641 lines
22 KiB
Python
641 lines
22 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright 2024 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
"""Utility functions for evaluation."""
|
|
|
|
import functools
|
|
import io
|
|
import json
|
|
import os
|
|
import re
|
|
import sys
|
|
import tempfile
|
|
import threading
|
|
import time
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
List,
|
|
Optional,
|
|
Pattern,
|
|
Tuple,
|
|
TYPE_CHECKING,
|
|
Union,
|
|
)
|
|
|
|
from google.cloud import bigquery
|
|
from google.cloud import storage
|
|
from google.cloud.aiplatform import base
|
|
from google.cloud.aiplatform import compat
|
|
from google.cloud.aiplatform import initializer
|
|
from google.cloud.aiplatform import utils
|
|
from google.cloud.aiplatform.utils import _ipython_utils
|
|
from google.cloud.aiplatform_v1beta1.services import (
|
|
evaluation_service as gapic_evaluation_services,
|
|
)
|
|
from vertexai.evaluation import _base as eval_base
|
|
from vertexai.evaluation.metrics import _base as metrics_base
|
|
from vertexai.evaluation.metrics import (
|
|
metric_prompt_template as metric_prompt_template_base,
|
|
)
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
import pandas as pd
|
|
|
|
|
|
_BQ_PREFIX = "bq://"
|
|
_GCS_PREFIX = "gs://"
|
|
_LOGGER = base.Logger(__name__)
|
|
|
|
_QUESTION_REGEX = re.compile(r"Question:(.*?)Verdict:", re.DOTALL)
|
|
_VERDICT_REGEX = re.compile("Verdict:(.*)")
|
|
_QUESTION_BLOCK_REGEX = re.compile("<question>(.*?)</question>", re.DOTALL)
|
|
_RESPONSE_A_REGEX = re.compile(
|
|
r"\[\[Response A Answers:\]\](.*?)\[\[Rubric Score:", re.DOTALL
|
|
)
|
|
_RESPONSE_B_REGEX = re.compile(
|
|
r"\[\[Response B Answers:\]\](.*?)\[\[Rubric Score:", re.DOTALL
|
|
)
|
|
_SXS_RATING_REGEX = re.compile(r"\[\[(SxSRating:[AB<>=]+)\]\]", re.DOTALL)
|
|
|
|
RATING_TO_VERDICT = {
|
|
"B>>A": "Candidate response is better than the baseline response.",
|
|
"A<<B": "Candiate response is better than the baseline response.",
|
|
"B>A": "Candidate response is slightly better than the baseline response.",
|
|
"A<B": "Candidate response is slightly better than the baseline response.",
|
|
"A=B": "Both responses are equally good.",
|
|
"B=A": "Both responses are equally good.",
|
|
"A>B": "Baseline response is slightly better than the candidate response.",
|
|
"B<A": "Baseline response is slightly better than the candidate response.",
|
|
"B<<A": "Baseline response is better than the candidate response.",
|
|
"A>>B": "Baseline response is better than the candidate response.",
|
|
}
|
|
_RATING_TO_SCORE = {
|
|
"B>>A": 1,
|
|
"A<<B": 1,
|
|
"B>A": 0.5,
|
|
"A<B": 0.5,
|
|
"A=B": 0,
|
|
"B=A": 0,
|
|
"A>B": -0.5,
|
|
"B<A": -0.5,
|
|
"B<<A": -1,
|
|
"A>>B": -1,
|
|
}
|
|
|
|
|
|
class _EvaluationServiceClientWithOverride(utils.ClientWithOverride):
|
|
_is_temporary = False
|
|
_default_version = compat.V1
|
|
_version_map = (
|
|
(
|
|
compat.V1,
|
|
gapic_evaluation_services.EvaluationServiceClient,
|
|
),
|
|
)
|
|
|
|
|
|
class RateLimiter:
|
|
"""Helper class for rate-limiting requests to Vertex AI to improve QoS.
|
|
|
|
Attributes:
|
|
seconds_per_event: The time interval (in seconds) between events to
|
|
maintain the desired rate.
|
|
last: The timestamp of the last event.
|
|
_lock: A lock to ensure thread safety.
|
|
"""
|
|
|
|
def __init__(self, rate: Optional[float] = None):
|
|
"""Initializes the rate limiter.
|
|
|
|
A simple rate limiter for controlling the frequency of API calls. This class
|
|
implements a token bucket algorithm to limit the rate at which events
|
|
can occur. It's designed for cases where the batch size (number of events
|
|
per call) is always 1 for traffic shaping and rate limiting.
|
|
|
|
Args:
|
|
rate: The number of queries allowed per second.
|
|
|
|
Raises:
|
|
ValueError: If the rate is not positive.
|
|
"""
|
|
if not rate or rate <= 0:
|
|
raise ValueError("Rate must be a positive number")
|
|
self.seconds_per_event = 1.0 / rate
|
|
self.last = time.time() - self.seconds_per_event
|
|
self._lock = threading.Lock()
|
|
|
|
def _admit(self) -> float:
|
|
"""Checks if an event can be admitted or calculates the remaining delay."""
|
|
now = time.time()
|
|
time_since_last = now - self.last
|
|
if time_since_last >= self.seconds_per_event:
|
|
self.last = now
|
|
return 0
|
|
else:
|
|
return self.seconds_per_event - time_since_last
|
|
|
|
def sleep_and_advance(self):
|
|
"""Blocks the current thread until the next event can be admitted."""
|
|
with self._lock:
|
|
delay = self._admit()
|
|
if delay > 0:
|
|
time.sleep(delay)
|
|
self.last = time.time()
|
|
|
|
|
|
def rate_limit(rate: Optional[float] = None) -> Callable[[Any], Any]:
|
|
"""Decorator version of rate limiter."""
|
|
|
|
def _rate_limit(method):
|
|
limiter = RateLimiter(rate)
|
|
|
|
@functools.wraps(method)
|
|
def wrapper(*args, **kwargs):
|
|
limiter.sleep_and_advance()
|
|
return method(*args, **kwargs)
|
|
|
|
return wrapper
|
|
|
|
return _rate_limit
|
|
|
|
|
|
def create_evaluation_service_client(
|
|
api_base_path_override: Optional[str] = None,
|
|
) -> _EvaluationServiceClientWithOverride:
|
|
"""Creates a client for the evaluation service.
|
|
|
|
Args:
|
|
api_base_path_override: Optional. Override default api base path.
|
|
|
|
Returns:
|
|
Instantiated Vertex AI EvaluationServiceClient with optional
|
|
overrides.
|
|
"""
|
|
return initializer.global_config.create_client(
|
|
client_class=_EvaluationServiceClientWithOverride,
|
|
location_override=initializer.global_config.location,
|
|
api_base_path_override=api_base_path_override,
|
|
)
|
|
|
|
|
|
def load_dataset(
|
|
source: Union[str, "pd.DataFrame", Dict[str, Any]],
|
|
) -> "pd.DataFrame":
|
|
"""Loads dataset from various sources into a DataFrame.
|
|
|
|
Args:
|
|
source: The dataset source. Supports the following dataset formats:
|
|
* pandas.DataFrame: Used directly for evaluation.
|
|
* Dict: Converted to a pandas DataFrame before evaluation.
|
|
* str: Interpreted as a file path or URI. Supported formats include:
|
|
* Local JSONL or CSV files: Loaded from the local filesystem.
|
|
* GCS JSONL or CSV files: Loaded from Google Cloud Storage (e.g.,
|
|
'gs://bucket/data.csv').
|
|
* BigQuery table URI: Loaded from Google Cloud
|
|
BigQuery (e.g., 'bq://project-id.dataset.table_name').
|
|
|
|
Returns:
|
|
The dataset in pandas DataFrame format.
|
|
"""
|
|
try:
|
|
import pandas as pd
|
|
except ImportError:
|
|
raise ImportError(
|
|
'Pandas is not installed. Please install the SDK using "pip install'
|
|
' google-cloud-aiplatform[evaluation]"'
|
|
)
|
|
if "google.colab" in sys.modules:
|
|
from google.colab import sheets
|
|
|
|
if isinstance(source, sheets.InteractiveSheet):
|
|
return source.as_df().copy()
|
|
|
|
if isinstance(source, pd.DataFrame):
|
|
return source.copy()
|
|
elif isinstance(source, dict):
|
|
return pd.DataFrame(source)
|
|
elif isinstance(source, str):
|
|
if source.startswith(_BQ_PREFIX):
|
|
return _load_bigquery(source[len(_BQ_PREFIX) :])
|
|
|
|
_, extension = os.path.splitext(source)
|
|
file_type = extension.lower()[1:]
|
|
|
|
if file_type == "jsonl":
|
|
return _load_jsonl(source)
|
|
elif file_type == "csv":
|
|
return _load_csv(source)
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported file type: {file_type} from {source}. Please"
|
|
" provide a valid GCS path with `jsonl` or `csv` suffix or a valid"
|
|
" BigQuery table URI."
|
|
)
|
|
else:
|
|
raise TypeError(
|
|
"Unsupported dataset type. Must be a `pd.DataFrame`, Python dictionary,"
|
|
" valid GCS path with `jsonl` or `csv` suffix or a valid BigQuery"
|
|
" table URI."
|
|
)
|
|
|
|
|
|
def _load_jsonl(filepath: str) -> "pd.DataFrame":
|
|
"""Loads data from a JSONL file into a DataFrame."""
|
|
try:
|
|
import pandas as pd
|
|
except ImportError:
|
|
raise ImportError(
|
|
'Pandas is not installed. Please install the SDK using "pip install'
|
|
' google-cloud-aiplatform[evaluation]"'
|
|
)
|
|
if filepath.startswith(_GCS_PREFIX):
|
|
file_contents = _read_gcs_file_contents(filepath)
|
|
return pd.read_json(file_contents, lines=True)
|
|
else:
|
|
with open(filepath, "r") as f:
|
|
return pd.read_json(f, lines=True)
|
|
|
|
|
|
def _load_csv(filepath: str) -> "pd.DataFrame":
|
|
"""Loads data from a CSV file into a DataFrame."""
|
|
try:
|
|
import pandas as pd
|
|
except ImportError:
|
|
raise ImportError(
|
|
'Pandas is not installed. Please install the SDK using "pip install'
|
|
' google-cloud-aiplatform[evaluation]"'
|
|
)
|
|
if filepath.startswith(_GCS_PREFIX):
|
|
file_contents = _read_gcs_file_contents(filepath)
|
|
return pd.read_csv(io.StringIO(file_contents), encoding="utf-8")
|
|
else:
|
|
return pd.read_csv(filepath, encoding="utf-8")
|
|
|
|
|
|
def _load_bigquery(table_id: str) -> "pd.DataFrame":
|
|
"""Loads data from a BigQuery table into a DataFrame."""
|
|
|
|
bigquery_client = bigquery.Client(project=initializer.global_config.project)
|
|
table = bigquery_client.get_table(table_id)
|
|
return bigquery_client.list_rows(table).to_dataframe()
|
|
|
|
|
|
def _read_gcs_file_contents(filepath: str) -> str:
|
|
"""Reads the contents of a file from Google Cloud Storage.
|
|
|
|
Args:
|
|
filepath: The GCS file path (e.g., 'gs://bucket_name/file.csv')
|
|
|
|
Returns:
|
|
str: The contents of the file.
|
|
"""
|
|
|
|
storage_client = storage.Client(
|
|
project=initializer.global_config.project,
|
|
credentials=initializer.global_config.credentials,
|
|
)
|
|
bucket_name, blob_path = filepath[len(_GCS_PREFIX) :].split("/", 1)
|
|
bucket = storage_client.get_bucket(bucket_name)
|
|
blob = bucket.blob(blob_path)
|
|
return blob.download_as_string().decode("utf-8")
|
|
|
|
|
|
def _upload_file_to_gcs(upload_gcs_path: str, filename: str) -> None:
|
|
storage_client = storage.Client(
|
|
project=initializer.global_config.project,
|
|
credentials=initializer.global_config.credentials,
|
|
)
|
|
storage.Blob.from_string(
|
|
uri=upload_gcs_path, client=storage_client
|
|
).upload_from_filename(filename)
|
|
|
|
|
|
def _upload_string_to_gcs(upload_gcs_path: str, contents: str) -> None:
|
|
"""Uploads the provided string to a GCS bucket."""
|
|
storage_client = storage.Client(
|
|
project=initializer.global_config.project,
|
|
credentials=initializer.global_config.credentials,
|
|
)
|
|
storage.Blob.from_string(
|
|
uri=upload_gcs_path, client=storage_client
|
|
).upload_from_string(contents)
|
|
|
|
|
|
def _upload_pandas_df_to_gcs(
|
|
df: "pd.DataFrame", upload_gcs_path: str, file_type: str
|
|
) -> None:
|
|
"""Uploads the provided Pandas DataFrame to a GCS bucket.
|
|
|
|
Args:
|
|
df: The Pandas DataFrame to upload.
|
|
upload_gcs_path: The GCS path to upload the data file.
|
|
file_type: The file type of the data file.
|
|
"""
|
|
|
|
with tempfile.TemporaryDirectory() as temp_dir:
|
|
if file_type == "csv":
|
|
local_dataset_path = os.path.join(temp_dir, "metrics_table.csv")
|
|
df.to_csv(path_or_buf=local_dataset_path)
|
|
elif file_type == "jsonl":
|
|
local_dataset_path = os.path.join(temp_dir, "metrics_table.jsonl")
|
|
df.to_json(path_or_buf=local_dataset_path, orient="records", lines=True)
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported file type: {file_type} from {upload_gcs_path}."
|
|
" Please provide a valid GCS path with `jsonl` or `csv` suffix."
|
|
)
|
|
|
|
storage_client = storage.Client(
|
|
project=initializer.global_config.project,
|
|
credentials=initializer.global_config.credentials,
|
|
)
|
|
storage.Blob.from_string(
|
|
uri=upload_gcs_path, client=storage_client
|
|
).upload_from_filename(filename=local_dataset_path)
|
|
|
|
|
|
def _upload_evaluation_summary_to_gcs(
|
|
summary_metrics: Dict[str, float],
|
|
upload_gcs_path: str,
|
|
candidate_model_name: Optional[str] = None,
|
|
baseline_model_name: Optional[str] = None,
|
|
dataset_uri: Optional[str] = None,
|
|
metrics: Optional[List[Union[str, metrics_base._Metric]]] = None,
|
|
) -> None:
|
|
"""Uploads the evaluation summary to a GCS bucket."""
|
|
summary = {
|
|
"summary_metrics": summary_metrics,
|
|
}
|
|
if candidate_model_name:
|
|
summary["candidate_model_name"] = candidate_model_name
|
|
if baseline_model_name:
|
|
summary["baseline_model_name"] = baseline_model_name
|
|
if dataset_uri:
|
|
summary["dataset_uri"] = dataset_uri
|
|
|
|
if metrics:
|
|
metric_descriptions = {}
|
|
for metric in metrics:
|
|
if isinstance(metric, metrics_base._ModelBasedMetric) and isinstance(
|
|
metric._raw_metric_prompt_template,
|
|
metric_prompt_template_base._MetricPromptTemplate,
|
|
):
|
|
metric_descriptions[metric.metric_name] = {
|
|
"criteria": metric._raw_metric_prompt_template._criteria,
|
|
"rating_rubric": metric._raw_metric_prompt_template._rating_rubric,
|
|
}
|
|
summary["metric_descriptions"] = metric_descriptions
|
|
|
|
with tempfile.TemporaryDirectory() as temp_dir:
|
|
local_summary_path = os.path.join(temp_dir, "summary_metrics.json")
|
|
json.dump(summary, open(local_summary_path, "w"))
|
|
_upload_file_to_gcs(upload_gcs_path, local_summary_path)
|
|
|
|
|
|
def upload_evaluation_results(
|
|
eval_result: eval_base.EvalResult,
|
|
destination_uri_prefix: str,
|
|
file_name: Optional[str] = None,
|
|
candidate_model_name: Optional[str] = None,
|
|
baseline_model_name: Optional[str] = None,
|
|
dataset_uri: Optional[str] = None,
|
|
metrics: Optional[List[Union[str, metrics_base._Metric]]] = None,
|
|
) -> None:
|
|
"""Uploads eval results to GCS destination.
|
|
|
|
Args:
|
|
eval_result: Eval results to upload.
|
|
destination_uri_prefix: GCS folder to store the data.
|
|
file_name: Optional. File name to store the metrics table.
|
|
candidate_model_name: Optional. Candidate model name.
|
|
baseline_model_name: Optional. Baseline model name.
|
|
dataset_uri: Optional. URI pointing to the dataset.
|
|
metrics: Optional. List of metrics used for evaluation.
|
|
"""
|
|
if not destination_uri_prefix:
|
|
_ipython_utils.display_gen_ai_evaluation_results_button()
|
|
return
|
|
if eval_result.metrics_table is None:
|
|
return
|
|
if destination_uri_prefix.startswith(_GCS_PREFIX):
|
|
if file_name:
|
|
base_name, extension = os.path.splitext(file_name)
|
|
file_type = extension.lower()[1:]
|
|
output_folder = destination_uri_prefix + "/" + base_name
|
|
metrics_table_path = output_folder + "/" + file_name
|
|
_upload_pandas_df_to_gcs(
|
|
eval_result.metrics_table, metrics_table_path, file_type
|
|
)
|
|
_upload_evaluation_summary_to_gcs(
|
|
eval_result.summary_metrics,
|
|
output_folder + "/summary_metrics.json",
|
|
candidate_model_name,
|
|
baseline_model_name,
|
|
dataset_uri,
|
|
metrics,
|
|
)
|
|
_ipython_utils.display_gen_ai_evaluation_results_button(
|
|
metrics_table_path.split(_GCS_PREFIX)[1]
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported destination URI: {destination_uri_prefix}."
|
|
f" Please provide a valid GCS bucket URI prefix starting with"
|
|
f" {_GCS_PREFIX}."
|
|
)
|
|
|
|
|
|
def initialize_metric_column_mapping(
|
|
metric_column_mapping: Optional[Dict[str, str]], dataset: "pd.DataFrame"
|
|
):
|
|
"""Initializes metric column mapping with dataset columns."""
|
|
initialized_metric_column_mapping = {}
|
|
for column in dataset.columns:
|
|
initialized_metric_column_mapping[column] = column
|
|
if metric_column_mapping:
|
|
for key, value in metric_column_mapping.items():
|
|
if key in initialized_metric_column_mapping:
|
|
_LOGGER.warning(
|
|
f"Cannot override `{key}` column with `{key}:{value}` mapping"
|
|
f" because `{key}` column is present in the evaluation"
|
|
" dataset. `metric_column_mapping` cannot override keys"
|
|
" that are already in evaluation dataset columns."
|
|
)
|
|
else:
|
|
initialized_metric_column_mapping[key] = value
|
|
return initialized_metric_column_mapping
|
|
|
|
|
|
def parse_intermediate_steps(intermediate_steps: List[Dict[str, Any]]):
|
|
"""Parses intermediate steps from the response to create trajectory."""
|
|
trajectory = []
|
|
try:
|
|
for step in intermediate_steps:
|
|
step_input, _ = step[0], step[1]
|
|
tool_name = step_input["kwargs"]["tool"]
|
|
tool_input = step_input["kwargs"]["tool_input"]
|
|
trajectory.append(
|
|
{
|
|
"tool_name": tool_name,
|
|
"tool_input": tool_input,
|
|
}
|
|
)
|
|
except Exception as e: # pylint: disable=broad-exception-caught
|
|
_LOGGER.error(
|
|
f"Failed to parse intermediate steps: {e}. The runnable you are using"
|
|
" is likely not compatible with the evaluation service. Please ensure"
|
|
" that the runnable you are using is compatible with the evaluation"
|
|
" service, if not, consider building a custom runnable function."
|
|
)
|
|
return trajectory
|
|
|
|
|
|
def parse_rubrics(rubric_generation_response: str) -> Dict[str, Any]:
|
|
"""Parses the rubric generation responses."""
|
|
try:
|
|
_, response = rubric_generation_response.split("```json")
|
|
except ValueError:
|
|
_LOGGER.warning(
|
|
"Failed to parse rubric generation response. Does not contain ```json"
|
|
)
|
|
return {"questions": ""}
|
|
try:
|
|
result = json.loads(response.strip("\n` "))
|
|
except json.JSONDecodeError:
|
|
_LOGGER.warning(
|
|
"Failed to parse rubric generation response. Does not contain valid"
|
|
" JSON."
|
|
)
|
|
return {"questions": ""}
|
|
return result
|
|
|
|
|
|
def parse_pairwise_rubric_verdict_pairs(prediction: str, regex: Pattern[str]) -> str:
|
|
"""Parses the pairwise rubric critique responses."""
|
|
response = "Unable to parse rubric verdict pairs from response."
|
|
response_matches = regex.findall(prediction)
|
|
if response_matches:
|
|
response_pairs = parse_question_blocks(response_matches[0])
|
|
response = "\n".join(f"{q}: {v}" for q, v in response_pairs)
|
|
return response
|
|
|
|
|
|
def parse_pairwise_rubric_result(
|
|
predictions: List[str],
|
|
) -> Dict[str, Any]:
|
|
"""Parses the pairwise rubric critique responses."""
|
|
prediction = predictions[0] # currently only supports one sample
|
|
rating_str = "Unable to parse verdict."
|
|
|
|
response_a = parse_pairwise_rubric_verdict_pairs(prediction, _RESPONSE_A_REGEX)
|
|
response_b = parse_pairwise_rubric_verdict_pairs(prediction, _RESPONSE_B_REGEX)
|
|
|
|
sxs_rating_matches = _SXS_RATING_REGEX.findall(prediction.replace(" ", ""))
|
|
|
|
if sxs_rating_matches:
|
|
rating_str = sxs_rating_matches[0].strip("[]")
|
|
rating_str = rating_str[rating_str.find(":") + 1 :]
|
|
|
|
return {
|
|
"pairwise_choice": (
|
|
RATING_TO_VERDICT[rating_str]
|
|
if rating_str in RATING_TO_VERDICT
|
|
else rating_str
|
|
),
|
|
"score": (
|
|
_RATING_TO_SCORE[rating_str] if rating_str in _RATING_TO_SCORE else None
|
|
),
|
|
"baseline_rubric_verdict_pairs": response_a,
|
|
"candidate_rubric_verdict_pairs": response_b,
|
|
"raw_outputs": predictions,
|
|
}
|
|
|
|
|
|
def parse_verdict(txt: str):
|
|
"""Parses the verdict from the rubric critique response."""
|
|
if not isinstance(txt, str) or not txt:
|
|
return None
|
|
try:
|
|
if verdict := _VERDICT_REGEX.findall(txt):
|
|
verdict = verdict[0]
|
|
if "yes" in verdict.lower():
|
|
return True
|
|
elif "no" in verdict.lower():
|
|
return False
|
|
except Exception: # pylint: disable=broad-exception-caught
|
|
return None
|
|
|
|
|
|
def parse_question(txt: str):
|
|
"""Parses the question from the rubric critique response."""
|
|
if not isinstance(txt, str) or not txt:
|
|
return None
|
|
try:
|
|
txt = txt.split("Verdict:")[0]
|
|
if "Question:" in txt:
|
|
return txt.split("Question:")[-1].strip()
|
|
|
|
if not (question := _QUESTION_REGEX.findall(txt)):
|
|
return txt.strip().split("\n")[0].removeprefix("STEP 1:").strip()
|
|
return question[0].strip()
|
|
except Exception: # pylint: disable=broad-exception-caught
|
|
return None
|
|
|
|
|
|
def parse_question_blocks(txt: str) -> List[Tuple[str, bool]]:
|
|
"""Parses the question blocks from the rubric critique response."""
|
|
if not txt.startswith("<question>\n"):
|
|
txt = "<question>\n" + txt
|
|
responses = []
|
|
question_blocks = _QUESTION_BLOCK_REGEX.findall(txt)
|
|
if not question_blocks:
|
|
question_blocks = [txt]
|
|
for block in question_blocks:
|
|
q = parse_question(block)
|
|
v = parse_verdict(block)
|
|
if q is not None and v is not None:
|
|
responses.append((q, v))
|
|
return responses
|
|
|
|
|
|
def parse_pointwise_rubric_result(results: List[str]) -> Dict[str, Any]:
|
|
"""Parses the pointwise rubric critique responses."""
|
|
self_consistency_results = {}
|
|
for sample_result in results:
|
|
rubric_verdict_pairs = parse_question_blocks(sample_result)
|
|
for rubric, verdict in rubric_verdict_pairs:
|
|
if rubric not in self_consistency_results:
|
|
self_consistency_results[rubric] = 0
|
|
|
|
self_consistency_results[rubric] += 1 if verdict else -1
|
|
|
|
rubric_results = {}
|
|
for rubric, verdict_counts in self_consistency_results.items():
|
|
rubric_results[rubric] = verdict_counts > 0
|
|
|
|
rubric_results_str = "\n".join(f"{q}: {v}" for q, v in rubric_results.items())
|
|
row_results = {
|
|
"score": (
|
|
sum(rubric_results.values()) / len(rubric_results) if rubric_results else 0
|
|
)
|
|
}
|
|
row_results["rubric_verdict_pairs"] = rubric_results_str
|
|
row_results["raw_outputs"] = results
|
|
return row_results
|