Files
evo-ai/.venv/lib/python3.10/site-packages/vertexai/preview/rag/utils/resources.py
2025-04-25 15:30:54 -03:00

577 lines
18 KiB
Python

# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import dataclasses
from typing import List, Optional, Sequence, Union
from google.protobuf import timestamp_pb2
DEPRECATION_DATE = "June 2025"
@dataclasses.dataclass
class RagFile:
"""RAG file (output only).
Attributes:
name: Generated resource name. Format:
``projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}/ragFiles/{rag_file}``
display_name: Display name that was configured at client side.
description: The description of the RagFile.
"""
name: Optional[str] = None
display_name: Optional[str] = None
description: Optional[str] = None
@dataclasses.dataclass
class EmbeddingModelConfig:
"""EmbeddingModelConfig.
The representation of the embedding model config. Users input a 1P embedding
model as a Publisher model resource, or a 1P fine tuned embedding model
as an Endpoint resource.
Attributes:
publisher_model: 1P publisher model resource name. Format:
``publishers/google/models/{model}`` or
``projects/{project}/locations/{location}/publishers/google/models/{model}``
endpoint: 1P fine tuned embedding model resource name. Format:
``endpoints/{endpoint}`` or
``projects/{project}/locations/{location}/endpoints/{endpoint}``.
model:
Output only. The resource name of the model that is deployed
on the endpoint. Present only when the endpoint is not a
publisher model. Pattern:
``projects/{project}/locations/{location}/models/{model}``
model_version_id:
Output only. Version ID of the model that is
deployed on the endpoint. Present only when the
endpoint is not a publisher model.
"""
publisher_model: Optional[str] = None
endpoint: Optional[str] = None
model: Optional[str] = None
model_version_id: Optional[str] = None
@dataclasses.dataclass
class VertexPredictionEndpoint:
"""VertexPredictionEndpoint.
Attributes:
publisher_model: 1P publisher model resource name. Format:
``publishers/google/models/{model}`` or
``projects/{project}/locations/{location}/publishers/google/models/{model}``
endpoint: 1P fine tuned embedding model resource name. Format:
``endpoints/{endpoint}`` or
``projects/{project}/locations/{location}/endpoints/{endpoint}``.
model:
Output only. The resource name of the model that is deployed
on the endpoint. Present only when the endpoint is not a
publisher model. Pattern:
``projects/{project}/locations/{location}/models/{model}``
model_version_id:
Output only. Version ID of the model that is
deployed on the endpoint. Present only when the
endpoint is not a publisher model.
"""
endpoint: Optional[str] = None
publisher_model: Optional[str] = None
model: Optional[str] = None
model_version_id: Optional[str] = None
@dataclasses.dataclass
class RagEmbeddingModelConfig:
"""RagEmbeddingModelConfig.
Attributes:
vertex_prediction_endpoint: The Vertex AI Prediction Endpoint resource
name. Format:
``projects/{project}/locations/{location}/endpoints/{endpoint}``
"""
vertex_prediction_endpoint: Optional[VertexPredictionEndpoint] = None
@dataclasses.dataclass
class Weaviate:
"""Weaviate.
Attributes:
weaviate_http_endpoint: The Weaviate DB instance HTTP endpoint
collection_name: The corresponding Weaviate collection this corpus maps to
api_key: The SecretManager resource name for the Weaviate DB API token. Format:
``projects/{project}/secrets/{secret}/versions/{version}``
"""
weaviate_http_endpoint: Optional[str] = None
collection_name: Optional[str] = None
api_key: Optional[str] = None
@dataclasses.dataclass
class VertexFeatureStore:
"""VertexFeatureStore.
Attributes:
resource_name: The resource name of the FeatureView. Format:
``projects/{project}/locations/{location}/featureOnlineStores/
{feature_online_store}/featureViews/{feature_view}``
"""
resource_name: Optional[str] = None
@dataclasses.dataclass
class VertexVectorSearch:
"""VertexVectorSearch.
Attributes:
index_endpoint (str):
The resource name of the Index Endpoint. Format:
``projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}``
index (str):
The resource name of the Index. Format:
``projects/{project}/locations/{location}/indexes/{index}``
"""
index_endpoint: Optional[str] = None
index: Optional[str] = None
@dataclasses.dataclass
class RagManagedDb:
"""RagManagedDb."""
@dataclasses.dataclass
class Pinecone:
"""Pinecone.
Attributes:
index_name: The Pinecone index name.
api_key: The SecretManager resource name for the Pinecone DB API token. Format:
``projects/{project}/secrets/{secret}/versions/{version}``
"""
index_name: Optional[str] = None
api_key: Optional[str] = None
@dataclasses.dataclass
class VertexAiSearchConfig:
"""VertexAiSearchConfig.
Attributes:
serving_config: The resource name of the Vertex AI Search serving config.
Format:
``projects/{project}/locations/{location}/collections/{collection}/engines/{engine}/servingConfigs/{serving_config}``
or
``projects/{project}/locations/{location}/collections/{collection}/dataStores/{data_store}/servingConfigs/{serving_config}``
"""
serving_config: Optional[str] = None
@dataclasses.dataclass
class RagVectorDbConfig:
"""RagVectorDbConfig.
Attributes:
vector_db: Can be one of the following: Weaviate, VertexFeatureStore,
VertexVectorSearch, Pinecone, RagManagedDb.
rag_embedding_model_config: The embedding model config of the Vector DB.
"""
vector_db: Optional[
Union[Weaviate, VertexFeatureStore, VertexVectorSearch, Pinecone, RagManagedDb]
] = None
rag_embedding_model_config: Optional[RagEmbeddingModelConfig] = None
@dataclasses.dataclass
class RagCorpus:
"""RAG corpus(output only).
Attributes:
name: Generated resource name. Format:
``projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}``
display_name: Display name that was configured at client side.
description: The description of the RagCorpus.
embedding_model_config: The embedding model config of the RagCorpus.
Note: Deprecated. Use backend_config instead.
vector_db: The Vector DB of the RagCorpus.
Note: Deprecated. Use backend_config instead.
vertex_ai_search_config: The Vertex AI Search config of the RagCorpus.
backend_config: The backend config of the RagCorpus. It can specify a
Vector DB and/or the embedding model config.
"""
name: Optional[str] = None
display_name: Optional[str] = None
description: Optional[str] = None
embedding_model_config: Optional[EmbeddingModelConfig] = None
vector_db: Optional[
Union[Weaviate, VertexFeatureStore, VertexVectorSearch, Pinecone, RagManagedDb]
] = None
vertex_ai_search_config: Optional[VertexAiSearchConfig] = None
backend_config: Optional[RagVectorDbConfig] = None
@dataclasses.dataclass
class RagResource:
"""RagResource.
The representation of the rag source. It can be used to specify corpus only
or ragfiles. Currently only support one corpus or multiple files from one
corpus. In the future we may open up multiple corpora support.
Attributes:
rag_corpus: A Rag corpus resource name or corpus id. Format:
``projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}``
or ``{rag_corpus_id}``.
rag_files_id: List of Rag file resource name or file ids in the same corpus. Format:
``{rag_file}``.
"""
rag_corpus: Optional[str] = None
rag_file_ids: Optional[List[str]] = None
@dataclasses.dataclass
class SlackChannel:
"""SlackChannel.
Attributes:
channel_id: The Slack channel ID.
api_key: The SecretManager resource name for the Slack API token. Format:
``projects/{project}/secrets/{secret}/versions/{version}``
See: https://api.slack.com/tutorials/tracks/getting-a-token.
start_time: The starting timestamp for messages to import.
end_time: The ending timestamp for messages to import.
"""
channel_id: str
api_key: str
start_time: Optional[timestamp_pb2.Timestamp] = None
end_time: Optional[timestamp_pb2.Timestamp] = None
@dataclasses.dataclass
class SlackChannelsSource:
"""SlackChannelsSource.
Attributes:
channels: The Slack channels.
"""
channels: Sequence[SlackChannel]
@dataclasses.dataclass
class JiraQuery:
"""JiraQuery.
Attributes:
email: The Jira email address.
jira_projects: A list of Jira projects to import in their entirety.
custom_queries: A list of custom JQL Jira queries to import.
api_key: The SecretManager version resource name for Jira API access. Format:
``projects/{project}/secrets/{secret}/versions/{version}``
See: https://support.atlassian.com/atlassian-account/docs/manage-api-tokens-for-your-atlassian-account/
server_uri: The Jira server URI. Format:
``{server}.atlassian.net``
"""
email: str
jira_projects: Sequence[str]
custom_queries: Sequence[str]
api_key: str
server_uri: str
@dataclasses.dataclass
class JiraSource:
"""JiraSource.
Attributes:
queries: The Jira queries.
"""
queries: Sequence[JiraQuery]
@dataclasses.dataclass
class SharePointSource:
"""SharePointSource.
Attributes:
sharepoint_folder_path: The path of the SharePoint folder to download
from.
sharepoint_folder_id: The ID of the SharePoint folder to download
from.
drive_name: The name of the drive to download from.
drive_id: The ID of the drive to download from.
client_id: The Application ID for the app registered in
Microsoft Azure Portal. The application must
also be configured with MS Graph permissions
"Files.ReadAll", "Sites.ReadAll" and
BrowserSiteLists.Read.All.
client_secret: The application secret for the app registered
in Azure.
tenant_id: Unique identifier of the Azure Active
Directory Instance.
sharepoint_site_name: The name of the SharePoint site to download
from. This can be the site name or the site id.
"""
sharepoint_folder_path: Optional[str] = None
sharepoint_folder_id: Optional[str] = None
drive_name: Optional[str] = None
drive_id: Optional[str] = None
client_id: str = None
client_secret: str = None
tenant_id: str = None
sharepoint_site_name: str = None
@dataclasses.dataclass
class SharePointSources:
"""SharePointSources.
Attributes:
share_point_sources: The SharePoint sources.
"""
share_point_sources: Sequence[SharePointSource]
@dataclasses.dataclass
class Filter:
"""Filter.
Attributes:
vector_distance_threshold: Only returns contexts with vector
distance smaller than the threshold.
vector_similarity_threshold: Only returns contexts with vector
similarity larger than the threshold.
metadata_filter: String for metadata filtering.
"""
vector_distance_threshold: Optional[float] = None
vector_similarity_threshold: Optional[float] = None
metadata_filter: Optional[str] = None
@dataclasses.dataclass
class HybridSearch:
"""HybridSearch.
Attributes:
alpha: Alpha value controls the weight between dense and
sparse vector search results. The range is [0, 1], while 0
means sparse vector search only and 1 means dense vector
search only. The default value is 0.5 which balances sparse
and dense vector search equally.
"""
alpha: Optional[float] = None
@dataclasses.dataclass
class LlmRanker:
"""LlmRanker.
Attributes:
model_name: The model name used for ranking. Only Gemini models are
supported for now.
"""
model_name: Optional[str] = None
@dataclasses.dataclass
class RankService:
"""RankService.
Attributes:
model_name: The model name of the rank service. Format:
``semantic-ranker-512@latest``
"""
model_name: Optional[str] = None
@dataclasses.dataclass
class Ranking:
"""Ranking.
Attributes:
rank_service: (google.cloud.aiplatform_v1beta1.types.RagRetrievalConfig.Ranking.RankService)
Config for Rank Service.
llm_ranker (google.cloud.aiplatform_v1beta1.types.RagRetrievalConfig.Ranking.LlmRanker):
Config for LlmRanker.
"""
rank_service: Optional[RankService] = None
llm_ranker: Optional[LlmRanker] = None
@dataclasses.dataclass
class RagRetrievalConfig:
"""RagRetrievalConfig.
Attributes:
top_k: The number of contexts to retrieve.
filter: Config for filters.
hybrid_search (google.cloud.aiplatform_v1beta1.types.RagRetrievalConfig.HybridSearch):
Config for Hybrid Search.
ranking (google.cloud.aiplatform_v1beta1.types.RagRetrievalConfig.Ranking):
Config for ranking and reranking.
"""
top_k: Optional[int] = None
filter: Optional[Filter] = None
hybrid_search: Optional[HybridSearch] = None
ranking: Optional[Ranking] = None
@dataclasses.dataclass
class ChunkingConfig:
"""ChunkingConfig.
Attributes:
chunk_size: The size of each chunk.
chunk_overlap: The size of the overlap between chunks.
"""
chunk_size: int
chunk_overlap: int
@dataclasses.dataclass
class TransformationConfig:
"""TransformationConfig.
Attributes:
chunking_config: The chunking config.
"""
chunking_config: Optional[ChunkingConfig] = None
@dataclasses.dataclass
class LayoutParserConfig:
"""Configuration for the Document AI Layout Parser Processor.
Attributes:
processor_name (str):
The full resource name of a Document AI processor or processor
version. The processor must have type `LAYOUT_PARSER_PROCESSOR`.
Format:
- `projects/{project_id}/locations/{location}/processors/{processor_id}`
- `projects/{project_id}/locations/{location}/processors/{processor_id}/processorVersions/{processor_version_id}`
max_parsing_requests_per_min (int):
The maximum number of requests the job is allowed to make to the
Document AI processor per minute. Consult
https://cloud.google.com/document-ai/quotas and the Quota page for
your project to set an appropriate value here. If unspecified, a
default value of 120 QPM will be used.
"""
processor_name: str
max_parsing_requests_per_min: Optional[int] = None
@dataclasses.dataclass
class LlmParserConfig:
"""Configuration for the Document AI Layout Parser Processor.
Attributes:
model_name (str):
The full resource name of a Vertex AI model. Format:
- `projects/{project_id}/locations/{location}/publishers/google/models/{model_id}`
- `projects/{project_id}/locations/{location}/models/{model_id}`
max_parsing_requests_per_min (int):
The maximum number of requests the job is allowed to make to the
Vertex AI model per minute. Consult
https://cloud.google.com/vertex-ai/generative-ai/docs/quotas and
the Quota page for your project to set an appropriate value here.
If unspecified, a default value of 5000 QPM will be used.
custom_parsing_prompt (str):
A custom prompt to use for parsing.
"""
model_name: str
max_parsing_requests_per_min: Optional[int] = None
custom_parsing_prompt: Optional[str] = None
@dataclasses.dataclass
class Enterprise:
"""Enterprise tier offers production grade performance along with
autoscaling functionality. It is suitable for customers with large
amounts of data or performance sensitive workloads.
NOTE: This is the default tier if not explicitly chosen.
"""
@dataclasses.dataclass
class Basic:
"""Basic tier is a cost-effective and low compute tier suitable for the following cases:
* Experimenting with RagManagedDb.
* Small data size.
* Latency insensitive workload.
* Only using RAG Engine with external vector DBs.
"""
@dataclasses.dataclass
class RagManagedDbConfig:
"""RagManagedDbConfig.
The config of the RagManagedDb used by RagEngine.
Attributes:
tier: The tier of the RagManagedDb. The default tier is Enterprise.
"""
tier: Optional[Union[Enterprise, Basic]] = None
@dataclasses.dataclass
class RagEngineConfig:
"""RagEngineConfig.
Attributes:
name: Generated resource name for singleton resource. Format:
``projects/{project}/locations/{location}/ragEngineConfig``
rag_managed_db_config: The config of the RagManagedDb used by RagEngine.
The default tier is Enterprise.
"""
name: str
rag_managed_db_config: Optional[RagManagedDbConfig] = None