Files
evo-ai/.venv/lib/python3.10/site-packages/vertexai/rag/rag_store.py
2025-04-25 15:30:54 -03:00

169 lines
6.8 KiB
Python

# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""RAG retrieval tool for content generation."""
import re
from typing import List, Optional, Union
from google.cloud import aiplatform_v1beta1
from google.cloud.aiplatform import initializer
from google.cloud.aiplatform_v1beta1.types import tool as gapic_tool_types
from vertexai import generative_models
from vertexai.rag.utils import _gapic_utils
from vertexai.rag.utils import resources
class Retrieval(generative_models.grounding.Retrieval):
"""Defines a retrieval tool that a model can call to access external knowledge."""
def __init__(
self,
source: Union["VertexRagStore"],
disable_attribution: Optional[bool] = False,
):
self._raw_retrieval = gapic_tool_types.Retrieval(
vertex_rag_store=source._raw_vertex_rag_store,
disable_attribution=disable_attribution,
)
class VertexRagStore:
"""Retrieve from Vertex RAG Store."""
def __init__(
self,
rag_resources: Optional[List[resources.RagResource]] = None,
rag_retrieval_config: Optional[resources.RagRetrievalConfig] = None,
):
"""Initializes a Vertex RAG store tool.
Example usage:
```
import vertexai
vertexai.init(project="my-project")
config = vertexai.rag.RagRetrievalConfig(
top_k=2,
filter=vertexai.rag.RagRetrievalConfig.Filter(
vector_distance_threshold=0.5
),
ranking=vertex.rag.Ranking(
llm_ranker=vertexai.rag.LlmRanker(
model_name="gemini-1.5-flash-002"
)
)
)
tool = Tool.from_retrieval(
retrieval=vertexai.rag.Retrieval(
source=vertexai.rag.VertexRagStore(
rag_corpora=["projects/my-project/locations/us-central1/ragCorpora/rag-corpus-1"],
rag_retrieval_config=config,
),
)
)
```
Args:
rag_resources: List of RagResource to retrieve from. It can be used
to specify corpus only or ragfiles. Currently only support one
corpus or multiple files from one corpus. In the future we
may open up multiple corpora support.
rag_retrieval_config: Optional. The config containing the retrieval
parameters, including similarity_top_k and vector_distance_threshold.
"""
if rag_resources:
if len(rag_resources) > 1:
raise ValueError("Currently only support 1 RagResource.")
name = rag_resources[0].rag_corpus
else:
raise ValueError("rag_resources must be specified.")
data_client = _gapic_utils.create_rag_data_service_client()
if data_client.parse_rag_corpus_path(name):
rag_corpus_name = name
elif re.match("^{}$".format(_gapic_utils._VALID_RESOURCE_NAME_REGEX), name):
parent = initializer.global_config.common_location_path()
rag_corpus_name = parent + "/ragCorpora/" + name
else:
raise ValueError(
f"Invalid RagCorpus name: {name}. Proper format should be:"
" projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}"
)
# If rag_retrieval_config is not specified, set it to default values.
api_retrieval_config = aiplatform_v1beta1.RagRetrievalConfig()
# If rag_retrieval_config is specified, populate the default config.
if rag_retrieval_config:
api_retrieval_config.top_k = rag_retrieval_config.top_k
# Set vector_distance_threshold to config value if specified
if rag_retrieval_config.filter:
# Check if both vector_distance_threshold and
# vector_similarity_threshold are specified.
if (
rag_retrieval_config.filter
and rag_retrieval_config.filter.vector_distance_threshold
and rag_retrieval_config.filter.vector_similarity_threshold
):
raise ValueError(
"Only one of vector_distance_threshold or"
" vector_similarity_threshold can be specified at a time"
" in rag_retrieval_config."
)
api_retrieval_config.filter.vector_distance_threshold = (
rag_retrieval_config.filter.vector_distance_threshold
)
api_retrieval_config.filter.vector_similarity_threshold = (
rag_retrieval_config.filter.vector_similarity_threshold
)
# Check if both rank_service and llm_ranker are specified.
if (
rag_retrieval_config.ranking
and rag_retrieval_config.ranking.rank_service
and rag_retrieval_config.ranking.rank_service.model_name
and rag_retrieval_config.ranking.llm_ranker
and rag_retrieval_config.ranking.llm_ranker.model_name
):
raise ValueError(
"Only one of rank_service or llm_ranker can be specified"
" at a time in rag_retrieval_config."
)
# Set rank_service to config value if specified
if (
rag_retrieval_config.ranking
and rag_retrieval_config.ranking.rank_service
):
api_retrieval_config.ranking.rank_service.model_name = (
rag_retrieval_config.ranking.rank_service.model_name
)
# Set llm_ranker to config value if specified
if rag_retrieval_config.ranking and rag_retrieval_config.ranking.llm_ranker:
api_retrieval_config.ranking.llm_ranker.model_name = (
rag_retrieval_config.ranking.llm_ranker.model_name
)
gapic_rag_resource = gapic_tool_types.VertexRagStore.RagResource(
rag_corpus=rag_corpus_name,
rag_file_ids=rag_resources[0].rag_file_ids,
)
self._raw_vertex_rag_store = gapic_tool_types.VertexRagStore(
rag_resources=[gapic_rag_resource],
rag_retrieval_config=api_retrieval_config,
)