# -*- coding: utf-8 -*- # Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import copy import logging import time from typing import Dict, List, Optional import warnings from google.cloud.aiplatform import initializer from google.cloud.aiplatform import utils from google.cloud.aiplatform.utils import resource_manager_utils from google.cloud.aiplatform_v1beta1.types import persistent_resource_service from google.cloud.aiplatform_v1beta1.types.machine_resources import NfsMount from google.cloud.aiplatform_v1beta1.types.persistent_resource import ( PersistentResource, RayLogsSpec, RaySpec, RayMetricSpec, ResourcePool, ResourceRuntimeSpec, ServiceAccountSpec, ) from google.cloud.aiplatform_v1beta1.types.service_networking import ( PscInterfaceConfig, ) from google.cloud.aiplatform.vertex_ray.util import ( _gapic_utils, _validation_utils, resources, ) from google.protobuf import field_mask_pb2 # type: ignore from google.cloud.aiplatform.vertex_ray.util._validation_utils import ( _V2_4_WARNING_MESSAGE, _V2_9_WARNING_MESSAGE, ) def create_ray_cluster( head_node_type: Optional[resources.Resources] = resources.Resources(), python_version: Optional[str] = "3.10", ray_version: Optional[str] = "2.42", network: Optional[str] = None, service_account: Optional[str] = None, cluster_name: Optional[str] = None, worker_node_types: Optional[List[resources.Resources]] = [resources.Resources()], custom_images: Optional[resources.NodeImages] = None, enable_metrics_collection: Optional[bool] = True, enable_logging: Optional[bool] = True, psc_interface_config: Optional[resources.PscIConfig] = None, reserved_ip_ranges: Optional[List[str]] = None, nfs_mounts: Optional[List[resources.NfsMount]] = None, labels: Optional[Dict[str, str]] = None, ) -> str: """Create a ray cluster on the Vertex AI. Sample usage: from vertex_ray import Resources head_node_type = Resources( machine_type="n1-standard-8", node_count=1, accelerator_type="NVIDIA_TESLA_T4", accelerator_count=1, custom_image="us-docker.pkg.dev/my-project/ray-cpu-image.2.33:latest", # Optional ) worker_node_types = [Resources( machine_type="n1-standard-8", node_count=2, accelerator_type="NVIDIA_TESLA_T4", accelerator_count=1, custom_image="us-docker.pkg.dev/my-project/ray-gpu-image.2.33:latest", # Optional )] cluster_resource_name = vertex_ray.create_ray_cluster( head_node_type=head_node_type, network="projects/my-project-number/global/networks/my-vpc-name", # Optional service_account="my-service-account@my-project-number.iam.gserviceaccount.com", # Optional cluster_name="my-cluster-name", # Optional worker_node_types=worker_node_types, ray_version="2.33", ) After a ray cluster is set up, you can call `ray.init(f"vertex_ray://{cluster_resource_name}", runtime_env=...)` without specifying ray cluster address to connect to the cluster. To shut down the cluster you can call `ray.delete_ray_cluster()`. Note: If the active ray cluster has not finished shutting down, you cannot create a new ray cluster with the same cluster_name. Args: head_node_type: The head node resource. Resources.node_count must be 1. If not set, default value of Resources() class will be used. python_version: Python version for the ray cluster. ray_version: Ray version for the ray cluster. Default is 2.42.0. network: Virtual private cloud (VPC) network. For Ray Client, VPC peering is required to connect to the Ray Cluster managed in the Vertex API service. For Ray Job API, VPC network is not required because Ray Cluster connection can be accessed through dashboard address. service_account: Service account to be used for running Ray programs on the cluster. cluster_name: This value may be up to 63 characters, and valid characters are `[a-z0-9_-]`. The first character cannot be a number or hyphen. worker_node_types: The list of Resources of the worker nodes. The same Resources object should not appear multiple times in the list. custom_images: The NodeImages which specifies head node and worker nodes images. All the workers will share the same image. If each Resource has a specific custom image, use `Resources.custom_image` for head/worker_node_type(s). Note that configuring `Resources.custom_image` will override `custom_images` here. Allowlist only. enable_metrics_collection: Enable Ray metrics collection for visualization. enable_logging: Enable exporting Ray logs to Cloud Logging. psc_interface_config: PSC-I config. reserved_ip_ranges: A list of names for the reserved IP ranges under the VPC network that can be used for this cluster. If set, we will deploy the cluster within the provided IP ranges. Otherwise, the cluster is deployed to any IP ranges under the provided VPC network. Example: ["vertex-ai-ip-range"]. labels: The labels with user-defined metadata to organize Ray cluster. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. Returns: The cluster_resource_name of the initiated Ray cluster on Vertex. Raise: ValueError: If the cluster is not created successfully. RuntimeError: If the ray_version is 2.4. """ if network is None: logging.info( "[Ray on Vertex]: No VPC network configured. It is required for client connection." ) if ray_version == "2.4": raise RuntimeError(_V2_4_WARNING_MESSAGE) if ray_version == "2.9.3": warnings.warn(_V2_9_WARNING_MESSAGE, DeprecationWarning, stacklevel=1) local_ray_verion = _validation_utils.get_local_ray_version() if ray_version != local_ray_verion: if custom_images is None and head_node_type.custom_image is None: install_ray_version = "2.42.0" logging.info( "[Ray on Vertex]: Local runtime has Ray version %s" ", but the requested cluster runtime has %s. Please " "ensure that the Ray versions match for client connectivity. You may " '"pip install --user --force-reinstall ray[default]==%s"' " and restart runtime before cluster connection." % (local_ray_verion, ray_version, install_ray_version) ) else: logging.info( "[Ray on Vertex]: Local runtime has Ray version %s." "Please ensure that the Ray versions match for client connectivity." % local_ray_verion ) if cluster_name is None: cluster_name = "ray-cluster-" + utils.timestamped_unique_name() if head_node_type: if head_node_type.node_count != 1: raise ValueError( "[Ray on Vertex AI]: For head_node_type, " + "Resources.node_count must be 1." ) if head_node_type.autoscaling_spec is not None: raise ValueError( "[Ray on Vertex AI]: For head_node_type, " + "Resources.autoscaling_spec must be None." ) if ( head_node_type.accelerator_type is None and head_node_type.accelerator_count > 0 ): raise ValueError( "[Ray on Vertex]: accelerator_type must be specified when" + " accelerator_count is set to a value other than 0." ) resource_pool_images = {} # head node resource_pool_0 = ResourcePool() resource_pool_0.id = "head-node" resource_pool_0.replica_count = head_node_type.node_count resource_pool_0.machine_spec.machine_type = head_node_type.machine_type resource_pool_0.machine_spec.accelerator_count = head_node_type.accelerator_count resource_pool_0.machine_spec.accelerator_type = head_node_type.accelerator_type resource_pool_0.disk_spec.boot_disk_type = head_node_type.boot_disk_type resource_pool_0.disk_spec.boot_disk_size_gb = head_node_type.boot_disk_size_gb enable_cuda = True if head_node_type.accelerator_count > 0 else False if head_node_type.custom_image is not None: image_uri = head_node_type.custom_image elif custom_images is None: image_uri = _validation_utils.get_image_uri( ray_version, python_version, enable_cuda ) elif custom_images.head is not None and custom_images.worker is not None: image_uri = custom_images.head else: raise ValueError( "[Ray on Vertex AI]: custom_images.head and custom_images.worker must be specified when custom_images is set." ) resource_pool_images[resource_pool_0.id] = image_uri worker_pools = [] i = 0 if worker_node_types: for worker_node_type in worker_node_types: if ( worker_node_type.accelerator_type is None and worker_node_type.accelerator_count > 0 ): raise ValueError( "[Ray on Vertex]: accelerator_type must be specified when" + " accelerator_count is set to a value other than 0." ) additional_replica_count = resources._check_machine_spec_identical( head_node_type, worker_node_type ) if worker_node_type.autoscaling_spec is None: # Worker and head share the same MachineSpec, merge them into the # same ResourcePool resource_pool_0.replica_count = ( resource_pool_0.replica_count + additional_replica_count ) else: if additional_replica_count > 0: # Autoscaling for single ResourcePool (homogeneous cluster). resource_pool_0.replica_count = None resource_pool_0.autoscaling_spec.min_replica_count = ( worker_node_type.autoscaling_spec.min_replica_count ) resource_pool_0.autoscaling_spec.max_replica_count = ( worker_node_type.autoscaling_spec.max_replica_count ) if additional_replica_count == 0: resource_pool = ResourcePool() resource_pool.id = f"worker-pool{i+1}" if worker_node_type.autoscaling_spec is None: resource_pool.replica_count = worker_node_type.node_count else: # Autoscaling for worker ResourcePool. resource_pool.autoscaling_spec.min_replica_count = ( worker_node_type.autoscaling_spec.min_replica_count ) resource_pool.autoscaling_spec.max_replica_count = ( worker_node_type.autoscaling_spec.max_replica_count ) resource_pool.machine_spec.machine_type = worker_node_type.machine_type resource_pool.machine_spec.accelerator_count = ( worker_node_type.accelerator_count ) resource_pool.machine_spec.accelerator_type = ( worker_node_type.accelerator_type ) resource_pool.disk_spec.boot_disk_type = worker_node_type.boot_disk_type resource_pool.disk_spec.boot_disk_size_gb = ( worker_node_type.boot_disk_size_gb ) worker_pools.append(resource_pool) enable_cuda = True if worker_node_type.accelerator_count > 0 else False if worker_node_type.custom_image is not None: image_uri = worker_node_type.custom_image elif custom_images is None: image_uri = _validation_utils.get_image_uri( ray_version, python_version, enable_cuda ) else: image_uri = custom_images.worker resource_pool_images[resource_pool.id] = image_uri i += 1 resource_pools = [resource_pool_0] + worker_pools metrics_collection_disabled = not enable_metrics_collection ray_metric_spec = RayMetricSpec(disabled=metrics_collection_disabled) logging_disabled = not enable_logging ray_logs_spec = RayLogsSpec(disabled=logging_disabled) ray_spec = RaySpec( resource_pool_images=resource_pool_images, ray_metric_spec=ray_metric_spec, ray_logs_spec=ray_logs_spec, ) if nfs_mounts: gapic_nfs_mounts = [] for nfs_mount in nfs_mounts: gapic_nfs_mounts.append( NfsMount( server=nfs_mount.server, path=nfs_mount.path, mount_point=nfs_mount.mount_point, ) ) ray_spec.nfs_mounts = gapic_nfs_mounts if service_account: service_account_spec = ServiceAccountSpec( enable_custom_service_account=True, service_account=service_account, ) resource_runtime_spec = ResourceRuntimeSpec( ray_spec=ray_spec, service_account_spec=service_account_spec, ) else: resource_runtime_spec = ResourceRuntimeSpec(ray_spec=ray_spec) if psc_interface_config: gapic_psc_interface_config = PscInterfaceConfig( network_attachment=psc_interface_config.network_attachment, ) else: gapic_psc_interface_config = None persistent_resource = PersistentResource( resource_pools=resource_pools, network=network, labels=labels, resource_runtime_spec=resource_runtime_spec, psc_interface_config=gapic_psc_interface_config, reserved_ip_ranges=reserved_ip_ranges, ) location = initializer.global_config.location project_id = initializer.global_config.project project_number = resource_manager_utils.get_project_number(project_id) parent = f"projects/{project_number}/locations/{location}" request = persistent_resource_service.CreatePersistentResourceRequest( parent=parent, persistent_resource=persistent_resource, persistent_resource_id=cluster_name, ) client = _gapic_utils.create_persistent_resource_client() try: _ = client.create_persistent_resource(request) except Exception as e: raise ValueError("Failed in cluster creation due to: ", e) from e # Get persisent resource cluster_resource_name = f"{parent}/persistentResources/{cluster_name}" response = _gapic_utils.get_persistent_resource( persistent_resource_name=cluster_resource_name, tolerance=1, # allow 1 retry to avoid get request before creation ) return response.name def delete_ray_cluster(cluster_resource_name: str) -> None: """Delete Ray Cluster. Args: cluster_resource_name: Cluster resource name. Raises: FailedPrecondition: If the cluster is deleted already. """ client = _gapic_utils.create_persistent_resource_client() request = persistent_resource_service.DeletePersistentResourceRequest( name=cluster_resource_name ) try: client.delete_persistent_resource(request) print("[Ray on Vertex AI]: Successfully deleted the cluster.") except Exception as e: raise ValueError( "[Ray on Vertex AI]: Failed in cluster deletion due to: ", e ) from e def get_ray_cluster(cluster_resource_name: str) -> resources.Cluster: """Get Ray Cluster. Args: cluster_resource_name: Cluster resource name. Returns: A Cluster object. """ client = _gapic_utils.create_persistent_resource_client() request = persistent_resource_service.GetPersistentResourceRequest( name=cluster_resource_name ) try: response = client.get_persistent_resource(request) except Exception as e: raise ValueError( "[Ray on Vertex AI]: Failed in getting the cluster due to: ", e ) from e cluster = _gapic_utils.persistent_resource_to_cluster(persistent_resource=response) if cluster: return cluster raise ValueError( "[Ray on Vertex AI]: Please delete and recreate the cluster (The cluster is not a Ray cluster or the cluster image is outdated)." ) def list_ray_clusters() -> List[resources.Cluster]: """List Ray Clusters under the currently authenticated project. Returns: List of Cluster objects that exists in the current authorized project. """ location = initializer.global_config.location project_id = initializer.global_config.project project_number = resource_manager_utils.get_project_number(project_id) parent = f"projects/{project_number}/locations/{location}" request = persistent_resource_service.ListPersistentResourcesRequest( parent=parent, ) client = _gapic_utils.create_persistent_resource_client() try: response = client.list_persistent_resources(request) except Exception as e: raise ValueError( "[Ray on Vertex AI]: Failed in listing the clusters due to: ", e ) from e ray_clusters = [] for persistent_resource in response: ray_cluster = _gapic_utils.persistent_resource_to_cluster( persistent_resource=persistent_resource ) if ray_cluster: ray_clusters.append(ray_cluster) return ray_clusters def update_ray_cluster( cluster_resource_name: str, worker_node_types: List[resources.Resources] ) -> str: """Update Ray Cluster (currently support resizing node counts for worker nodes). Sample usage: my_cluster = vertex_ray.get_ray_cluster( cluster_resource_name=my_existing_cluster_resource_name, ) # Declaration to resize all the worker_node_type to node_count=1 new_worker_node_types = [] for worker_node_type in my_cluster.worker_node_types: worker_node_type.node_count = 1 new_worker_node_types.append(worker_node_type) # Execution to update new node_count (block until complete) vertex_ray.update_ray_cluster( cluster_resource_name=my_cluster.cluster_resource_name, worker_node_types=new_worker_node_types, ) Args: cluster_resource_name: worker_node_types: The list of Resources of the resized worker nodes. The same Resources object should not appear multiple times in the list. Returns: The cluster_resource_name of the Ray cluster on Vertex. """ # worker_node_types should not be duplicated. for i in range(len(worker_node_types)): for j in range(len(worker_node_types)): additional_replica_count = resources._check_machine_spec_identical( worker_node_types[i], worker_node_types[j] ) if additional_replica_count > 0 and i != j: raise ValueError( "[Ray on Vertex AI]: Worker_node_types have duplicate " + f"machine specs: {worker_node_types[i]} " + f"and {worker_node_types[j]}" ) persistent_resource = _gapic_utils.get_persistent_resource( persistent_resource_name=cluster_resource_name ) current_persistent_resource = copy.deepcopy(persistent_resource) current_persistent_resource.resource_pools[0].replica_count = 1 previous_ray_cluster = get_ray_cluster(cluster_resource_name) head_node_type = previous_ray_cluster.head_node_type previous_worker_node_types = previous_ray_cluster.worker_node_types # new worker_node_types and previous_worker_node_types should be the same length. if len(worker_node_types) != len(previous_worker_node_types): raise ValueError( "[Ray on Vertex AI]: Desired number of worker_node_types " + "(%i) does not match the number of the " + "existing worker_node_type(%i).", len(worker_node_types), len(previous_worker_node_types), ) # Merge worker_node_type and head_node_type if they share # the same machine spec. not_merged = 1 for i in range(len(worker_node_types)): additional_replica_count = resources._check_machine_spec_identical( head_node_type, worker_node_types[i] ) if additional_replica_count != 0 or ( additional_replica_count == 0 and worker_node_types[i].node_count == 0 ): # Merge the 1st duplicated worker with head, allow scale down to 0 worker current_persistent_resource.resource_pools[0].replica_count = ( 1 + additional_replica_count ) # Reset not_merged not_merged = 0 else: # No duplication w/ head node, write the 2nd worker node to the 2nd resource pool. current_persistent_resource.resource_pools[ i + not_merged ].replica_count = worker_node_types[i].node_count # New worker_node_type.node_count should be >=1 unless the worker_node_type # and head_node_type are merged due to the same machine specs. if worker_node_types[i].node_count == 0: raise ValueError( "[Ray on Vertex AI]: Worker_node_type " + f"({worker_node_types[i]}) must update to >= 1 nodes", ) request = persistent_resource_service.UpdatePersistentResourceRequest( persistent_resource=current_persistent_resource, update_mask=field_mask_pb2.FieldMask(paths=["resource_pools.replica_count"]), ) client = _gapic_utils.create_persistent_resource_client() try: operation_future = client.update_persistent_resource(request) except Exception as e: raise ValueError( "[Ray on Vertex AI]: Failed in updating the cluster due to: ", e ) from e # block before returning start_time = time.time() response = operation_future.result() duration = (time.time() - start_time) // 60 print( "[Ray on Vertex AI]: Successfully updated the cluster ({} mininutes elapsed).".format( duration ) ) return response.name