Files
evo-ai/.venv/lib/python3.10/site-packages/vertex_ray/bigquery_datasink.py
2025-04-25 15:30:54 -03:00

162 lines
6.2 KiB
Python

# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import tempfile
import time
import uuid
from typing import Any, Iterable, Optional
import pyarrow.parquet as pq
from google.api_core import client_info
from google.api_core import exceptions
from google.cloud import bigquery
from google.cloud.aiplatform import initializer
import ray
from ray.data._internal.execution.interfaces import TaskContext
from ray.data._internal.remote_fn import cached_remote_fn
from ray.data.block import Block, BlockAccessor
try:
from ray.data.datasource.datasink import Datasink
except ImportError:
# If datasink cannot be imported, Ray >=2.9.3 is not installed
Datasink = None
DEFAULT_MAX_RETRY_CNT = 10
RATE_LIMIT_EXCEEDED_SLEEP_TIME = 11
_BQ_GAPIC_VERSION = bigquery.__version__ + "+vertex_ray"
bq_info = client_info.ClientInfo(
gapic_version=_BQ_GAPIC_VERSION, user_agent=f"ray-on-vertex/{_BQ_GAPIC_VERSION}"
)
# BigQuery write for Ray 2.42.0, 2.33.0, and 2.9.3
if Datasink is None:
_BigQueryDatasink = None
else:
class _BigQueryDatasink(Datasink):
def __init__(
self,
dataset: str,
project_id: Optional[str] = None,
max_retry_cnt: int = DEFAULT_MAX_RETRY_CNT,
overwrite_table: Optional[bool] = True,
) -> None:
self.dataset = dataset
self.project_id = project_id or initializer.global_config.project
self.max_retry_cnt = max_retry_cnt
self.overwrite_table = overwrite_table
def on_write_start(self) -> None:
# Set up datasets to write
client = bigquery.Client(project=self.project_id, client_info=bq_info)
dataset_id = self.dataset.split(".", 1)[0]
try:
client.get_dataset(dataset_id)
except exceptions.NotFound:
client.create_dataset(f"{self.project_id}.{dataset_id}", timeout=30)
print("[Ray on Vertex AI]: Created dataset " + dataset_id)
# Delete table if overwrite_table is True
if self.overwrite_table:
print(
f"[Ray on Vertex AI]: Attempting to delete table {self.dataset}"
+ " if it already exists since kwarg overwrite_table = True."
)
client.delete_table(
f"{self.project_id}.{self.dataset}", not_found_ok=True
)
else:
print(
"[Ray on Vertex AI]: The write will append to table "
+ f"{self.dataset} if it already exists "
+ "since kwarg overwrite_table = False."
)
def write(
self,
blocks: Iterable[Block],
ctx: TaskContext,
) -> Any:
def _write_single_block(
block: Block, project_id: str, dataset: str
) -> None:
block = BlockAccessor.for_block(block).to_arrow()
client = bigquery.Client(project=project_id, client_info=bq_info)
job_config = bigquery.LoadJobConfig(autodetect=True)
job_config.source_format = bigquery.SourceFormat.PARQUET
job_config.write_disposition = bigquery.WriteDisposition.WRITE_APPEND
with tempfile.TemporaryDirectory() as temp_dir:
fp = os.path.join(temp_dir, f"block_{uuid.uuid4()}.parquet")
pq.write_table(block, fp, compression="SNAPPY")
retry_cnt = 0
while retry_cnt <= self.max_retry_cnt:
with open(fp, "rb") as source_file:
job = client.load_table_from_file(
source_file, dataset, job_config=job_config
)
try:
logging.info(job.result())
break
except exceptions.Forbidden as e:
retry_cnt += 1
if retry_cnt > self.max_retry_cnt:
break
print(
"[Ray on Vertex AI]: A block write encountered"
+ f" a rate limit exceeded error {retry_cnt} time(s)."
+ " Sleeping to try again."
)
logging.debug(e)
time.sleep(RATE_LIMIT_EXCEEDED_SLEEP_TIME)
# Raise exception if retry_cnt exceeds max_retry_cnt
if retry_cnt > self.max_retry_cnt:
print(
f"[Ray on Vertex AI]: Maximum ({self.max_retry_cnt}) retry count exceeded."
+ " Ray will attempt to retry the block write via fault tolerance."
+ " For more information, see https://docs.ray.io/en/latest/ray-core/fault_tolerance/tasks.html"
)
raise RuntimeError(
f"[Ray on Vertex AI]: Write failed due to {retry_cnt}"
+ " repeated API rate limit exceeded responses. Consider"
+ " specifiying the max_retry_cnt kwarg with a higher value."
)
_write_single_block = cached_remote_fn(_write_single_block)
# Launch a remote task for each block within this write task
ray.get(
[
_write_single_block.remote(block, self.project_id, self.dataset)
for block in blocks
]
)
return "ok"