Files
evo-ai/.venv/lib/python3.10/site-packages/google/cloud/bigquery/model.py
2025-04-25 15:30:54 -03:00

518 lines
17 KiB
Python

# -*- coding: utf-8 -*-
#
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Define resources for the BigQuery ML Models API."""
from __future__ import annotations # type: ignore
import copy
import datetime
import typing
from typing import Any, Dict, Optional, Sequence, Union
import google.cloud._helpers # type: ignore
from google.cloud.bigquery import _helpers
from google.cloud.bigquery import standard_sql
from google.cloud.bigquery.encryption_configuration import EncryptionConfiguration
class Model:
"""Model represents a machine learning model resource.
See
https://cloud.google.com/bigquery/docs/reference/rest/v2/models
Args:
model_ref:
A pointer to a model. If ``model_ref`` is a string, it must
included a project ID, dataset ID, and model ID, each separated
by ``.``.
"""
_PROPERTY_TO_API_FIELD = {
"expires": "expirationTime",
"friendly_name": "friendlyName",
# Even though it's not necessary for field mapping to map when the
# property name equals the resource name, we add these here so that we
# have an exhaustive list of all mutable properties.
"labels": "labels",
"description": "description",
"encryption_configuration": "encryptionConfiguration",
}
def __init__(self, model_ref: Union["ModelReference", str, None]):
# Use _properties on read-write properties to match the REST API
# semantics. The BigQuery API makes a distinction between an unset
# value, a null value, and a default value (0 or ""), but the protocol
# buffer classes do not.
self._properties: Dict[str, Any] = {}
if isinstance(model_ref, str):
model_ref = ModelReference.from_string(model_ref)
if model_ref:
self._properties["modelReference"] = model_ref.to_api_repr()
@property
def reference(self) -> Optional["ModelReference"]:
"""A model reference pointing to this model.
Read-only.
"""
resource = self._properties.get("modelReference")
if resource is None:
return None
else:
return ModelReference.from_api_repr(resource)
@property
def project(self) -> Optional[str]:
"""Project bound to the model."""
ref = self.reference
return ref.project if ref is not None else None
@property
def dataset_id(self) -> Optional[str]:
"""ID of dataset containing the model."""
ref = self.reference
return ref.dataset_id if ref is not None else None
@property
def model_id(self) -> Optional[str]:
"""The model ID."""
ref = self.reference
return ref.model_id if ref is not None else None
@property
def path(self) -> Optional[str]:
"""URL path for the model's APIs."""
ref = self.reference
return ref.path if ref is not None else None
@property
def location(self) -> Optional[str]:
"""The geographic location where the model resides.
This value is inherited from the dataset.
Read-only.
"""
return typing.cast(Optional[str], self._properties.get("location"))
@property
def etag(self) -> Optional[str]:
"""ETag for the model resource (:data:`None` until set from the server).
Read-only.
"""
return typing.cast(Optional[str], self._properties.get("etag"))
@property
def created(self) -> Optional[datetime.datetime]:
"""Datetime at which the model was created (:data:`None` until set from the server).
Read-only.
"""
value = typing.cast(Optional[float], self._properties.get("creationTime"))
if value is None:
return None
else:
# value will be in milliseconds.
return google.cloud._helpers._datetime_from_microseconds(
1000.0 * float(value)
)
@property
def modified(self) -> Optional[datetime.datetime]:
"""Datetime at which the model was last modified (:data:`None` until set from the server).
Read-only.
"""
value = typing.cast(Optional[float], self._properties.get("lastModifiedTime"))
if value is None:
return None
else:
# value will be in milliseconds.
return google.cloud._helpers._datetime_from_microseconds(
1000.0 * float(value)
)
@property
def model_type(self) -> str:
"""Type of the model resource.
Read-only.
"""
return typing.cast(
str, self._properties.get("modelType", "MODEL_TYPE_UNSPECIFIED")
)
@property
def training_runs(self) -> Sequence[Dict[str, Any]]:
"""Information for all training runs in increasing order of start time.
Dictionaries are in REST API format. See:
https://cloud.google.com/bigquery/docs/reference/rest/v2/models#trainingrun
Read-only.
"""
return typing.cast(
Sequence[Dict[str, Any]], self._properties.get("trainingRuns", [])
)
@property
def feature_columns(self) -> Sequence[standard_sql.StandardSqlField]:
"""Input feature columns that were used to train this model.
Read-only.
"""
resource: Sequence[Dict[str, Any]] = typing.cast(
Sequence[Dict[str, Any]], self._properties.get("featureColumns", [])
)
return [
standard_sql.StandardSqlField.from_api_repr(column) for column in resource
]
@property
def transform_columns(self) -> Sequence[TransformColumn]:
"""The input feature columns that were used to train this model.
The output transform columns used to train this model.
See REST API:
https://cloud.google.com/bigquery/docs/reference/rest/v2/models#transformcolumn
Read-only.
"""
resources: Sequence[Dict[str, Any]] = typing.cast(
Sequence[Dict[str, Any]], self._properties.get("transformColumns", [])
)
return [TransformColumn(resource) for resource in resources]
@property
def label_columns(self) -> Sequence[standard_sql.StandardSqlField]:
"""Label columns that were used to train this model.
The output of the model will have a ``predicted_`` prefix to these columns.
Read-only.
"""
resource: Sequence[Dict[str, Any]] = typing.cast(
Sequence[Dict[str, Any]], self._properties.get("labelColumns", [])
)
return [
standard_sql.StandardSqlField.from_api_repr(column) for column in resource
]
@property
def best_trial_id(self) -> Optional[int]:
"""The best trial_id across all training runs.
.. deprecated::
This property is deprecated!
Read-only.
"""
value = typing.cast(Optional[int], self._properties.get("bestTrialId"))
if value is not None:
value = int(value)
return value
@property
def expires(self) -> Optional[datetime.datetime]:
"""The datetime when this model expires.
If not present, the model will persist indefinitely. Expired models will be
deleted and their storage reclaimed.
"""
value = typing.cast(Optional[float], self._properties.get("expirationTime"))
if value is None:
return None
else:
# value will be in milliseconds.
return google.cloud._helpers._datetime_from_microseconds(
1000.0 * float(value)
)
@expires.setter
def expires(self, value: Optional[datetime.datetime]):
if value is None:
value_to_store: Optional[str] = None
else:
value_to_store = str(google.cloud._helpers._millis_from_datetime(value))
# TODO: Consider using typing.TypedDict when only Python 3.8+ is supported.
self._properties["expirationTime"] = value_to_store # type: ignore
@property
def description(self) -> Optional[str]:
"""Description of the model (defaults to :data:`None`)."""
return typing.cast(Optional[str], self._properties.get("description"))
@description.setter
def description(self, value: Optional[str]):
# TODO: Consider using typing.TypedDict when only Python 3.8+ is supported.
self._properties["description"] = value # type: ignore
@property
def friendly_name(self) -> Optional[str]:
"""Title of the table (defaults to :data:`None`)."""
return typing.cast(Optional[str], self._properties.get("friendlyName"))
@friendly_name.setter
def friendly_name(self, value: Optional[str]):
# TODO: Consider using typing.TypedDict when only Python 3.8+ is supported.
self._properties["friendlyName"] = value # type: ignore
@property
def labels(self) -> Dict[str, str]:
"""Labels for the table.
This method always returns a dict. To change a model's labels, modify the dict,
then call ``Client.update_model``. To delete a label, set its value to
:data:`None` before updating.
"""
return self._properties.setdefault("labels", {})
@labels.setter
def labels(self, value: Optional[Dict[str, str]]):
if value is None:
value = {}
self._properties["labels"] = value
@property
def encryption_configuration(self) -> Optional[EncryptionConfiguration]:
"""Custom encryption configuration for the model.
Custom encryption configuration (e.g., Cloud KMS keys) or :data:`None`
if using default encryption.
See `protecting data with Cloud KMS keys
<https://cloud.google.com/bigquery/docs/customer-managed-encryption>`_
in the BigQuery documentation.
"""
prop = self._properties.get("encryptionConfiguration")
if prop:
prop = EncryptionConfiguration.from_api_repr(prop)
return typing.cast(Optional[EncryptionConfiguration], prop)
@encryption_configuration.setter
def encryption_configuration(self, value: Optional[EncryptionConfiguration]):
api_repr = value.to_api_repr() if value else value
self._properties["encryptionConfiguration"] = api_repr
@classmethod
def from_api_repr(cls, resource: Dict[str, Any]) -> "Model":
"""Factory: construct a model resource given its API representation
Args:
resource:
Model resource representation from the API
Returns:
Model parsed from ``resource``.
"""
this = cls(None)
resource = copy.deepcopy(resource)
this._properties = resource
return this
def _build_resource(self, filter_fields):
"""Generate a resource for ``update``."""
return _helpers._build_resource_from_properties(self, filter_fields)
def __repr__(self):
return f"Model(reference={self.reference!r})"
def to_api_repr(self) -> Dict[str, Any]:
"""Construct the API resource representation of this model.
Returns:
Model reference represented as an API resource
"""
return copy.deepcopy(self._properties)
class ModelReference:
"""ModelReferences are pointers to models.
See
https://cloud.google.com/bigquery/docs/reference/rest/v2/models#modelreference
"""
def __init__(self):
self._properties = {}
@property
def project(self):
"""str: Project bound to the model"""
return self._properties.get("projectId")
@property
def dataset_id(self):
"""str: ID of dataset containing the model."""
return self._properties.get("datasetId")
@property
def model_id(self):
"""str: The model ID."""
return self._properties.get("modelId")
@property
def path(self) -> str:
"""URL path for the model's APIs."""
return f"/projects/{self.project}/datasets/{self.dataset_id}/models/{self.model_id}"
@classmethod
def from_api_repr(cls, resource: Dict[str, Any]) -> "ModelReference":
"""Factory: construct a model reference given its API representation.
Args:
resource:
Model reference representation returned from the API
Returns:
Model reference parsed from ``resource``.
"""
ref = cls()
ref._properties = resource
return ref
@classmethod
def from_string(
cls, model_id: str, default_project: Optional[str] = None
) -> "ModelReference":
"""Construct a model reference from model ID string.
Args:
model_id:
A model ID in standard SQL format. If ``default_project``
is not specified, this must included a project ID, dataset
ID, and model ID, each separated by ``.``.
default_project:
The project ID to use when ``model_id`` does not include
a project ID.
Returns:
Model reference parsed from ``model_id``.
Raises:
ValueError:
If ``model_id`` is not a fully-qualified table ID in
standard SQL format.
"""
proj, dset, model = _helpers._parse_3_part_id(
model_id, default_project=default_project, property_name="model_id"
)
return cls.from_api_repr(
{"projectId": proj, "datasetId": dset, "modelId": model}
)
def to_api_repr(self) -> Dict[str, Any]:
"""Construct the API resource representation of this model reference.
Returns:
Model reference represented as an API resource.
"""
return copy.deepcopy(self._properties)
def _key(self):
"""Unique key for this model.
This is used for hashing a ModelReference.
"""
return self.project, self.dataset_id, self.model_id
def __eq__(self, other):
if not isinstance(other, ModelReference):
return NotImplemented
return self._properties == other._properties
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(self._key())
def __repr__(self):
return "ModelReference(project_id='{}', dataset_id='{}', model_id='{}')".format(
self.project, self.dataset_id, self.model_id
)
class TransformColumn:
"""TransformColumn represents a transform column feature.
See
https://cloud.google.com/bigquery/docs/reference/rest/v2/models#transformcolumn
Args:
resource:
A dictionary representing a transform column feature.
"""
def __init__(self, resource: Dict[str, Any]):
self._properties = resource
@property
def name(self) -> Optional[str]:
"""Name of the column."""
return self._properties.get("name")
@property
def type_(self) -> Optional[standard_sql.StandardSqlDataType]:
"""Data type of the column after the transform.
Returns:
Optional[google.cloud.bigquery.standard_sql.StandardSqlDataType]:
Data type of the column.
"""
type_json = self._properties.get("type")
if type_json is None:
return None
return standard_sql.StandardSqlDataType.from_api_repr(type_json)
@property
def transform_sql(self) -> Optional[str]:
"""The SQL expression used in the column transform."""
return self._properties.get("transformSql")
@classmethod
def from_api_repr(cls, resource: Dict[str, Any]) -> "TransformColumn":
"""Constructs a transform column feature given its API representation
Args:
resource:
Transform column feature representation from the API
Returns:
Transform column feature parsed from ``resource``.
"""
this = cls({})
resource = copy.deepcopy(resource)
this._properties = resource
return this
def _model_arg_to_model_ref(value, default_project=None):
"""Helper to convert a string or Model to ModelReference.
This function keeps ModelReference and other kinds of objects unchanged.
"""
if isinstance(value, str):
return ModelReference.from_string(value, default_project=default_project)
if isinstance(value, Model):
return value.reference
return value