Files
evo-ai/.venv/lib/python3.10/site-packages/google/cloud/bigquery/table.py
2025-04-25 15:30:54 -03:00

3595 lines
132 KiB
Python

# Copyright 2015 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Define API Tables."""
from __future__ import absolute_import
import copy
import datetime
import functools
import operator
import typing
from typing import Any, Dict, Iterable, Iterator, List, Optional, Tuple, Union, Sequence
import warnings
try:
import pandas # type: ignore
except ImportError:
pandas = None
try:
import pyarrow # type: ignore
except ImportError:
pyarrow = None
try:
import db_dtypes # type: ignore
except ImportError:
db_dtypes = None
try:
import geopandas # type: ignore
except ImportError:
geopandas = None
else:
_COORDINATE_REFERENCE_SYSTEM = "EPSG:4326"
try:
import shapely # type: ignore
from shapely import wkt # type: ignore
except ImportError:
shapely = None
else:
_read_wkt = wkt.loads
import google.api_core.exceptions
from google.api_core.page_iterator import HTTPIterator
import google.cloud._helpers # type: ignore
from google.cloud.bigquery import _helpers
from google.cloud.bigquery import _pandas_helpers
from google.cloud.bigquery import _versions_helpers
from google.cloud.bigquery import exceptions as bq_exceptions
from google.cloud.bigquery._tqdm_helpers import get_progress_bar
from google.cloud.bigquery.encryption_configuration import EncryptionConfiguration
from google.cloud.bigquery.enums import DefaultPandasDTypes
from google.cloud.bigquery.external_config import ExternalConfig
from google.cloud.bigquery import schema as _schema
from google.cloud.bigquery.schema import _build_schema_resource
from google.cloud.bigquery.schema import _parse_schema_resource
from google.cloud.bigquery.schema import _to_schema_fields
from google.cloud.bigquery import external_config
if typing.TYPE_CHECKING: # pragma: NO COVER
# Unconditionally import optional dependencies again to tell pytype that
# they are not None, avoiding false "no attribute" errors.
import pandas
import pyarrow
import geopandas # type: ignore
from google.cloud import bigquery_storage # type: ignore
from google.cloud.bigquery.dataset import DatasetReference
_NO_GEOPANDAS_ERROR = (
"The geopandas library is not installed, please install "
"geopandas to use the to_geodataframe() function."
)
_NO_PYARROW_ERROR = (
"The pyarrow library is not installed, please install "
"pyarrow to use the to_arrow() function."
)
_NO_SHAPELY_ERROR = (
"The shapely library is not installed, please install "
"shapely to use the geography_as_object option."
)
_TABLE_HAS_NO_SCHEMA = 'Table has no schema: call "client.get_table()"'
_NO_SUPPORTED_DTYPE = (
"The dtype cannot to be converted to a pandas ExtensionArray "
"because the necessary `__from_arrow__` attribute is missing."
)
_RANGE_PYARROW_WARNING = (
"Unable to represent RANGE schema as struct using pandas ArrowDtype. Using "
"`object` instead. To use ArrowDtype, use pandas >= 1.5 and "
"pyarrow >= 10.0.1."
)
# How many of the total rows need to be downloaded already for us to skip
# calling the BQ Storage API?
#
# In microbenchmarks on 2024-05-21, I (tswast@) measure that at about 2 MB of
# remaining results, it's faster to use the BQ Storage Read API to download
# the results than use jobs.getQueryResults. Since we don't have a good way to
# know the remaining bytes, we estimate by remaining number of rows.
#
# Except when rows themselves are larger, I observe that the a single page of
# results will be around 10 MB. Therefore, the proportion of rows already
# downloaded should be 10 (first page) / 12 (all results) or less for it to be
# worth it to make a call to jobs.getQueryResults.
ALMOST_COMPLETELY_CACHED_RATIO = 0.833333
def _reference_getter(table):
"""A :class:`~google.cloud.bigquery.table.TableReference` pointing to
this table.
Returns:
google.cloud.bigquery.table.TableReference: pointer to this table.
"""
from google.cloud.bigquery import dataset
dataset_ref = dataset.DatasetReference(table.project, table.dataset_id)
return TableReference(dataset_ref, table.table_id)
# TODO: The typehinting for this needs work. Setting this pragma to temporarily
# manage a pytype issue that came up in another PR. See Issue: #2132
def _view_use_legacy_sql_getter(table):
"""bool: Specifies whether to execute the view with Legacy or Standard SQL.
This boolean specifies whether to execute the view with Legacy SQL
(:data:`True`) or Standard SQL (:data:`False`). The client side default is
:data:`False`. The server-side default is :data:`True`. If this table is
not a view, :data:`None` is returned.
Raises:
ValueError: For invalid value types.
"""
view = table._properties.get("view") # type: ignore
if view is not None:
# The server-side default for useLegacySql is True.
return view.get("useLegacySql", True) # type: ignore
# In some cases, such as in a table list no view object is present, but the
# resource still represents a view. Use the type as a fallback.
if table.table_type == "VIEW":
# The server-side default for useLegacySql is True.
return True
class _TableBase:
"""Base class for Table-related classes with common functionality."""
_PROPERTY_TO_API_FIELD: Dict[str, Union[str, List[str]]] = {
"dataset_id": ["tableReference", "datasetId"],
"project": ["tableReference", "projectId"],
"table_id": ["tableReference", "tableId"],
}
def __init__(self):
self._properties = {}
@property
def project(self) -> str:
"""Project bound to the table."""
return _helpers._get_sub_prop(
self._properties, self._PROPERTY_TO_API_FIELD["project"]
)
@property
def dataset_id(self) -> str:
"""ID of dataset containing the table."""
return _helpers._get_sub_prop(
self._properties, self._PROPERTY_TO_API_FIELD["dataset_id"]
)
@property
def table_id(self) -> str:
"""The table ID."""
return _helpers._get_sub_prop(
self._properties, self._PROPERTY_TO_API_FIELD["table_id"]
)
@property
def path(self) -> str:
"""URL path for the table's APIs."""
return (
f"/projects/{self.project}/datasets/{self.dataset_id}"
f"/tables/{self.table_id}"
)
def __eq__(self, other):
if isinstance(other, _TableBase):
return (
self.project == other.project
and self.dataset_id == other.dataset_id
and self.table_id == other.table_id
)
else:
return NotImplemented
def __hash__(self):
return hash((self.project, self.dataset_id, self.table_id))
class TableReference(_TableBase):
"""TableReferences are pointers to tables.
See
https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#tablereference
Args:
dataset_ref: A pointer to the dataset
table_id: The ID of the table
"""
_PROPERTY_TO_API_FIELD = {
"dataset_id": "datasetId",
"project": "projectId",
"table_id": "tableId",
}
def __init__(self, dataset_ref: "DatasetReference", table_id: str):
self._properties = {}
_helpers._set_sub_prop(
self._properties,
self._PROPERTY_TO_API_FIELD["project"],
dataset_ref.project,
)
_helpers._set_sub_prop(
self._properties,
self._PROPERTY_TO_API_FIELD["dataset_id"],
dataset_ref.dataset_id,
)
_helpers._set_sub_prop(
self._properties,
self._PROPERTY_TO_API_FIELD["table_id"],
table_id,
)
@classmethod
def from_string(
cls, table_id: str, default_project: Optional[str] = None
) -> "TableReference":
"""Construct a table reference from table ID string.
Args:
table_id (str):
A table ID in standard SQL format. If ``default_project``
is not specified, this must included a project ID, dataset
ID, and table ID, each separated by ``.``.
default_project (Optional[str]):
The project ID to use when ``table_id`` does not
include a project ID.
Returns:
TableReference: Table reference parsed from ``table_id``.
Examples:
>>> TableReference.from_string('my-project.mydataset.mytable')
TableRef...(DatasetRef...('my-project', 'mydataset'), 'mytable')
Raises:
ValueError:
If ``table_id`` is not a fully-qualified table ID in
standard SQL format.
"""
from google.cloud.bigquery.dataset import DatasetReference
(
output_project_id,
output_dataset_id,
output_table_id,
) = _helpers._parse_3_part_id(
table_id, default_project=default_project, property_name="table_id"
)
return cls(
DatasetReference(output_project_id, output_dataset_id), output_table_id
)
@classmethod
def from_api_repr(cls, resource: dict) -> "TableReference":
"""Factory: construct a table reference given its API representation
Args:
resource (Dict[str, object]):
Table reference representation returned from the API
Returns:
google.cloud.bigquery.table.TableReference:
Table reference parsed from ``resource``.
"""
from google.cloud.bigquery.dataset import DatasetReference
project = resource["projectId"]
dataset_id = resource["datasetId"]
table_id = resource["tableId"]
return cls(DatasetReference(project, dataset_id), table_id)
def to_api_repr(self) -> dict:
"""Construct the API resource representation of this table reference.
Returns:
Dict[str, object]: Table reference represented as an API resource
"""
return copy.deepcopy(self._properties)
def to_bqstorage(self) -> str:
"""Construct a BigQuery Storage API representation of this table.
Install the ``google-cloud-bigquery-storage`` package to use this
feature.
If the ``table_id`` contains a partition identifier (e.g.
``my_table$201812``) or a snapshot identifier (e.g.
``mytable@1234567890``), it is ignored. Use
:class:`google.cloud.bigquery_storage.types.ReadSession.TableReadOptions`
to filter rows by partition. Use
:class:`google.cloud.bigquery_storage.types.ReadSession.TableModifiers`
to select a specific snapshot to read from.
Returns:
str: A reference to this table in the BigQuery Storage API.
"""
table_id, _, _ = self.table_id.partition("@")
table_id, _, _ = table_id.partition("$")
table_ref = (
f"projects/{self.project}/datasets/{self.dataset_id}/tables/{table_id}"
)
return table_ref
def __str__(self):
return f"{self.project}.{self.dataset_id}.{self.table_id}"
def __repr__(self):
from google.cloud.bigquery.dataset import DatasetReference
dataset_ref = DatasetReference(self.project, self.dataset_id)
return f"TableReference({dataset_ref!r}, '{self.table_id}')"
class Table(_TableBase):
"""Tables represent a set of rows whose values correspond to a schema.
See
https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#resource-table
Args:
table_ref (Union[google.cloud.bigquery.table.TableReference, str]):
A pointer to a table. If ``table_ref`` is a string, it must
included a project ID, dataset ID, and table ID, each separated
by ``.``.
schema (Optional[Sequence[Union[ \
:class:`~google.cloud.bigquery.schema.SchemaField`, \
Mapping[str, Any] \
]]]):
The table's schema. If any item is a mapping, its content must be
compatible with
:meth:`~google.cloud.bigquery.schema.SchemaField.from_api_repr`.
"""
_PROPERTY_TO_API_FIELD: Dict[str, Any] = {
**_TableBase._PROPERTY_TO_API_FIELD,
"clustering_fields": "clustering",
"created": "creationTime",
"description": "description",
"encryption_configuration": "encryptionConfiguration",
"etag": "etag",
"expires": "expirationTime",
"external_data_configuration": "externalDataConfiguration",
"friendly_name": "friendlyName",
"full_table_id": "id",
"labels": "labels",
"location": "location",
"modified": "lastModifiedTime",
"mview_enable_refresh": "materializedView",
"mview_last_refresh_time": ["materializedView", "lastRefreshTime"],
"mview_query": "materializedView",
"mview_refresh_interval": "materializedView",
"mview_allow_non_incremental_definition": "materializedView",
"num_bytes": "numBytes",
"num_rows": "numRows",
"partition_expiration": "timePartitioning",
"partitioning_type": "timePartitioning",
"range_partitioning": "rangePartitioning",
"time_partitioning": "timePartitioning",
"schema": ["schema", "fields"],
"snapshot_definition": "snapshotDefinition",
"clone_definition": "cloneDefinition",
"streaming_buffer": "streamingBuffer",
"self_link": "selfLink",
"type": "type",
"view_use_legacy_sql": "view",
"view_query": "view",
"require_partition_filter": "requirePartitionFilter",
"table_constraints": "tableConstraints",
"max_staleness": "maxStaleness",
"resource_tags": "resourceTags",
"external_catalog_table_options": "externalCatalogTableOptions",
"foreign_type_info": ["schema", "foreignTypeInfo"],
}
def __init__(self, table_ref, schema=None) -> None:
table_ref = _table_arg_to_table_ref(table_ref)
self._properties: Dict[str, Any] = {
"tableReference": table_ref.to_api_repr(),
"labels": {},
}
# Let the @property do validation.
if schema is not None:
self.schema = schema
reference = property(_reference_getter)
@property
def require_partition_filter(self):
"""bool: If set to true, queries over the partitioned table require a
partition filter that can be used for partition elimination to be
specified.
"""
return self._properties.get(
self._PROPERTY_TO_API_FIELD["require_partition_filter"]
)
@require_partition_filter.setter
def require_partition_filter(self, value):
self._properties[
self._PROPERTY_TO_API_FIELD["require_partition_filter"]
] = value
@property
def schema(self):
"""Sequence[Union[ \
:class:`~google.cloud.bigquery.schema.SchemaField`, \
Mapping[str, Any] \
]]:
Table's schema.
Raises:
Exception:
If ``schema`` is not a sequence, or if any item in the sequence
is not a :class:`~google.cloud.bigquery.schema.SchemaField`
instance or a compatible mapping representation of the field.
.. Note::
If you are referencing a schema for an external catalog table such
as a Hive table, it will also be necessary to populate the foreign_type_info
attribute. This is not necessary if defining the schema for a BigQuery table.
For details, see:
https://cloud.google.com/bigquery/docs/external-tables
https://cloud.google.com/bigquery/docs/datasets-intro#external_datasets
"""
prop = _helpers._get_sub_prop(
self._properties, self._PROPERTY_TO_API_FIELD["schema"]
)
if not prop:
return []
else:
return _parse_schema_resource(prop)
@schema.setter
def schema(self, value):
api_field = self._PROPERTY_TO_API_FIELD["schema"]
if value is None:
_helpers._set_sub_prop(
self._properties,
api_field,
None,
)
elif isinstance(value, Sequence):
value = _to_schema_fields(value)
value = _build_schema_resource(value)
_helpers._set_sub_prop(
self._properties,
api_field,
value,
)
else:
raise TypeError("Schema must be a Sequence (e.g. a list) or None.")
@property
def labels(self):
"""Dict[str, str]: Labels for the table.
This method always returns a dict. To change a table's labels,
modify the dict, then call ``Client.update_table``. To delete a
label, set its value to :data:`None` before updating.
Raises:
ValueError: If ``value`` type is invalid.
"""
return self._properties.setdefault(self._PROPERTY_TO_API_FIELD["labels"], {})
@labels.setter
def labels(self, value):
if not isinstance(value, dict):
raise ValueError("Pass a dict")
self._properties[self._PROPERTY_TO_API_FIELD["labels"]] = value
@property
def encryption_configuration(self):
"""google.cloud.bigquery.encryption_configuration.EncryptionConfiguration: Custom
encryption configuration for the table.
Custom encryption configuration (e.g., Cloud KMS keys) or :data:`None`
if using default encryption.
See `protecting data with Cloud KMS keys
<https://cloud.google.com/bigquery/docs/customer-managed-encryption>`_
in the BigQuery documentation.
"""
prop = self._properties.get(
self._PROPERTY_TO_API_FIELD["encryption_configuration"]
)
if prop is not None:
prop = EncryptionConfiguration.from_api_repr(prop)
return prop
@encryption_configuration.setter
def encryption_configuration(self, value):
api_repr = value
if value is not None:
api_repr = value.to_api_repr()
self._properties[
self._PROPERTY_TO_API_FIELD["encryption_configuration"]
] = api_repr
@property
def created(self):
"""Union[datetime.datetime, None]: Datetime at which the table was
created (:data:`None` until set from the server).
"""
creation_time = self._properties.get(self._PROPERTY_TO_API_FIELD["created"])
if creation_time is not None:
# creation_time will be in milliseconds.
return google.cloud._helpers._datetime_from_microseconds(
1000.0 * float(creation_time)
)
@property
def etag(self):
"""Union[str, None]: ETag for the table resource (:data:`None` until
set from the server).
"""
return self._properties.get(self._PROPERTY_TO_API_FIELD["etag"])
@property
def modified(self):
"""Union[datetime.datetime, None]: Datetime at which the table was last
modified (:data:`None` until set from the server).
"""
modified_time = self._properties.get(self._PROPERTY_TO_API_FIELD["modified"])
if modified_time is not None:
# modified_time will be in milliseconds.
return google.cloud._helpers._datetime_from_microseconds(
1000.0 * float(modified_time)
)
@property
def num_bytes(self):
"""Union[int, None]: The size of the table in bytes (:data:`None` until
set from the server).
"""
return _helpers._int_or_none(
self._properties.get(self._PROPERTY_TO_API_FIELD["num_bytes"])
)
@property
def num_rows(self):
"""Union[int, None]: The number of rows in the table (:data:`None`
until set from the server).
"""
return _helpers._int_or_none(
self._properties.get(self._PROPERTY_TO_API_FIELD["num_rows"])
)
@property
def self_link(self):
"""Union[str, None]: URL for the table resource (:data:`None` until set
from the server).
"""
return self._properties.get(self._PROPERTY_TO_API_FIELD["self_link"])
@property
def full_table_id(self):
"""Union[str, None]: ID for the table (:data:`None` until set from the
server).
In the format ``project-id:dataset_id.table_id``.
"""
return self._properties.get(self._PROPERTY_TO_API_FIELD["full_table_id"])
@property
def table_type(self):
"""Union[str, None]: The type of the table (:data:`None` until set from
the server).
Possible values are ``'TABLE'``, ``'VIEW'``, ``'MATERIALIZED_VIEW'`` or
``'EXTERNAL'``.
"""
return self._properties.get(self._PROPERTY_TO_API_FIELD["type"])
@property
def range_partitioning(self):
"""Optional[google.cloud.bigquery.table.RangePartitioning]:
Configures range-based partitioning for a table.
.. note::
**Beta**. The integer range partitioning feature is in a
pre-release state and might change or have limited support.
Only specify at most one of
:attr:`~google.cloud.bigquery.table.Table.time_partitioning` or
:attr:`~google.cloud.bigquery.table.Table.range_partitioning`.
Raises:
ValueError:
If the value is not
:class:`~google.cloud.bigquery.table.RangePartitioning` or
:data:`None`.
"""
resource = self._properties.get(
self._PROPERTY_TO_API_FIELD["range_partitioning"]
)
if resource is not None:
return RangePartitioning(_properties=resource)
@range_partitioning.setter
def range_partitioning(self, value):
resource = value
if isinstance(value, RangePartitioning):
resource = value._properties
elif value is not None:
raise ValueError(
"Expected value to be RangePartitioning or None, got {}.".format(value)
)
self._properties[self._PROPERTY_TO_API_FIELD["range_partitioning"]] = resource
@property
def time_partitioning(self):
"""Optional[google.cloud.bigquery.table.TimePartitioning]: Configures time-based
partitioning for a table.
Only specify at most one of
:attr:`~google.cloud.bigquery.table.Table.time_partitioning` or
:attr:`~google.cloud.bigquery.table.Table.range_partitioning`.
Raises:
ValueError:
If the value is not
:class:`~google.cloud.bigquery.table.TimePartitioning` or
:data:`None`.
"""
prop = self._properties.get(self._PROPERTY_TO_API_FIELD["time_partitioning"])
if prop is not None:
return TimePartitioning.from_api_repr(prop)
@time_partitioning.setter
def time_partitioning(self, value):
api_repr = value
if isinstance(value, TimePartitioning):
api_repr = value.to_api_repr()
elif value is not None:
raise ValueError(
"value must be google.cloud.bigquery.table.TimePartitioning " "or None"
)
self._properties[self._PROPERTY_TO_API_FIELD["time_partitioning"]] = api_repr
@property
def partitioning_type(self):
"""Union[str, None]: Time partitioning of the table if it is
partitioned (Defaults to :data:`None`).
"""
warnings.warn(
"This method will be deprecated in future versions. Please use "
"Table.time_partitioning.type_ instead.",
PendingDeprecationWarning,
stacklevel=2,
)
if self.time_partitioning is not None:
return self.time_partitioning.type_
@partitioning_type.setter
def partitioning_type(self, value):
warnings.warn(
"This method will be deprecated in future versions. Please use "
"Table.time_partitioning.type_ instead.",
PendingDeprecationWarning,
stacklevel=2,
)
api_field = self._PROPERTY_TO_API_FIELD["partitioning_type"]
if self.time_partitioning is None:
self._properties[api_field] = {}
self._properties[api_field]["type"] = value
@property
def partition_expiration(self):
"""Union[int, None]: Expiration time in milliseconds for a partition.
If :attr:`partition_expiration` is set and :attr:`type_` is
not set, :attr:`type_` will default to
:attr:`~google.cloud.bigquery.table.TimePartitioningType.DAY`.
"""
warnings.warn(
"This method will be deprecated in future versions. Please use "
"Table.time_partitioning.expiration_ms instead.",
PendingDeprecationWarning,
stacklevel=2,
)
if self.time_partitioning is not None:
return self.time_partitioning.expiration_ms
@partition_expiration.setter
def partition_expiration(self, value):
warnings.warn(
"This method will be deprecated in future versions. Please use "
"Table.time_partitioning.expiration_ms instead.",
PendingDeprecationWarning,
stacklevel=2,
)
api_field = self._PROPERTY_TO_API_FIELD["partition_expiration"]
if self.time_partitioning is None:
self._properties[api_field] = {"type": TimePartitioningType.DAY}
if value is None:
self._properties[api_field]["expirationMs"] = None
else:
self._properties[api_field]["expirationMs"] = str(value)
@property
def clustering_fields(self):
"""Union[List[str], None]: Fields defining clustering for the table
(Defaults to :data:`None`).
Clustering fields are immutable after table creation.
.. note::
BigQuery supports clustering for both partitioned and
non-partitioned tables.
"""
prop = self._properties.get(self._PROPERTY_TO_API_FIELD["clustering_fields"])
if prop is not None:
return list(prop.get("fields", ()))
@clustering_fields.setter
def clustering_fields(self, value):
"""Union[List[str], None]: Fields defining clustering for the table
(Defaults to :data:`None`).
"""
api_field = self._PROPERTY_TO_API_FIELD["clustering_fields"]
if value is not None:
prop = self._properties.setdefault(api_field, {})
prop["fields"] = value
else:
# In order to allow unsetting clustering fields completely, we explicitly
# set this property to None (as oposed to merely removing the key).
self._properties[api_field] = None
@property
def description(self):
"""Union[str, None]: Description of the table (defaults to
:data:`None`).
Raises:
ValueError: For invalid value types.
"""
return self._properties.get(self._PROPERTY_TO_API_FIELD["description"])
@description.setter
def description(self, value):
if not isinstance(value, str) and value is not None:
raise ValueError("Pass a string, or None")
self._properties[self._PROPERTY_TO_API_FIELD["description"]] = value
@property
def expires(self):
"""Union[datetime.datetime, None]: Datetime at which the table will be
deleted.
Raises:
ValueError: For invalid value types.
"""
expiration_time = self._properties.get(self._PROPERTY_TO_API_FIELD["expires"])
if expiration_time is not None:
# expiration_time will be in milliseconds.
return google.cloud._helpers._datetime_from_microseconds(
1000.0 * float(expiration_time)
)
@expires.setter
def expires(self, value):
if not isinstance(value, datetime.datetime) and value is not None:
raise ValueError("Pass a datetime, or None")
value_ms = google.cloud._helpers._millis_from_datetime(value)
self._properties[
self._PROPERTY_TO_API_FIELD["expires"]
] = _helpers._str_or_none(value_ms)
@property
def friendly_name(self):
"""Union[str, None]: Title of the table (defaults to :data:`None`).
Raises:
ValueError: For invalid value types.
"""
return self._properties.get(self._PROPERTY_TO_API_FIELD["friendly_name"])
@friendly_name.setter
def friendly_name(self, value):
if not isinstance(value, str) and value is not None:
raise ValueError("Pass a string, or None")
self._properties[self._PROPERTY_TO_API_FIELD["friendly_name"]] = value
@property
def location(self):
"""Union[str, None]: Location in which the table is hosted
Defaults to :data:`None`.
"""
return self._properties.get(self._PROPERTY_TO_API_FIELD["location"])
@property
def view_query(self):
"""Union[str, None]: SQL query defining the table as a view (defaults
to :data:`None`).
By default, the query is treated as Standard SQL. To use Legacy
SQL, set :attr:`view_use_legacy_sql` to :data:`True`.
Raises:
ValueError: For invalid value types.
"""
api_field = self._PROPERTY_TO_API_FIELD["view_query"]
return _helpers._get_sub_prop(self._properties, [api_field, "query"])
@view_query.setter
def view_query(self, value):
if not isinstance(value, str):
raise ValueError("Pass a string")
api_field = self._PROPERTY_TO_API_FIELD["view_query"]
_helpers._set_sub_prop(self._properties, [api_field, "query"], value)
view = self._properties[api_field]
# The service defaults useLegacySql to True, but this
# client uses Standard SQL by default.
if view.get("useLegacySql") is None:
view["useLegacySql"] = False
@view_query.deleter
def view_query(self):
"""Delete SQL query defining the table as a view."""
self._properties.pop(self._PROPERTY_TO_API_FIELD["view_query"], None)
view_use_legacy_sql = property(_view_use_legacy_sql_getter)
@view_use_legacy_sql.setter # type: ignore # (redefinition from above)
def view_use_legacy_sql(self, value):
if not isinstance(value, bool):
raise ValueError("Pass a boolean")
api_field = self._PROPERTY_TO_API_FIELD["view_query"]
if self._properties.get(api_field) is None:
self._properties[api_field] = {}
self._properties[api_field]["useLegacySql"] = value
@property
def mview_query(self):
"""Optional[str]: SQL query defining the table as a materialized
view (defaults to :data:`None`).
"""
api_field = self._PROPERTY_TO_API_FIELD["mview_query"]
return _helpers._get_sub_prop(self._properties, [api_field, "query"])
@mview_query.setter
def mview_query(self, value):
api_field = self._PROPERTY_TO_API_FIELD["mview_query"]
_helpers._set_sub_prop(self._properties, [api_field, "query"], str(value))
@mview_query.deleter
def mview_query(self):
"""Delete SQL query defining the table as a materialized view."""
self._properties.pop(self._PROPERTY_TO_API_FIELD["mview_query"], None)
@property
def mview_last_refresh_time(self):
"""Optional[datetime.datetime]: Datetime at which the materialized view was last
refreshed (:data:`None` until set from the server).
"""
refresh_time = _helpers._get_sub_prop(
self._properties, self._PROPERTY_TO_API_FIELD["mview_last_refresh_time"]
)
if refresh_time is not None:
# refresh_time will be in milliseconds.
return google.cloud._helpers._datetime_from_microseconds(
1000 * int(refresh_time)
)
@property
def mview_enable_refresh(self):
"""Optional[bool]: Enable automatic refresh of the materialized view
when the base table is updated. The default value is :data:`True`.
"""
api_field = self._PROPERTY_TO_API_FIELD["mview_enable_refresh"]
return _helpers._get_sub_prop(self._properties, [api_field, "enableRefresh"])
@mview_enable_refresh.setter
def mview_enable_refresh(self, value):
api_field = self._PROPERTY_TO_API_FIELD["mview_enable_refresh"]
return _helpers._set_sub_prop(
self._properties, [api_field, "enableRefresh"], value
)
@property
def mview_refresh_interval(self):
"""Optional[datetime.timedelta]: The maximum frequency at which this
materialized view will be refreshed. The default value is 1800000
milliseconds (30 minutes).
"""
api_field = self._PROPERTY_TO_API_FIELD["mview_refresh_interval"]
refresh_interval = _helpers._get_sub_prop(
self._properties, [api_field, "refreshIntervalMs"]
)
if refresh_interval is not None:
return datetime.timedelta(milliseconds=int(refresh_interval))
@mview_refresh_interval.setter
def mview_refresh_interval(self, value):
if value is None:
refresh_interval_ms = None
else:
refresh_interval_ms = str(value // datetime.timedelta(milliseconds=1))
api_field = self._PROPERTY_TO_API_FIELD["mview_refresh_interval"]
_helpers._set_sub_prop(
self._properties,
[api_field, "refreshIntervalMs"],
refresh_interval_ms,
)
@property
def mview_allow_non_incremental_definition(self):
"""Optional[bool]: This option declares the intention to construct a
materialized view that isn't refreshed incrementally.
The default value is :data:`False`.
"""
api_field = self._PROPERTY_TO_API_FIELD[
"mview_allow_non_incremental_definition"
]
return _helpers._get_sub_prop(
self._properties, [api_field, "allowNonIncrementalDefinition"]
)
@mview_allow_non_incremental_definition.setter
def mview_allow_non_incremental_definition(self, value):
api_field = self._PROPERTY_TO_API_FIELD[
"mview_allow_non_incremental_definition"
]
_helpers._set_sub_prop(
self._properties, [api_field, "allowNonIncrementalDefinition"], value
)
@property
def streaming_buffer(self):
"""google.cloud.bigquery.StreamingBuffer: Information about a table's
streaming buffer.
"""
sb = self._properties.get(self._PROPERTY_TO_API_FIELD["streaming_buffer"])
if sb is not None:
return StreamingBuffer(sb)
@property
def external_data_configuration(self):
"""Union[google.cloud.bigquery.ExternalConfig, None]: Configuration for
an external data source (defaults to :data:`None`).
Raises:
ValueError: For invalid value types.
"""
prop = self._properties.get(
self._PROPERTY_TO_API_FIELD["external_data_configuration"]
)
if prop is not None:
prop = ExternalConfig.from_api_repr(prop)
return prop
@external_data_configuration.setter
def external_data_configuration(self, value):
if not (value is None or isinstance(value, ExternalConfig)):
raise ValueError("Pass an ExternalConfig or None")
api_repr = value
if value is not None:
api_repr = value.to_api_repr()
self._properties[
self._PROPERTY_TO_API_FIELD["external_data_configuration"]
] = api_repr
@property
def snapshot_definition(self) -> Optional["SnapshotDefinition"]:
"""Information about the snapshot. This value is set via snapshot creation.
See: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#Table.FIELDS.snapshot_definition
"""
snapshot_info = self._properties.get(
self._PROPERTY_TO_API_FIELD["snapshot_definition"]
)
if snapshot_info is not None:
snapshot_info = SnapshotDefinition(snapshot_info)
return snapshot_info
@property
def clone_definition(self) -> Optional["CloneDefinition"]:
"""Information about the clone. This value is set via clone creation.
See: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#Table.FIELDS.clone_definition
"""
clone_info = self._properties.get(
self._PROPERTY_TO_API_FIELD["clone_definition"]
)
if clone_info is not None:
clone_info = CloneDefinition(clone_info)
return clone_info
@property
def table_constraints(self) -> Optional["TableConstraints"]:
"""Tables Primary Key and Foreign Key information."""
table_constraints = self._properties.get(
self._PROPERTY_TO_API_FIELD["table_constraints"]
)
if table_constraints is not None:
table_constraints = TableConstraints.from_api_repr(table_constraints)
return table_constraints
@table_constraints.setter
def table_constraints(self, value):
"""Tables Primary Key and Foreign Key information."""
api_repr = value
if not isinstance(value, TableConstraints) and value is not None:
raise ValueError(
"value must be google.cloud.bigquery.table.TableConstraints or None"
)
api_repr = value.to_api_repr() if value else None
self._properties[self._PROPERTY_TO_API_FIELD["table_constraints"]] = api_repr
@property
def resource_tags(self):
"""Dict[str, str]: Resource tags for the table.
See: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#Table.FIELDS.resource_tags
"""
return self._properties.setdefault(
self._PROPERTY_TO_API_FIELD["resource_tags"], {}
)
@resource_tags.setter
def resource_tags(self, value):
if not isinstance(value, dict) and value is not None:
raise ValueError("resource_tags must be a dict or None")
self._properties[self._PROPERTY_TO_API_FIELD["resource_tags"]] = value
@property
def external_catalog_table_options(
self,
) -> Optional[external_config.ExternalCatalogTableOptions]:
"""Options defining open source compatible datasets living in the
BigQuery catalog. Contains metadata of open source database, schema
or namespace represented by the current dataset."""
prop = self._properties.get(
self._PROPERTY_TO_API_FIELD["external_catalog_table_options"]
)
if prop is not None:
return external_config.ExternalCatalogTableOptions.from_api_repr(prop)
return None
@external_catalog_table_options.setter
def external_catalog_table_options(
self, value: Union[external_config.ExternalCatalogTableOptions, dict, None]
):
value = _helpers._isinstance_or_raise(
value,
(external_config.ExternalCatalogTableOptions, dict),
none_allowed=True,
)
if isinstance(value, external_config.ExternalCatalogTableOptions):
self._properties[
self._PROPERTY_TO_API_FIELD["external_catalog_table_options"]
] = value.to_api_repr()
else:
self._properties[
self._PROPERTY_TO_API_FIELD["external_catalog_table_options"]
] = value
@property
def foreign_type_info(self) -> Optional[_schema.ForeignTypeInfo]:
"""Optional. Specifies metadata of the foreign data type definition in
field schema (TableFieldSchema.foreign_type_definition).
Returns:
Optional[schema.ForeignTypeInfo]:
Foreign type information, or :data:`None` if not set.
.. Note::
foreign_type_info is only required if you are referencing an
external catalog such as a Hive table.
For details, see:
https://cloud.google.com/bigquery/docs/external-tables
https://cloud.google.com/bigquery/docs/datasets-intro#external_datasets
"""
prop = _helpers._get_sub_prop(
self._properties, self._PROPERTY_TO_API_FIELD["foreign_type_info"]
)
if prop is not None:
return _schema.ForeignTypeInfo.from_api_repr(prop)
return None
@foreign_type_info.setter
def foreign_type_info(self, value: Union[_schema.ForeignTypeInfo, dict, None]):
value = _helpers._isinstance_or_raise(
value,
(_schema.ForeignTypeInfo, dict),
none_allowed=True,
)
if isinstance(value, _schema.ForeignTypeInfo):
value = value.to_api_repr()
_helpers._set_sub_prop(
self._properties, self._PROPERTY_TO_API_FIELD["foreign_type_info"], value
)
@classmethod
def from_string(cls, full_table_id: str) -> "Table":
"""Construct a table from fully-qualified table ID.
Args:
full_table_id (str):
A fully-qualified table ID in standard SQL format. Must
included a project ID, dataset ID, and table ID, each
separated by ``.``.
Returns:
Table: Table parsed from ``full_table_id``.
Examples:
>>> Table.from_string('my-project.mydataset.mytable')
Table(TableRef...(D...('my-project', 'mydataset'), 'mytable'))
Raises:
ValueError:
If ``full_table_id`` is not a fully-qualified table ID in
standard SQL format.
"""
return cls(TableReference.from_string(full_table_id))
@classmethod
def from_api_repr(cls, resource: dict) -> "Table":
"""Factory: construct a table given its API representation
Args:
resource (Dict[str, object]):
Table resource representation from the API
Returns:
google.cloud.bigquery.table.Table: Table parsed from ``resource``.
Raises:
KeyError:
If the ``resource`` lacks the key ``'tableReference'``, or if
the ``dict`` stored within the key ``'tableReference'`` lacks
the keys ``'tableId'``, ``'projectId'``, or ``'datasetId'``.
"""
from google.cloud.bigquery import dataset
if (
"tableReference" not in resource
or "tableId" not in resource["tableReference"]
):
raise KeyError(
"Resource lacks required identity information:"
'["tableReference"]["tableId"]'
)
project_id = _helpers._get_sub_prop(
resource, cls._PROPERTY_TO_API_FIELD["project"]
)
table_id = _helpers._get_sub_prop(
resource, cls._PROPERTY_TO_API_FIELD["table_id"]
)
dataset_id = _helpers._get_sub_prop(
resource, cls._PROPERTY_TO_API_FIELD["dataset_id"]
)
dataset_ref = dataset.DatasetReference(project_id, dataset_id)
table = cls(dataset_ref.table(table_id))
table._properties = resource
return table
def to_api_repr(self) -> dict:
"""Constructs the API resource of this table
Returns:
Dict[str, object]: Table represented as an API resource
"""
return copy.deepcopy(self._properties)
def to_bqstorage(self) -> str:
"""Construct a BigQuery Storage API representation of this table.
Returns:
str: A reference to this table in the BigQuery Storage API.
"""
return self.reference.to_bqstorage()
def _build_resource(self, filter_fields):
"""Generate a resource for ``update``."""
return _helpers._build_resource_from_properties(self, filter_fields)
def __repr__(self):
return "Table({})".format(repr(self.reference))
def __str__(self):
return f"{self.project}.{self.dataset_id}.{self.table_id}"
@property
def max_staleness(self):
"""Union[str, None]: The maximum staleness of data that could be returned when the table is queried.
Staleness encoded as a string encoding of sql IntervalValue type.
This property is optional and defaults to None.
According to the BigQuery API documentation, maxStaleness specifies the maximum time
interval for which stale data can be returned when querying the table.
It helps control data freshness in scenarios like metadata-cached external tables.
Returns:
Optional[str]: A string representing the maximum staleness interval
(e.g., '1h', '30m', '15s' for hours, minutes, seconds respectively).
"""
return self._properties.get(self._PROPERTY_TO_API_FIELD["max_staleness"])
@max_staleness.setter
def max_staleness(self, value):
"""Set the maximum staleness for the table.
Args:
value (Optional[str]): A string representing the maximum staleness interval.
Must be a valid time interval string.
Examples include '1h' (1 hour), '30m' (30 minutes), '15s' (15 seconds).
Raises:
ValueError: If the value is not None and not a string.
"""
if value is not None and not isinstance(value, str):
raise ValueError("max_staleness must be a string or None")
self._properties[self._PROPERTY_TO_API_FIELD["max_staleness"]] = value
class TableListItem(_TableBase):
"""A read-only table resource from a list operation.
For performance reasons, the BigQuery API only includes some of the table
properties when listing tables. Notably,
:attr:`~google.cloud.bigquery.table.Table.schema` and
:attr:`~google.cloud.bigquery.table.Table.num_rows` are missing.
For a full list of the properties that the BigQuery API returns, see the
`REST documentation for tables.list
<https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/list>`_.
Args:
resource (Dict[str, object]):
A table-like resource object from a table list response. A
``tableReference`` property is required.
Raises:
ValueError:
If ``tableReference`` or one of its required members is missing
from ``resource``.
"""
def __init__(self, resource):
if "tableReference" not in resource:
raise ValueError("resource must contain a tableReference value")
if "projectId" not in resource["tableReference"]:
raise ValueError(
"resource['tableReference'] must contain a projectId value"
)
if "datasetId" not in resource["tableReference"]:
raise ValueError(
"resource['tableReference'] must contain a datasetId value"
)
if "tableId" not in resource["tableReference"]:
raise ValueError("resource['tableReference'] must contain a tableId value")
self._properties = resource
@property
def created(self):
"""Union[datetime.datetime, None]: Datetime at which the table was
created (:data:`None` until set from the server).
"""
creation_time = self._properties.get("creationTime")
if creation_time is not None:
# creation_time will be in milliseconds.
return google.cloud._helpers._datetime_from_microseconds(
1000.0 * float(creation_time)
)
@property
def expires(self):
"""Union[datetime.datetime, None]: Datetime at which the table will be
deleted.
"""
expiration_time = self._properties.get("expirationTime")
if expiration_time is not None:
# expiration_time will be in milliseconds.
return google.cloud._helpers._datetime_from_microseconds(
1000.0 * float(expiration_time)
)
reference = property(_reference_getter)
@property
def labels(self):
"""Dict[str, str]: Labels for the table.
This method always returns a dict. To change a table's labels,
modify the dict, then call ``Client.update_table``. To delete a
label, set its value to :data:`None` before updating.
"""
return self._properties.setdefault("labels", {})
@property
def full_table_id(self):
"""Union[str, None]: ID for the table (:data:`None` until set from the
server).
In the format ``project_id:dataset_id.table_id``.
"""
return self._properties.get("id")
@property
def table_type(self):
"""Union[str, None]: The type of the table (:data:`None` until set from
the server).
Possible values are ``'TABLE'``, ``'VIEW'``, or ``'EXTERNAL'``.
"""
return self._properties.get("type")
@property
def time_partitioning(self):
"""google.cloud.bigquery.table.TimePartitioning: Configures time-based
partitioning for a table.
"""
prop = self._properties.get("timePartitioning")
if prop is not None:
return TimePartitioning.from_api_repr(prop)
@property
def partitioning_type(self):
"""Union[str, None]: Time partitioning of the table if it is
partitioned (Defaults to :data:`None`).
"""
warnings.warn(
"This method will be deprecated in future versions. Please use "
"TableListItem.time_partitioning.type_ instead.",
PendingDeprecationWarning,
stacklevel=2,
)
if self.time_partitioning is not None:
return self.time_partitioning.type_
@property
def partition_expiration(self):
"""Union[int, None]: Expiration time in milliseconds for a partition.
If this property is set and :attr:`type_` is not set, :attr:`type_`
will default to :attr:`TimePartitioningType.DAY`.
"""
warnings.warn(
"This method will be deprecated in future versions. Please use "
"TableListItem.time_partitioning.expiration_ms instead.",
PendingDeprecationWarning,
stacklevel=2,
)
if self.time_partitioning is not None:
return self.time_partitioning.expiration_ms
@property
def friendly_name(self):
"""Union[str, None]: Title of the table (defaults to :data:`None`)."""
return self._properties.get("friendlyName")
view_use_legacy_sql = property(_view_use_legacy_sql_getter)
@property
def clustering_fields(self):
"""Union[List[str], None]: Fields defining clustering for the table
(Defaults to :data:`None`).
Clustering fields are immutable after table creation.
.. note::
BigQuery supports clustering for both partitioned and
non-partitioned tables.
"""
prop = self._properties.get("clustering")
if prop is not None:
return list(prop.get("fields", ()))
@classmethod
def from_string(cls, full_table_id: str) -> "TableListItem":
"""Construct a table from fully-qualified table ID.
Args:
full_table_id (str):
A fully-qualified table ID in standard SQL format. Must
included a project ID, dataset ID, and table ID, each
separated by ``.``.
Returns:
Table: Table parsed from ``full_table_id``.
Examples:
>>> Table.from_string('my-project.mydataset.mytable')
Table(TableRef...(D...('my-project', 'mydataset'), 'mytable'))
Raises:
ValueError:
If ``full_table_id`` is not a fully-qualified table ID in
standard SQL format.
"""
return cls(
{"tableReference": TableReference.from_string(full_table_id).to_api_repr()}
)
def to_bqstorage(self) -> str:
"""Construct a BigQuery Storage API representation of this table.
Returns:
str: A reference to this table in the BigQuery Storage API.
"""
return self.reference.to_bqstorage()
def to_api_repr(self) -> dict:
"""Constructs the API resource of this table
Returns:
Dict[str, object]: Table represented as an API resource
"""
return copy.deepcopy(self._properties)
def _row_from_mapping(mapping, schema):
"""Convert a mapping to a row tuple using the schema.
Args:
mapping (Dict[str, object])
Mapping of row data: must contain keys for all required fields in
the schema. Keys which do not correspond to a field in the schema
are ignored.
schema (List[google.cloud.bigquery.schema.SchemaField]):
The schema of the table destination for the rows
Returns:
Tuple[object]:
Tuple whose elements are ordered according to the schema.
Raises:
ValueError: If schema is empty.
"""
if len(schema) == 0:
raise ValueError(_TABLE_HAS_NO_SCHEMA)
row = []
for field in schema:
if field.mode == "REQUIRED":
row.append(mapping[field.name])
elif field.mode == "REPEATED":
row.append(mapping.get(field.name, ()))
elif field.mode == "NULLABLE":
row.append(mapping.get(field.name))
else:
raise ValueError("Unknown field mode: {}".format(field.mode))
return tuple(row)
class StreamingBuffer(object):
"""Information about a table's streaming buffer.
See https://cloud.google.com/bigquery/streaming-data-into-bigquery.
Args:
resource (Dict[str, object]):
streaming buffer representation returned from the API
"""
def __init__(self, resource):
self.estimated_bytes = None
if "estimatedBytes" in resource:
self.estimated_bytes = int(resource["estimatedBytes"])
self.estimated_rows = None
if "estimatedRows" in resource:
self.estimated_rows = int(resource["estimatedRows"])
self.oldest_entry_time = None
if "oldestEntryTime" in resource:
self.oldest_entry_time = google.cloud._helpers._datetime_from_microseconds(
1000.0 * int(resource["oldestEntryTime"])
)
class SnapshotDefinition:
"""Information about base table and snapshot time of the snapshot.
See https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#snapshotdefinition
Args:
resource: Snapshot definition representation returned from the API.
"""
def __init__(self, resource: Dict[str, Any]):
self.base_table_reference = None
if "baseTableReference" in resource:
self.base_table_reference = TableReference.from_api_repr(
resource["baseTableReference"]
)
self.snapshot_time = None
if "snapshotTime" in resource:
self.snapshot_time = google.cloud._helpers._rfc3339_to_datetime(
resource["snapshotTime"]
)
class CloneDefinition:
"""Information about base table and clone time of the clone.
See https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#clonedefinition
Args:
resource: Clone definition representation returned from the API.
"""
def __init__(self, resource: Dict[str, Any]):
self.base_table_reference = None
if "baseTableReference" in resource:
self.base_table_reference = TableReference.from_api_repr(
resource["baseTableReference"]
)
self.clone_time = None
if "cloneTime" in resource:
self.clone_time = google.cloud._helpers._rfc3339_to_datetime(
resource["cloneTime"]
)
class Row(object):
"""A BigQuery row.
Values can be accessed by position (index), by key like a dict,
or as properties.
Args:
values (Sequence[object]): The row values
field_to_index (Dict[str, int]):
A mapping from schema field names to indexes
"""
# Choose unusual field names to try to avoid conflict with schema fields.
__slots__ = ("_xxx_values", "_xxx_field_to_index")
def __init__(self, values, field_to_index) -> None:
self._xxx_values = values
self._xxx_field_to_index = field_to_index
def values(self):
"""Return the values included in this row.
Returns:
Sequence[object]: A sequence of length ``len(row)``.
"""
return copy.deepcopy(self._xxx_values)
def keys(self) -> Iterable[str]:
"""Return the keys for using a row as a dict.
Returns:
Iterable[str]: The keys corresponding to the columns of a row
Examples:
>>> list(Row(('a', 'b'), {'x': 0, 'y': 1}).keys())
['x', 'y']
"""
return self._xxx_field_to_index.keys()
def items(self) -> Iterable[Tuple[str, Any]]:
"""Return items as ``(key, value)`` pairs.
Returns:
Iterable[Tuple[str, object]]:
The ``(key, value)`` pairs representing this row.
Examples:
>>> list(Row(('a', 'b'), {'x': 0, 'y': 1}).items())
[('x', 'a'), ('y', 'b')]
"""
for key, index in self._xxx_field_to_index.items():
yield (key, copy.deepcopy(self._xxx_values[index]))
def get(self, key: str, default: Any = None) -> Any:
"""Return a value for key, with a default value if it does not exist.
Args:
key (str): The key of the column to access
default (object):
The default value to use if the key does not exist. (Defaults
to :data:`None`.)
Returns:
object:
The value associated with the provided key, or a default value.
Examples:
When the key exists, the value associated with it is returned.
>>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('x')
'a'
The default value is :data:`None` when the key does not exist.
>>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('z')
None
The default value can be overridden with the ``default`` parameter.
>>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('z', '')
''
>>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('z', default = '')
''
"""
index = self._xxx_field_to_index.get(key)
if index is None:
return default
return self._xxx_values[index]
def __getattr__(self, name):
value = self._xxx_field_to_index.get(name)
if value is None:
raise AttributeError("no row field {!r}".format(name))
return self._xxx_values[value]
def __len__(self):
return len(self._xxx_values)
def __getitem__(self, key):
if isinstance(key, str):
value = self._xxx_field_to_index.get(key)
if value is None:
raise KeyError("no row field {!r}".format(key))
key = value
return self._xxx_values[key]
def __eq__(self, other):
if not isinstance(other, Row):
return NotImplemented
return (
self._xxx_values == other._xxx_values
and self._xxx_field_to_index == other._xxx_field_to_index
)
def __ne__(self, other):
return not self == other
def __repr__(self):
# sort field dict by value, for determinism
items = sorted(self._xxx_field_to_index.items(), key=operator.itemgetter(1))
f2i = "{" + ", ".join("%r: %d" % item for item in items) + "}"
return "Row({}, {})".format(self._xxx_values, f2i)
class _NoopProgressBarQueue(object):
"""A fake Queue class that does nothing.
This is used when there is no progress bar to send updates to.
"""
def put_nowait(self, item):
"""Don't actually do anything with the item."""
class RowIterator(HTTPIterator):
"""A class for iterating through HTTP/JSON API row list responses.
Args:
client (Optional[google.cloud.bigquery.Client]):
The API client instance. This should always be non-`None`, except for
subclasses that do not use it, namely the ``_EmptyRowIterator``.
api_request (Callable[google.cloud._http.JSONConnection.api_request]):
The function to use to make API requests.
path (str): The method path to query for the list of items.
schema (Sequence[Union[ \
:class:`~google.cloud.bigquery.schema.SchemaField`, \
Mapping[str, Any] \
]]):
The table's schema. If any item is a mapping, its content must be
compatible with
:meth:`~google.cloud.bigquery.schema.SchemaField.from_api_repr`.
page_token (str): A token identifying a page in a result set to start
fetching results from.
max_results (Optional[int]): The maximum number of results to fetch.
page_size (Optional[int]): The maximum number of rows in each page
of results from this request. Non-positive values are ignored.
Defaults to a sensible value set by the API.
extra_params (Optional[Dict[str, object]]):
Extra query string parameters for the API call.
table (Optional[Union[ \
google.cloud.bigquery.table.Table, \
google.cloud.bigquery.table.TableReference, \
]]):
The table which these rows belong to, or a reference to it. Used to
call the BigQuery Storage API to fetch rows.
selected_fields (Optional[Sequence[google.cloud.bigquery.schema.SchemaField]]):
A subset of columns to select from this table.
total_rows (Optional[int]):
Total number of rows in the table.
first_page_response (Optional[dict]):
API response for the first page of results. These are returned when
the first page is requested.
query (Optional[str]):
The query text used.
total_bytes_processed (Optinal[int]):
total bytes processed from job statistics, if present.
"""
def __init__(
self,
client,
api_request,
path,
schema,
page_token=None,
max_results=None,
page_size=None,
extra_params=None,
table=None,
selected_fields=None,
total_rows=None,
first_page_response=None,
location: Optional[str] = None,
job_id: Optional[str] = None,
query_id: Optional[str] = None,
project: Optional[str] = None,
num_dml_affected_rows: Optional[int] = None,
query: Optional[str] = None,
total_bytes_processed: Optional[int] = None,
):
super(RowIterator, self).__init__(
client,
api_request,
path,
item_to_value=_item_to_row,
items_key="rows",
page_token=page_token,
max_results=max_results,
extra_params=extra_params,
page_start=_rows_page_start,
next_token="pageToken",
)
schema = _to_schema_fields(schema)
self._field_to_index = _helpers._field_to_index_mapping(schema)
self._page_size = page_size
self._preserve_order = False
self._schema = schema
self._selected_fields = selected_fields
self._table = table
self._total_rows = total_rows
self._first_page_response = first_page_response
self._location = location
self._job_id = job_id
self._query_id = query_id
self._project = project
self._num_dml_affected_rows = num_dml_affected_rows
self._query = query
self._total_bytes_processed = total_bytes_processed
@property
def _billing_project(self) -> Optional[str]:
"""GCP Project ID where BQ API will bill to (if applicable)."""
client = self.client
return client.project if client is not None else None
@property
def job_id(self) -> Optional[str]:
"""ID of the query job (if applicable).
To get the job metadata, call
``job = client.get_job(rows.job_id, location=rows.location)``.
"""
return self._job_id
@property
def location(self) -> Optional[str]:
"""Location where the query executed (if applicable).
See: https://cloud.google.com/bigquery/docs/locations
"""
return self._location
@property
def num_dml_affected_rows(self) -> Optional[int]:
"""If this RowIterator is the result of a DML query, the number of
rows that were affected.
See:
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/query#body.QueryResponse.FIELDS.num_dml_affected_rows
"""
return self._num_dml_affected_rows
@property
def project(self) -> Optional[str]:
"""GCP Project ID where these rows are read from."""
return self._project
@property
def query_id(self) -> Optional[str]:
"""[Preview] ID of a completed query.
This ID is auto-generated and not guaranteed to be populated.
"""
return self._query_id
@property
def query(self) -> Optional[str]:
"""The query text used."""
return self._query
@property
def total_bytes_processed(self) -> Optional[int]:
"""total bytes processed from job statistics, if present."""
return self._total_bytes_processed
def _is_almost_completely_cached(self):
"""Check if all results are completely cached.
This is useful to know, because we can avoid alternative download
mechanisms.
"""
if (
not hasattr(self, "_first_page_response")
or self._first_page_response is None
):
return False
total_cached_rows = len(self._first_page_response.get(self._items_key, []))
if self.max_results is not None and total_cached_rows >= self.max_results:
return True
if (
self.next_page_token is None
and self._first_page_response.get(self._next_token) is None
):
return True
if self._total_rows is not None:
almost_completely = self._total_rows * ALMOST_COMPLETELY_CACHED_RATIO
if total_cached_rows >= almost_completely:
return True
return False
def _should_use_bqstorage(self, bqstorage_client, create_bqstorage_client):
"""Returns True if the BigQuery Storage API can be used.
Returns:
bool
True if the BigQuery Storage client can be used or created.
"""
using_bqstorage_api = bqstorage_client or create_bqstorage_client
if not using_bqstorage_api:
return False
if self._table is None:
return False
# The developer has already started paging through results if
# next_page_token is set.
if hasattr(self, "next_page_token") and self.next_page_token is not None:
return False
if self._is_almost_completely_cached():
return False
if self.max_results is not None:
return False
try:
_versions_helpers.BQ_STORAGE_VERSIONS.try_import(raise_if_error=True)
except bq_exceptions.BigQueryStorageNotFoundError:
warnings.warn(
"BigQuery Storage module not found, fetch data with the REST "
"endpoint instead."
)
return False
except bq_exceptions.LegacyBigQueryStorageError as exc:
warnings.warn(str(exc))
return False
return True
def _get_next_page_response(self):
"""Requests the next page from the path provided.
Returns:
Dict[str, object]:
The parsed JSON response of the next page's contents.
"""
if self._first_page_response:
rows = self._first_page_response.get(self._items_key, [])[
: self.max_results
]
response = {
self._items_key: rows,
}
if self._next_token in self._first_page_response:
response[self._next_token] = self._first_page_response[self._next_token]
self._first_page_response = None
return response
params = self._get_query_params()
if self._page_size is not None:
if self.page_number and "startIndex" in params:
del params["startIndex"]
return self.api_request(
method=self._HTTP_METHOD, path=self.path, query_params=params
)
@property
def schema(self):
"""List[google.cloud.bigquery.schema.SchemaField]: The subset of
columns to be read from the table."""
return list(self._schema)
@property
def total_rows(self):
"""int: The total number of rows in the table or query results."""
return self._total_rows
def _maybe_warn_max_results(
self,
bqstorage_client: Optional["bigquery_storage.BigQueryReadClient"],
):
"""Issue a warning if BQ Storage client is not ``None`` with ``max_results`` set.
This helper method should be used directly in the relevant top-level public
methods, so that the warning is issued for the correct line in user code.
Args:
bqstorage_client:
The BigQuery Storage client intended to use for downloading result rows.
"""
if bqstorage_client is not None and self.max_results is not None:
warnings.warn(
"Cannot use bqstorage_client if max_results is set, "
"reverting to fetching data with the REST endpoint.",
stacklevel=3,
)
def _to_page_iterable(
self, bqstorage_download, tabledata_list_download, bqstorage_client=None
):
if not self._should_use_bqstorage(bqstorage_client, False):
bqstorage_client = None
result_pages = (
bqstorage_download()
if bqstorage_client is not None
else tabledata_list_download()
)
yield from result_pages
def to_arrow_iterable(
self,
bqstorage_client: Optional["bigquery_storage.BigQueryReadClient"] = None,
max_queue_size: int = _pandas_helpers._MAX_QUEUE_SIZE_DEFAULT, # type: ignore
max_stream_count: Optional[int] = None,
) -> Iterator["pyarrow.RecordBatch"]:
"""[Beta] Create an iterable of class:`pyarrow.RecordBatch`, to process the table as a stream.
Args:
bqstorage_client (Optional[google.cloud.bigquery_storage_v1.BigQueryReadClient]):
A BigQuery Storage API client. If supplied, use the faster
BigQuery Storage API to fetch rows from BigQuery.
This method requires the ``pyarrow`` and
``google-cloud-bigquery-storage`` libraries.
This method only exposes a subset of the capabilities of the
BigQuery Storage API. For full access to all features
(projections, filters, snapshots) use the Storage API directly.
max_queue_size (Optional[int]):
The maximum number of result pages to hold in the internal queue when
streaming query results over the BigQuery Storage API. Ignored if
Storage API is not used.
By default, the max queue size is set to the number of BQ Storage streams
created by the server. If ``max_queue_size`` is :data:`None`, the queue
size is infinite.
max_stream_count (Optional[int]):
The maximum number of parallel download streams when
using BigQuery Storage API. Ignored if
BigQuery Storage API is not used.
This setting also has no effect if the query result
is deterministically ordered with ORDER BY,
in which case, the number of download stream is always 1.
If set to 0 or None (the default), the number of download
streams is determined by BigQuery the server. However, this behaviour
can require a lot of memory to store temporary download result,
especially with very large queries. In that case,
setting this parameter value to a value > 0 can help
reduce system resource consumption.
Returns:
pyarrow.RecordBatch:
A generator of :class:`~pyarrow.RecordBatch`.
.. versionadded:: 2.31.0
"""
self._maybe_warn_max_results(bqstorage_client)
bqstorage_download = functools.partial(
_pandas_helpers.download_arrow_bqstorage,
self._billing_project,
self._table,
bqstorage_client,
preserve_order=self._preserve_order,
selected_fields=self._selected_fields,
max_queue_size=max_queue_size,
max_stream_count=max_stream_count,
)
tabledata_list_download = functools.partial(
_pandas_helpers.download_arrow_row_iterator, iter(self.pages), self.schema
)
return self._to_page_iterable(
bqstorage_download,
tabledata_list_download,
bqstorage_client=bqstorage_client,
)
# If changing the signature of this method, make sure to apply the same
# changes to job.QueryJob.to_arrow()
def to_arrow(
self,
progress_bar_type: Optional[str] = None,
bqstorage_client: Optional["bigquery_storage.BigQueryReadClient"] = None,
create_bqstorage_client: bool = True,
) -> "pyarrow.Table":
"""[Beta] Create a class:`pyarrow.Table` by loading all pages of a
table or query.
Args:
progress_bar_type (Optional[str]):
If set, use the `tqdm <https://tqdm.github.io/>`_ library to
display a progress bar while the data downloads. Install the
``tqdm`` package to use this feature.
Possible values of ``progress_bar_type`` include:
``None``
No progress bar.
``'tqdm'``
Use the :func:`tqdm.tqdm` function to print a progress bar
to :data:`sys.stdout`.
``'tqdm_notebook'``
Use the :func:`tqdm.notebook.tqdm` function to display a
progress bar as a Jupyter notebook widget.
``'tqdm_gui'``
Use the :func:`tqdm.tqdm_gui` function to display a
progress bar as a graphical dialog box.
bqstorage_client (Optional[google.cloud.bigquery_storage_v1.BigQueryReadClient]):
A BigQuery Storage API client. If supplied, use the faster BigQuery
Storage API to fetch rows from BigQuery. This API is a billable API.
This method requires ``google-cloud-bigquery-storage`` library.
This method only exposes a subset of the capabilities of the
BigQuery Storage API. For full access to all features
(projections, filters, snapshots) use the Storage API directly.
create_bqstorage_client (Optional[bool]):
If ``True`` (default), create a BigQuery Storage API client using
the default API settings. The BigQuery Storage API is a faster way
to fetch rows from BigQuery. See the ``bqstorage_client`` parameter
for more information.
This argument does nothing if ``bqstorage_client`` is supplied.
.. versionadded:: 1.24.0
Returns:
pyarrow.Table
A :class:`pyarrow.Table` populated with row data and column
headers from the query results. The column headers are derived
from the destination table's schema.
Raises:
ValueError: If the :mod:`pyarrow` library cannot be imported.
.. versionadded:: 1.17.0
"""
if pyarrow is None:
raise ValueError(_NO_PYARROW_ERROR)
self._maybe_warn_max_results(bqstorage_client)
if not self._should_use_bqstorage(bqstorage_client, create_bqstorage_client):
create_bqstorage_client = False
bqstorage_client = None
owns_bqstorage_client = False
if not bqstorage_client and create_bqstorage_client:
bqstorage_client = self.client._ensure_bqstorage_client()
owns_bqstorage_client = bqstorage_client is not None
try:
progress_bar = get_progress_bar(
progress_bar_type, "Downloading", self.total_rows, "rows"
)
record_batches = []
for record_batch in self.to_arrow_iterable(
bqstorage_client=bqstorage_client
):
record_batches.append(record_batch)
if progress_bar is not None:
# In some cases, the number of total rows is not populated
# until the first page of rows is fetched. Update the
# progress bar's total to keep an accurate count.
progress_bar.total = progress_bar.total or self.total_rows
progress_bar.update(record_batch.num_rows)
if progress_bar is not None:
# Indicate that the download has finished.
progress_bar.close()
finally:
if owns_bqstorage_client:
bqstorage_client._transport.grpc_channel.close() # type: ignore
if record_batches and bqstorage_client is not None:
return pyarrow.Table.from_batches(record_batches)
else:
# No records (not record_batches), use schema based on BigQuery schema
# **or**
# we used the REST API (bqstorage_client is None),
# which doesn't add arrow extension metadata, so we let
# `bq_to_arrow_schema` do it.
arrow_schema = _pandas_helpers.bq_to_arrow_schema(self._schema)
return pyarrow.Table.from_batches(record_batches, schema=arrow_schema)
def to_dataframe_iterable(
self,
bqstorage_client: Optional["bigquery_storage.BigQueryReadClient"] = None,
dtypes: Optional[Dict[str, Any]] = None,
max_queue_size: int = _pandas_helpers._MAX_QUEUE_SIZE_DEFAULT, # type: ignore
max_stream_count: Optional[int] = None,
) -> "pandas.DataFrame":
"""Create an iterable of pandas DataFrames, to process the table as a stream.
Args:
bqstorage_client (Optional[google.cloud.bigquery_storage_v1.BigQueryReadClient]):
A BigQuery Storage API client. If supplied, use the faster
BigQuery Storage API to fetch rows from BigQuery.
This method requires ``google-cloud-bigquery-storage`` library.
This method only exposes a subset of the capabilities of the
BigQuery Storage API. For full access to all features
(projections, filters, snapshots) use the Storage API directly.
dtypes (Optional[Map[str, Union[str, pandas.Series.dtype]]]):
A dictionary of column names pandas ``dtype``s. The provided
``dtype`` is used when constructing the series for the column
specified. Otherwise, the default pandas behavior is used.
max_queue_size (Optional[int]):
The maximum number of result pages to hold in the internal queue when
streaming query results over the BigQuery Storage API. Ignored if
Storage API is not used.
By default, the max queue size is set to the number of BQ Storage streams
created by the server. If ``max_queue_size`` is :data:`None`, the queue
size is infinite.
.. versionadded:: 2.14.0
max_stream_count (Optional[int]):
The maximum number of parallel download streams when
using BigQuery Storage API. Ignored if
BigQuery Storage API is not used.
This setting also has no effect if the query result
is deterministically ordered with ORDER BY,
in which case, the number of download stream is always 1.
If set to 0 or None (the default), the number of download
streams is determined by BigQuery the server. However, this behaviour
can require a lot of memory to store temporary download result,
especially with very large queries. In that case,
setting this parameter value to a value > 0 can help
reduce system resource consumption.
Returns:
pandas.DataFrame:
A generator of :class:`~pandas.DataFrame`.
Raises:
ValueError:
If the :mod:`pandas` library cannot be imported.
"""
_pandas_helpers.verify_pandas_imports()
if dtypes is None:
dtypes = {}
self._maybe_warn_max_results(bqstorage_client)
column_names = [field.name for field in self._schema]
bqstorage_download = functools.partial(
_pandas_helpers.download_dataframe_bqstorage,
self._billing_project,
self._table,
bqstorage_client,
column_names,
dtypes,
preserve_order=self._preserve_order,
selected_fields=self._selected_fields,
max_queue_size=max_queue_size,
max_stream_count=max_stream_count,
)
tabledata_list_download = functools.partial(
_pandas_helpers.download_dataframe_row_iterator,
iter(self.pages),
self.schema,
dtypes,
)
return self._to_page_iterable(
bqstorage_download,
tabledata_list_download,
bqstorage_client=bqstorage_client,
)
# If changing the signature of this method, make sure to apply the same
# changes to job.QueryJob.to_dataframe()
def to_dataframe(
self,
bqstorage_client: Optional["bigquery_storage.BigQueryReadClient"] = None,
dtypes: Optional[Dict[str, Any]] = None,
progress_bar_type: Optional[str] = None,
create_bqstorage_client: bool = True,
geography_as_object: bool = False,
bool_dtype: Union[Any, None] = DefaultPandasDTypes.BOOL_DTYPE,
int_dtype: Union[Any, None] = DefaultPandasDTypes.INT_DTYPE,
float_dtype: Union[Any, None] = None,
string_dtype: Union[Any, None] = None,
date_dtype: Union[Any, None] = DefaultPandasDTypes.DATE_DTYPE,
datetime_dtype: Union[Any, None] = None,
time_dtype: Union[Any, None] = DefaultPandasDTypes.TIME_DTYPE,
timestamp_dtype: Union[Any, None] = None,
range_date_dtype: Union[Any, None] = DefaultPandasDTypes.RANGE_DATE_DTYPE,
range_datetime_dtype: Union[
Any, None
] = DefaultPandasDTypes.RANGE_DATETIME_DTYPE,
range_timestamp_dtype: Union[
Any, None
] = DefaultPandasDTypes.RANGE_TIMESTAMP_DTYPE,
) -> "pandas.DataFrame":
"""Create a pandas DataFrame by loading all pages of a query.
Args:
bqstorage_client (Optional[google.cloud.bigquery_storage_v1.BigQueryReadClient]):
A BigQuery Storage API client. If supplied, use the faster
BigQuery Storage API to fetch rows from BigQuery.
This method requires ``google-cloud-bigquery-storage`` library.
This method only exposes a subset of the capabilities of the
BigQuery Storage API. For full access to all features
(projections, filters, snapshots) use the Storage API directly.
dtypes (Optional[Map[str, Union[str, pandas.Series.dtype]]]):
A dictionary of column names pandas ``dtype``s. The provided
``dtype`` is used when constructing the series for the column
specified. Otherwise, the default pandas behavior is used.
progress_bar_type (Optional[str]):
If set, use the `tqdm <https://tqdm.github.io/>`_ library to
display a progress bar while the data downloads. Install the
``tqdm`` package to use this feature.
Possible values of ``progress_bar_type`` include:
``None``
No progress bar.
``'tqdm'``
Use the :func:`tqdm.tqdm` function to print a progress bar
to :data:`sys.stdout`.
``'tqdm_notebook'``
Use the :func:`tqdm.notebook.tqdm` function to display a
progress bar as a Jupyter notebook widget.
``'tqdm_gui'``
Use the :func:`tqdm.tqdm_gui` function to display a
progress bar as a graphical dialog box.
.. versionadded:: 1.11.0
create_bqstorage_client (Optional[bool]):
If ``True`` (default), create a BigQuery Storage API client
using the default API settings. The BigQuery Storage API
is a faster way to fetch rows from BigQuery. See the
``bqstorage_client`` parameter for more information.
This argument does nothing if ``bqstorage_client`` is supplied.
.. versionadded:: 1.24.0
geography_as_object (Optional[bool]):
If ``True``, convert GEOGRAPHY data to :mod:`shapely`
geometry objects. If ``False`` (default), don't cast
geography data to :mod:`shapely` geometry objects.
.. versionadded:: 2.24.0
bool_dtype (Optional[pandas.Series.dtype, None]):
If set, indicate a pandas ExtensionDtype (e.g. ``pandas.BooleanDtype()``)
to convert BigQuery Boolean type, instead of relying on the default
``pandas.BooleanDtype()``. If you explicitly set the value to ``None``,
then the data type will be ``numpy.dtype("bool")``. BigQuery Boolean
type can be found at:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#boolean_type
.. versionadded:: 3.8.0
int_dtype (Optional[pandas.Series.dtype, None]):
If set, indicate a pandas ExtensionDtype (e.g. ``pandas.Int64Dtype()``)
to convert BigQuery Integer types, instead of relying on the default
``pandas.Int64Dtype()``. If you explicitly set the value to ``None``,
then the data type will be ``numpy.dtype("int64")``. A list of BigQuery
Integer types can be found at:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#integer_types
.. versionadded:: 3.8.0
float_dtype (Optional[pandas.Series.dtype, None]):
If set, indicate a pandas ExtensionDtype (e.g. ``pandas.Float32Dtype()``)
to convert BigQuery Float type, instead of relying on the default
``numpy.dtype("float64")``. If you explicitly set the value to ``None``,
then the data type will be ``numpy.dtype("float64")``. BigQuery Float
type can be found at:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#floating_point_types
.. versionadded:: 3.8.0
string_dtype (Optional[pandas.Series.dtype, None]):
If set, indicate a pandas ExtensionDtype (e.g. ``pandas.StringDtype()``) to
convert BigQuery String type, instead of relying on the default
``numpy.dtype("object")``. If you explicitly set the value to ``None``,
then the data type will be ``numpy.dtype("object")``. BigQuery String
type can be found at:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#string_type
.. versionadded:: 3.8.0
date_dtype (Optional[pandas.Series.dtype, None]):
If set, indicate a pandas ExtensionDtype (e.g.
``pandas.ArrowDtype(pyarrow.date32())``) to convert BigQuery Date
type, instead of relying on the default ``db_dtypes.DateDtype()``.
If you explicitly set the value to ``None``, then the data type will be
``numpy.dtype("datetime64[ns]")`` or ``object`` if out of bound. BigQuery
Date type can be found at:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#date_type
.. versionadded:: 3.10.0
datetime_dtype (Optional[pandas.Series.dtype, None]):
If set, indicate a pandas ExtensionDtype (e.g.
``pandas.ArrowDtype(pyarrow.timestamp("us"))``) to convert BigQuery Datetime
type, instead of relying on the default ``numpy.dtype("datetime64[ns]``.
If you explicitly set the value to ``None``, then the data type will be
``numpy.dtype("datetime64[ns]")`` or ``object`` if out of bound. BigQuery
Datetime type can be found at:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#datetime_type
.. versionadded:: 3.10.0
time_dtype (Optional[pandas.Series.dtype, None]):
If set, indicate a pandas ExtensionDtype (e.g.
``pandas.ArrowDtype(pyarrow.time64("us"))``) to convert BigQuery Time
type, instead of relying on the default ``db_dtypes.TimeDtype()``.
If you explicitly set the value to ``None``, then the data type will be
``numpy.dtype("object")``. BigQuery Time type can be found at:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#time_type
.. versionadded:: 3.10.0
timestamp_dtype (Optional[pandas.Series.dtype, None]):
If set, indicate a pandas ExtensionDtype (e.g.
``pandas.ArrowDtype(pyarrow.timestamp("us", tz="UTC"))``) to convert BigQuery Timestamp
type, instead of relying on the default ``numpy.dtype("datetime64[ns, UTC]")``.
If you explicitly set the value to ``None``, then the data type will be
``numpy.dtype("datetime64[ns, UTC]")`` or ``object`` if out of bound. BigQuery
Datetime type can be found at:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#timestamp_type
.. versionadded:: 3.10.0
range_date_dtype (Optional[pandas.Series.dtype, None]):
If set, indicate a pandas ExtensionDtype, such as:
.. code-block:: python
pandas.ArrowDtype(pyarrow.struct(
[("start", pyarrow.date32()), ("end", pyarrow.date32())]
))
to convert BigQuery RANGE<DATE> type, instead of relying on
the default ``object``. If you explicitly set the value to
``None``, the data type will be ``object``. BigQuery Range type
can be found at:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#range_type
.. versionadded:: 3.21.0
range_datetime_dtype (Optional[pandas.Series.dtype, None]):
If set, indicate a pandas ExtensionDtype, such as:
.. code-block:: python
pandas.ArrowDtype(pyarrow.struct(
[
("start", pyarrow.timestamp("us")),
("end", pyarrow.timestamp("us")),
]
))
to convert BigQuery RANGE<DATETIME> type, instead of relying on
the default ``object``. If you explicitly set the value to
``None``, the data type will be ``object``. BigQuery Range type
can be found at:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#range_type
.. versionadded:: 3.21.0
range_timestamp_dtype (Optional[pandas.Series.dtype, None]):
If set, indicate a pandas ExtensionDtype, such as:
.. code-block:: python
pandas.ArrowDtype(pyarrow.struct(
[
("start", pyarrow.timestamp("us", tz="UTC")),
("end", pyarrow.timestamp("us", tz="UTC")),
]
))
to convert BigQuery RANGE<TIMESTAMP> type, instead of relying
on the default ``object``. If you explicitly set the value to
``None``, the data type will be ``object``. BigQuery Range type
can be found at:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#range_type
.. versionadded:: 3.21.0
Returns:
pandas.DataFrame:
A :class:`~pandas.DataFrame` populated with row data and column
headers from the query results. The column headers are derived
from the destination table's schema.
Raises:
ValueError:
If the :mod:`pandas` library cannot be imported, or
the :mod:`google.cloud.bigquery_storage_v1` module is
required but cannot be imported. Also if
`geography_as_object` is `True`, but the
:mod:`shapely` library cannot be imported. Also if
`bool_dtype`, `int_dtype` or other dtype parameters
is not supported dtype.
"""
_pandas_helpers.verify_pandas_imports()
if geography_as_object and shapely is None:
raise ValueError(_NO_SHAPELY_ERROR)
if bool_dtype is DefaultPandasDTypes.BOOL_DTYPE:
bool_dtype = pandas.BooleanDtype()
if int_dtype is DefaultPandasDTypes.INT_DTYPE:
int_dtype = pandas.Int64Dtype()
if time_dtype is DefaultPandasDTypes.TIME_DTYPE:
time_dtype = db_dtypes.TimeDtype()
if range_date_dtype is DefaultPandasDTypes.RANGE_DATE_DTYPE:
if _versions_helpers.SUPPORTS_RANGE_PYARROW:
range_date_dtype = pandas.ArrowDtype(
pyarrow.struct(
[("start", pyarrow.date32()), ("end", pyarrow.date32())]
)
)
else:
warnings.warn(_RANGE_PYARROW_WARNING)
range_date_dtype = None
if range_datetime_dtype is DefaultPandasDTypes.RANGE_DATETIME_DTYPE:
if _versions_helpers.SUPPORTS_RANGE_PYARROW:
range_datetime_dtype = pandas.ArrowDtype(
pyarrow.struct(
[
("start", pyarrow.timestamp("us")),
("end", pyarrow.timestamp("us")),
]
)
)
else:
warnings.warn(_RANGE_PYARROW_WARNING)
range_datetime_dtype = None
if range_timestamp_dtype is DefaultPandasDTypes.RANGE_TIMESTAMP_DTYPE:
if _versions_helpers.SUPPORTS_RANGE_PYARROW:
range_timestamp_dtype = pandas.ArrowDtype(
pyarrow.struct(
[
("start", pyarrow.timestamp("us", tz="UTC")),
("end", pyarrow.timestamp("us", tz="UTC")),
]
)
)
else:
warnings.warn(_RANGE_PYARROW_WARNING)
range_timestamp_dtype = None
if bool_dtype is not None and not hasattr(bool_dtype, "__from_arrow__"):
raise ValueError("bool_dtype", _NO_SUPPORTED_DTYPE)
if int_dtype is not None and not hasattr(int_dtype, "__from_arrow__"):
raise ValueError("int_dtype", _NO_SUPPORTED_DTYPE)
if float_dtype is not None and not hasattr(float_dtype, "__from_arrow__"):
raise ValueError("float_dtype", _NO_SUPPORTED_DTYPE)
if string_dtype is not None and not hasattr(string_dtype, "__from_arrow__"):
raise ValueError("string_dtype", _NO_SUPPORTED_DTYPE)
if (
date_dtype is not None
and date_dtype is not DefaultPandasDTypes.DATE_DTYPE
and not hasattr(date_dtype, "__from_arrow__")
):
raise ValueError("date_dtype", _NO_SUPPORTED_DTYPE)
if datetime_dtype is not None and not hasattr(datetime_dtype, "__from_arrow__"):
raise ValueError("datetime_dtype", _NO_SUPPORTED_DTYPE)
if time_dtype is not None and not hasattr(time_dtype, "__from_arrow__"):
raise ValueError("time_dtype", _NO_SUPPORTED_DTYPE)
if timestamp_dtype is not None and not hasattr(
timestamp_dtype, "__from_arrow__"
):
raise ValueError("timestamp_dtype", _NO_SUPPORTED_DTYPE)
if dtypes is None:
dtypes = {}
self._maybe_warn_max_results(bqstorage_client)
if not self._should_use_bqstorage(bqstorage_client, create_bqstorage_client):
create_bqstorage_client = False
bqstorage_client = None
record_batch = self.to_arrow(
progress_bar_type=progress_bar_type,
bqstorage_client=bqstorage_client,
create_bqstorage_client=create_bqstorage_client,
)
# Default date dtype is `db_dtypes.DateDtype()` that could cause out of bounds error,
# when pyarrow converts date values to nanosecond precision. To avoid the error, we
# set the date_as_object parameter to True, if necessary.
date_as_object = False
if date_dtype is DefaultPandasDTypes.DATE_DTYPE:
date_dtype = db_dtypes.DateDtype()
date_as_object = not all(
self.__can_cast_timestamp_ns(col)
for col in record_batch
# Type can be date32 or date64 (plus units).
# See: https://arrow.apache.org/docs/python/api/datatypes.html
if pyarrow.types.is_date(col.type)
)
timestamp_as_object = False
if datetime_dtype is None and timestamp_dtype is None:
timestamp_as_object = not all(
self.__can_cast_timestamp_ns(col)
for col in record_batch
# Type can be datetime and timestamp (plus units and time zone).
# See: https://arrow.apache.org/docs/python/api/datatypes.html
if pyarrow.types.is_timestamp(col.type)
)
if len(record_batch) > 0:
df = record_batch.to_pandas(
date_as_object=date_as_object,
timestamp_as_object=timestamp_as_object,
integer_object_nulls=True,
types_mapper=_pandas_helpers.default_types_mapper(
date_as_object=date_as_object,
bool_dtype=bool_dtype,
int_dtype=int_dtype,
float_dtype=float_dtype,
string_dtype=string_dtype,
date_dtype=date_dtype,
datetime_dtype=datetime_dtype,
time_dtype=time_dtype,
timestamp_dtype=timestamp_dtype,
range_date_dtype=range_date_dtype,
range_datetime_dtype=range_datetime_dtype,
range_timestamp_dtype=range_timestamp_dtype,
),
)
else:
# Avoid "ValueError: need at least one array to concatenate" on
# older versions of pandas when converting empty RecordBatch to
# DataFrame. See: https://github.com/pandas-dev/pandas/issues/41241
df = pandas.DataFrame([], columns=record_batch.schema.names)
for column in dtypes:
df[column] = pandas.Series(df[column], dtype=dtypes[column], copy=False)
if geography_as_object:
for field in self.schema:
if field.field_type.upper() == "GEOGRAPHY" and field.mode != "REPEATED":
df[field.name] = df[field.name].dropna().apply(_read_wkt)
return df
@staticmethod
def __can_cast_timestamp_ns(column):
try:
column.cast("timestamp[ns]")
except pyarrow.lib.ArrowInvalid:
return False
else:
return True
# If changing the signature of this method, make sure to apply the same
# changes to job.QueryJob.to_geodataframe()
def to_geodataframe(
self,
bqstorage_client: Optional["bigquery_storage.BigQueryReadClient"] = None,
dtypes: Optional[Dict[str, Any]] = None,
progress_bar_type: Optional[str] = None,
create_bqstorage_client: bool = True,
geography_column: Optional[str] = None,
) -> "geopandas.GeoDataFrame":
"""Create a GeoPandas GeoDataFrame by loading all pages of a query.
Args:
bqstorage_client (Optional[google.cloud.bigquery_storage_v1.BigQueryReadClient]):
A BigQuery Storage API client. If supplied, use the faster
BigQuery Storage API to fetch rows from BigQuery.
This method requires the ``pyarrow`` and
``google-cloud-bigquery-storage`` libraries.
This method only exposes a subset of the capabilities of the
BigQuery Storage API. For full access to all features
(projections, filters, snapshots) use the Storage API directly.
dtypes (Optional[Map[str, Union[str, pandas.Series.dtype]]]):
A dictionary of column names pandas ``dtype``s. The provided
``dtype`` is used when constructing the series for the column
specified. Otherwise, the default pandas behavior is used.
progress_bar_type (Optional[str]):
If set, use the `tqdm <https://tqdm.github.io/>`_ library to
display a progress bar while the data downloads. Install the
``tqdm`` package to use this feature.
Possible values of ``progress_bar_type`` include:
``None``
No progress bar.
``'tqdm'``
Use the :func:`tqdm.tqdm` function to print a progress bar
to :data:`sys.stdout`.
``'tqdm_notebook'``
Use the :func:`tqdm.notebook.tqdm` function to display a
progress bar as a Jupyter notebook widget.
``'tqdm_gui'``
Use the :func:`tqdm.tqdm_gui` function to display a
progress bar as a graphical dialog box.
create_bqstorage_client (Optional[bool]):
If ``True`` (default), create a BigQuery Storage API client
using the default API settings. The BigQuery Storage API
is a faster way to fetch rows from BigQuery. See the
``bqstorage_client`` parameter for more information.
This argument does nothing if ``bqstorage_client`` is supplied.
geography_column (Optional[str]):
If there are more than one GEOGRAPHY column,
identifies which one to use to construct a geopandas
GeoDataFrame. This option can be ommitted if there's
only one GEOGRAPHY column.
Returns:
geopandas.GeoDataFrame:
A :class:`geopandas.GeoDataFrame` populated with row
data and column headers from the query results. The
column headers are derived from the destination
table's schema.
Raises:
ValueError:
If the :mod:`geopandas` library cannot be imported, or the
:mod:`google.cloud.bigquery_storage_v1` module is
required but cannot be imported.
.. versionadded:: 2.24.0
"""
if geopandas is None:
raise ValueError(_NO_GEOPANDAS_ERROR)
geography_columns = set(
field.name
for field in self.schema
if field.field_type.upper() == "GEOGRAPHY"
)
if not geography_columns:
raise TypeError(
"There must be at least one GEOGRAPHY column"
" to create a GeoDataFrame"
)
if geography_column:
if geography_column not in geography_columns:
raise ValueError(
f"The given geography column, {geography_column}, doesn't name"
f" a GEOGRAPHY column in the result."
)
elif len(geography_columns) == 1:
[geography_column] = geography_columns
else:
raise ValueError(
"There is more than one GEOGRAPHY column in the result. "
"The geography_column argument must be used to specify which "
"one to use to create a GeoDataFrame"
)
df = self.to_dataframe(
bqstorage_client,
dtypes,
progress_bar_type,
create_bqstorage_client,
geography_as_object=True,
)
return geopandas.GeoDataFrame(
df, crs=_COORDINATE_REFERENCE_SYSTEM, geometry=geography_column
)
class _EmptyRowIterator(RowIterator):
"""An empty row iterator.
This class prevents API requests when there are no rows to fetch or rows
are impossible to fetch, such as with query results for DDL CREATE VIEW
statements.
"""
schema = ()
pages = ()
total_rows = 0
def __init__(
self, client=None, api_request=None, path=None, schema=(), *args, **kwargs
):
super().__init__(
client=client,
api_request=api_request,
path=path,
schema=schema,
*args,
**kwargs,
)
def to_arrow(
self,
progress_bar_type=None,
bqstorage_client=None,
create_bqstorage_client=True,
) -> "pyarrow.Table":
"""[Beta] Create an empty class:`pyarrow.Table`.
Args:
progress_bar_type (str): Ignored. Added for compatibility with RowIterator.
bqstorage_client (Any): Ignored. Added for compatibility with RowIterator.
create_bqstorage_client (bool): Ignored. Added for compatibility with RowIterator.
Returns:
pyarrow.Table: An empty :class:`pyarrow.Table`.
"""
if pyarrow is None:
raise ValueError(_NO_PYARROW_ERROR)
return pyarrow.Table.from_arrays(())
def to_dataframe(
self,
bqstorage_client=None,
dtypes=None,
progress_bar_type=None,
create_bqstorage_client=True,
geography_as_object=False,
bool_dtype=None,
int_dtype=None,
float_dtype=None,
string_dtype=None,
date_dtype=None,
datetime_dtype=None,
time_dtype=None,
timestamp_dtype=None,
range_date_dtype=None,
range_datetime_dtype=None,
range_timestamp_dtype=None,
) -> "pandas.DataFrame":
"""Create an empty dataframe.
Args:
bqstorage_client (Any): Ignored. Added for compatibility with RowIterator.
dtypes (Any): Ignored. Added for compatibility with RowIterator.
progress_bar_type (Any): Ignored. Added for compatibility with RowIterator.
create_bqstorage_client (bool): Ignored. Added for compatibility with RowIterator.
geography_as_object (bool): Ignored. Added for compatibility with RowIterator.
bool_dtype (Any): Ignored. Added for compatibility with RowIterator.
int_dtype (Any): Ignored. Added for compatibility with RowIterator.
float_dtype (Any): Ignored. Added for compatibility with RowIterator.
string_dtype (Any): Ignored. Added for compatibility with RowIterator.
date_dtype (Any): Ignored. Added for compatibility with RowIterator.
datetime_dtype (Any): Ignored. Added for compatibility with RowIterator.
time_dtype (Any): Ignored. Added for compatibility with RowIterator.
timestamp_dtype (Any): Ignored. Added for compatibility with RowIterator.
range_date_dtype (Any): Ignored. Added for compatibility with RowIterator.
range_datetime_dtype (Any): Ignored. Added for compatibility with RowIterator.
range_timestamp_dtype (Any): Ignored. Added for compatibility with RowIterator.
Returns:
pandas.DataFrame: An empty :class:`~pandas.DataFrame`.
"""
_pandas_helpers.verify_pandas_imports()
return pandas.DataFrame()
def to_geodataframe(
self,
bqstorage_client=None,
dtypes=None,
progress_bar_type=None,
create_bqstorage_client=True,
geography_column: Optional[str] = None,
) -> "pandas.DataFrame":
"""Create an empty dataframe.
Args:
bqstorage_client (Any): Ignored. Added for compatibility with RowIterator.
dtypes (Any): Ignored. Added for compatibility with RowIterator.
progress_bar_type (Any): Ignored. Added for compatibility with RowIterator.
create_bqstorage_client (bool): Ignored. Added for compatibility with RowIterator.
geography_column (str): Ignored. Added for compatibility with RowIterator.
Returns:
pandas.DataFrame: An empty :class:`~pandas.DataFrame`.
"""
if geopandas is None:
raise ValueError(_NO_GEOPANDAS_ERROR)
# Since an empty GeoDataFrame has no geometry column, we do not CRS on it,
# because that's deprecated.
return geopandas.GeoDataFrame()
def to_dataframe_iterable(
self,
bqstorage_client: Optional["bigquery_storage.BigQueryReadClient"] = None,
dtypes: Optional[Dict[str, Any]] = None,
max_queue_size: Optional[int] = None,
max_stream_count: Optional[int] = None,
) -> Iterator["pandas.DataFrame"]:
"""Create an iterable of pandas DataFrames, to process the table as a stream.
.. versionadded:: 2.21.0
Args:
bqstorage_client:
Ignored. Added for compatibility with RowIterator.
dtypes (Optional[Map[str, Union[str, pandas.Series.dtype]]]):
Ignored. Added for compatibility with RowIterator.
max_queue_size:
Ignored. Added for compatibility with RowIterator.
max_stream_count:
Ignored. Added for compatibility with RowIterator.
Returns:
An iterator yielding a single empty :class:`~pandas.DataFrame`.
Raises:
ValueError:
If the :mod:`pandas` library cannot be imported.
"""
_pandas_helpers.verify_pandas_imports()
return iter((pandas.DataFrame(),))
def to_arrow_iterable(
self,
bqstorage_client: Optional["bigquery_storage.BigQueryReadClient"] = None,
max_queue_size: Optional[int] = None,
max_stream_count: Optional[int] = None,
) -> Iterator["pyarrow.RecordBatch"]:
"""Create an iterable of pandas DataFrames, to process the table as a stream.
.. versionadded:: 2.31.0
Args:
bqstorage_client:
Ignored. Added for compatibility with RowIterator.
max_queue_size:
Ignored. Added for compatibility with RowIterator.
max_stream_count:
Ignored. Added for compatibility with RowIterator.
Returns:
An iterator yielding a single empty :class:`~pyarrow.RecordBatch`.
"""
return iter((pyarrow.record_batch([]),))
def __iter__(self):
return iter(())
class PartitionRange(object):
"""Definition of the ranges for range partitioning.
.. note::
**Beta**. The integer range partitioning feature is in a pre-release
state and might change or have limited support.
Args:
start (Optional[int]):
Sets the
:attr:`~google.cloud.bigquery.table.PartitionRange.start`
property.
end (Optional[int]):
Sets the
:attr:`~google.cloud.bigquery.table.PartitionRange.end`
property.
interval (Optional[int]):
Sets the
:attr:`~google.cloud.bigquery.table.PartitionRange.interval`
property.
_properties (Optional[dict]):
Private. Used to construct object from API resource.
"""
def __init__(self, start=None, end=None, interval=None, _properties=None) -> None:
if _properties is None:
_properties = {}
self._properties = _properties
if start is not None:
self.start = start
if end is not None:
self.end = end
if interval is not None:
self.interval = interval
@property
def start(self):
"""int: The start of range partitioning, inclusive."""
return _helpers._int_or_none(self._properties.get("start"))
@start.setter
def start(self, value):
self._properties["start"] = _helpers._str_or_none(value)
@property
def end(self):
"""int: The end of range partitioning, exclusive."""
return _helpers._int_or_none(self._properties.get("end"))
@end.setter
def end(self, value):
self._properties["end"] = _helpers._str_or_none(value)
@property
def interval(self):
"""int: The width of each interval."""
return _helpers._int_or_none(self._properties.get("interval"))
@interval.setter
def interval(self, value):
self._properties["interval"] = _helpers._str_or_none(value)
def _key(self):
return tuple(sorted(self._properties.items()))
def __eq__(self, other):
if not isinstance(other, PartitionRange):
return NotImplemented
return self._key() == other._key()
def __ne__(self, other):
return not self == other
def __repr__(self):
key_vals = ["{}={}".format(key, val) for key, val in self._key()]
return "PartitionRange({})".format(", ".join(key_vals))
class RangePartitioning(object):
"""Range-based partitioning configuration for a table.
.. note::
**Beta**. The integer range partitioning feature is in a pre-release
state and might change or have limited support.
Args:
range_ (Optional[google.cloud.bigquery.table.PartitionRange]):
Sets the
:attr:`google.cloud.bigquery.table.RangePartitioning.range_`
property.
field (Optional[str]):
Sets the
:attr:`google.cloud.bigquery.table.RangePartitioning.field`
property.
_properties (Optional[dict]):
Private. Used to construct object from API resource.
"""
def __init__(self, range_=None, field=None, _properties=None) -> None:
if _properties is None:
_properties = {}
self._properties: Dict[str, Any] = _properties
if range_ is not None:
self.range_ = range_
if field is not None:
self.field = field
# Trailing underscore to prevent conflict with built-in range() function.
@property
def range_(self):
"""google.cloud.bigquery.table.PartitionRange: Defines the
ranges for range partitioning.
Raises:
ValueError:
If the value is not a :class:`PartitionRange`.
"""
range_properties = self._properties.setdefault("range", {})
return PartitionRange(_properties=range_properties)
@range_.setter
def range_(self, value):
if not isinstance(value, PartitionRange):
raise ValueError("Expected a PartitionRange, but got {}.".format(value))
self._properties["range"] = value._properties
@property
def field(self):
"""str: The table is partitioned by this field.
The field must be a top-level ``NULLABLE`` / ``REQUIRED`` field. The
only supported type is ``INTEGER`` / ``INT64``.
"""
return self._properties.get("field")
@field.setter
def field(self, value):
self._properties["field"] = value
def _key(self):
return (("field", self.field), ("range_", self.range_))
def __eq__(self, other):
if not isinstance(other, RangePartitioning):
return NotImplemented
return self._key() == other._key()
def __ne__(self, other):
return not self == other
def __repr__(self):
key_vals = ["{}={}".format(key, repr(val)) for key, val in self._key()]
return "RangePartitioning({})".format(", ".join(key_vals))
class TimePartitioningType(object):
"""Specifies the type of time partitioning to perform."""
DAY = "DAY"
"""str: Generates one partition per day."""
HOUR = "HOUR"
"""str: Generates one partition per hour."""
MONTH = "MONTH"
"""str: Generates one partition per month."""
YEAR = "YEAR"
"""str: Generates one partition per year."""
class TimePartitioning(object):
"""Configures time-based partitioning for a table.
Args:
type_ (Optional[google.cloud.bigquery.table.TimePartitioningType]):
Specifies the type of time partitioning to perform. Defaults to
:attr:`~google.cloud.bigquery.table.TimePartitioningType.DAY`.
Supported values are:
* :attr:`~google.cloud.bigquery.table.TimePartitioningType.HOUR`
* :attr:`~google.cloud.bigquery.table.TimePartitioningType.DAY`
* :attr:`~google.cloud.bigquery.table.TimePartitioningType.MONTH`
* :attr:`~google.cloud.bigquery.table.TimePartitioningType.YEAR`
field (Optional[str]):
If set, the table is partitioned by this field. If not set, the
table is partitioned by pseudo column ``_PARTITIONTIME``. The field
must be a top-level ``TIMESTAMP``, ``DATETIME``, or ``DATE``
field. Its mode must be ``NULLABLE`` or ``REQUIRED``.
See the `time-unit column-partitioned tables guide
<https://cloud.google.com/bigquery/docs/creating-column-partitions>`_
in the BigQuery documentation.
expiration_ms(Optional[int]):
Number of milliseconds for which to keep the storage for a
partition.
require_partition_filter (Optional[bool]):
DEPRECATED: Use
:attr:`~google.cloud.bigquery.table.Table.require_partition_filter`,
instead.
"""
def __init__(
self, type_=None, field=None, expiration_ms=None, require_partition_filter=None
) -> None:
self._properties: Dict[str, Any] = {}
if type_ is None:
self.type_ = TimePartitioningType.DAY
else:
self.type_ = type_
if field is not None:
self.field = field
if expiration_ms is not None:
self.expiration_ms = expiration_ms
if require_partition_filter is not None:
self.require_partition_filter = require_partition_filter
@property
def type_(self):
"""google.cloud.bigquery.table.TimePartitioningType: The type of time
partitioning to use.
"""
return self._properties.get("type")
@type_.setter
def type_(self, value):
self._properties["type"] = value
@property
def field(self):
"""str: Field in the table to use for partitioning"""
return self._properties.get("field")
@field.setter
def field(self, value):
self._properties["field"] = value
@property
def expiration_ms(self):
"""int: Number of milliseconds to keep the storage for a partition."""
return _helpers._int_or_none(self._properties.get("expirationMs"))
@expiration_ms.setter
def expiration_ms(self, value):
if value is not None:
# Allow explicitly setting the expiration to None.
value = str(value)
self._properties["expirationMs"] = value
@property
def require_partition_filter(self):
"""bool: Specifies whether partition filters are required for queries
DEPRECATED: Use
:attr:`~google.cloud.bigquery.table.Table.require_partition_filter`,
instead.
"""
warnings.warn(
(
"TimePartitioning.require_partition_filter will be removed in "
"future versions. Please use Table.require_partition_filter "
"instead."
),
PendingDeprecationWarning,
stacklevel=2,
)
return self._properties.get("requirePartitionFilter")
@require_partition_filter.setter
def require_partition_filter(self, value):
warnings.warn(
(
"TimePartitioning.require_partition_filter will be removed in "
"future versions. Please use Table.require_partition_filter "
"instead."
),
PendingDeprecationWarning,
stacklevel=2,
)
self._properties["requirePartitionFilter"] = value
@classmethod
def from_api_repr(cls, api_repr: dict) -> "TimePartitioning":
"""Return a :class:`TimePartitioning` object deserialized from a dict.
This method creates a new ``TimePartitioning`` instance that points to
the ``api_repr`` parameter as its internal properties dict. This means
that when a ``TimePartitioning`` instance is stored as a property of
another object, any changes made at the higher level will also appear
here::
>>> time_partitioning = TimePartitioning()
>>> table.time_partitioning = time_partitioning
>>> table.time_partitioning.field = 'timecolumn'
>>> time_partitioning.field
'timecolumn'
Args:
api_repr (Mapping[str, str]):
The serialized representation of the TimePartitioning, such as
what is output by :meth:`to_api_repr`.
Returns:
google.cloud.bigquery.table.TimePartitioning:
The ``TimePartitioning`` object.
"""
instance = cls()
instance._properties = api_repr
return instance
def to_api_repr(self) -> dict:
"""Return a dictionary representing this object.
This method returns the properties dict of the ``TimePartitioning``
instance rather than making a copy. This means that when a
``TimePartitioning`` instance is stored as a property of another
object, any changes made at the higher level will also appear here.
Returns:
dict:
A dictionary representing the TimePartitioning object in
serialized form.
"""
return self._properties
def _key(self):
# because we are only "renaming" top level keys shallow copy is sufficient here.
properties = self._properties.copy()
# calling repr for non built-in type objects.
properties["type_"] = repr(properties.pop("type"))
if "field" in properties:
# calling repr for non built-in type objects.
properties["field"] = repr(properties["field"])
if "requirePartitionFilter" in properties:
properties["require_partition_filter"] = properties.pop(
"requirePartitionFilter"
)
if "expirationMs" in properties:
properties["expiration_ms"] = properties.pop("expirationMs")
return tuple(sorted(properties.items()))
def __eq__(self, other):
if not isinstance(other, TimePartitioning):
return NotImplemented
return self._key() == other._key()
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(self._key())
def __repr__(self):
key_vals = ["{}={}".format(key, val) for key, val in self._key()]
return "TimePartitioning({})".format(",".join(key_vals))
class PrimaryKey:
"""Represents the primary key constraint on a table's columns.
Args:
columns: The columns that are composed of the primary key constraint.
"""
def __init__(self, columns: List[str]):
self.columns = columns
def __eq__(self, other):
if not isinstance(other, PrimaryKey):
raise TypeError("The value provided is not a BigQuery PrimaryKey.")
return self.columns == other.columns
class ColumnReference:
"""The pair of the foreign key column and primary key column.
Args:
referencing_column: The column that composes the foreign key.
referenced_column: The column in the primary key that are referenced by the referencingColumn.
"""
def __init__(self, referencing_column: str, referenced_column: str):
self.referencing_column = referencing_column
self.referenced_column = referenced_column
def __eq__(self, other):
if not isinstance(other, ColumnReference):
raise TypeError("The value provided is not a BigQuery ColumnReference.")
return (
self.referencing_column == other.referencing_column
and self.referenced_column == other.referenced_column
)
class ForeignKey:
"""Represents a foreign key constraint on a table's columns.
Args:
name: Set only if the foreign key constraint is named.
referenced_table: The table that holds the primary key and is referenced by this foreign key.
column_references: The columns that compose the foreign key.
"""
def __init__(
self,
name: str,
referenced_table: TableReference,
column_references: List[ColumnReference],
):
self.name = name
self.referenced_table = referenced_table
self.column_references = column_references
def __eq__(self, other):
if not isinstance(other, ForeignKey):
raise TypeError("The value provided is not a BigQuery ForeignKey.")
return (
self.name == other.name
and self.referenced_table == other.referenced_table
and self.column_references == other.column_references
)
@classmethod
def from_api_repr(cls, api_repr: Dict[str, Any]) -> "ForeignKey":
"""Create an instance from API representation."""
return cls(
name=api_repr["name"],
referenced_table=TableReference.from_api_repr(api_repr["referencedTable"]),
column_references=[
ColumnReference(
column_reference_resource["referencingColumn"],
column_reference_resource["referencedColumn"],
)
for column_reference_resource in api_repr["columnReferences"]
],
)
def to_api_repr(self) -> Dict[str, Any]:
"""Return a dictionary representing this object."""
return {
"name": self.name,
"referencedTable": self.referenced_table.to_api_repr(),
"columnReferences": [
{
"referencingColumn": column_reference.referencing_column,
"referencedColumn": column_reference.referenced_column,
}
for column_reference in self.column_references
],
}
class TableConstraints:
"""The TableConstraints defines the primary key and foreign key.
Args:
primary_key:
Represents a primary key constraint on a table's columns. Present only if the table
has a primary key. The primary key is not enforced.
foreign_keys:
Present only if the table has a foreign key. The foreign key is not enforced.
"""
def __init__(
self,
primary_key: Optional[PrimaryKey],
foreign_keys: Optional[List[ForeignKey]],
):
self.primary_key = primary_key
self.foreign_keys = foreign_keys
def __eq__(self, other):
if not isinstance(other, TableConstraints) and other is not None:
raise TypeError("The value provided is not a BigQuery TableConstraints.")
return (
self.primary_key == other.primary_key if other.primary_key else None
) and (self.foreign_keys == other.foreign_keys if other.foreign_keys else None)
@classmethod
def from_api_repr(cls, resource: Dict[str, Any]) -> "TableConstraints":
"""Create an instance from API representation."""
primary_key = None
if "primaryKey" in resource:
primary_key = PrimaryKey(resource["primaryKey"]["columns"])
foreign_keys = None
if "foreignKeys" in resource:
foreign_keys = [
ForeignKey.from_api_repr(foreign_key_resource)
for foreign_key_resource in resource["foreignKeys"]
]
return cls(primary_key, foreign_keys)
def to_api_repr(self) -> Dict[str, Any]:
"""Return a dictionary representing this object."""
resource: Dict[str, Any] = {}
if self.primary_key:
resource["primaryKey"] = {"columns": self.primary_key.columns}
if self.foreign_keys:
resource["foreignKeys"] = [
foreign_key.to_api_repr() for foreign_key in self.foreign_keys
]
return resource
def _item_to_row(iterator, resource):
"""Convert a JSON row to the native object.
.. note::
This assumes that the ``schema`` attribute has been
added to the iterator after being created, which
should be done by the caller.
Args:
iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use.
resource (Dict): An item to be converted to a row.
Returns:
google.cloud.bigquery.table.Row: The next row in the page.
"""
return Row(
_helpers._row_tuple_from_json(resource, iterator.schema),
iterator._field_to_index,
)
def _row_iterator_page_columns(schema, response):
"""Make a generator of all the columns in a page from tabledata.list.
This enables creating a :class:`pandas.DataFrame` and other
column-oriented data structures such as :class:`pyarrow.RecordBatch`
"""
columns = []
rows = response.get("rows", [])
def get_column_data(field_index, field):
for row in rows:
yield _helpers.DATA_FRAME_CELL_DATA_PARSER.to_py(
row["f"][field_index]["v"], field
)
for field_index, field in enumerate(schema):
columns.append(get_column_data(field_index, field))
return columns
# pylint: disable=unused-argument
def _rows_page_start(iterator, page, response):
"""Grab total rows when :class:`~google.cloud.iterator.Page` starts.
Args:
iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use.
page (google.api_core.page_iterator.Page): The page that was just created.
response (Dict): The JSON API response for a page of rows in a table.
"""
# Make a (lazy) copy of the page in column-oriented format for use in data
# science packages.
page._columns = _row_iterator_page_columns(iterator._schema, response)
total_rows = response.get("totalRows")
# Don't reset total_rows if it's not present in the next API response.
if total_rows is not None:
iterator._total_rows = int(total_rows)
# pylint: enable=unused-argument
def _table_arg_to_table_ref(value, default_project=None) -> TableReference:
"""Helper to convert a string or Table to TableReference.
This function keeps TableReference and other kinds of objects unchanged.
"""
if isinstance(value, str):
value = TableReference.from_string(value, default_project=default_project)
if isinstance(value, (Table, TableListItem)):
value = value.reference
return value
def _table_arg_to_table(value, default_project=None) -> Table:
"""Helper to convert a string or TableReference to a Table.
This function keeps Table and other kinds of objects unchanged.
"""
if isinstance(value, str):
value = TableReference.from_string(value, default_project=default_project)
if isinstance(value, TableReference):
value = Table(value)
if isinstance(value, TableListItem):
newvalue = Table(value.reference)
newvalue._properties = value._properties
value = newvalue
return value