|
"Model",
|
|
"ModelRegistry",
|
|
"ModelEvaluation",
|
|
"ModelDeploymentMonitoringJob",
|
|
"PipelineJob",
|
|
"PipelineJobSchedule",
|
|
"PrivateEndpoint",
|
|
"SequenceToSequencePlusForecastingTrainingJob",
|
|
"TabularDataset",
|
|
"Tensorboard",
|
|
"TensorboardExperiment",
|
|
"TensorboardRun",
|
|
"TensorboardTimeSeries",
|
|
"TextDataset",
|
|
"TemporalFusionTransformerForecastingTrainingJob",
|
|
"TimeSeriesDataset",
|
|
"TimeSeriesDenseEncoderForecastingTrainingJob",
|
|
"VideoDataset",
|
|
)
|