new mcp servers format
This commit is contained in:
@@ -182,6 +182,7 @@ from .types.llms.openai import (
|
||||
ChatCompletionPredictionContentParam,
|
||||
ChatCompletionUserMessage,
|
||||
HttpxBinaryResponseContent,
|
||||
ImageGenerationRequestQuality,
|
||||
)
|
||||
from .types.utils import (
|
||||
LITELLM_IMAGE_VARIATION_PROVIDERS,
|
||||
@@ -1178,6 +1179,7 @@ def completion( # type: ignore # noqa: PLR0915
|
||||
user_continue_message=kwargs.get("user_continue_message"),
|
||||
base_model=base_model,
|
||||
litellm_trace_id=kwargs.get("litellm_trace_id"),
|
||||
litellm_session_id=kwargs.get("litellm_session_id"),
|
||||
hf_model_name=hf_model_name,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
litellm_metadata=kwargs.get("litellm_metadata"),
|
||||
@@ -2688,9 +2690,9 @@ def completion( # type: ignore # noqa: PLR0915
|
||||
"aws_region_name" not in optional_params
|
||||
or optional_params["aws_region_name"] is None
|
||||
):
|
||||
optional_params[
|
||||
"aws_region_name"
|
||||
] = aws_bedrock_client.meta.region_name
|
||||
optional_params["aws_region_name"] = (
|
||||
aws_bedrock_client.meta.region_name
|
||||
)
|
||||
|
||||
bedrock_route = BedrockModelInfo.get_bedrock_route(model)
|
||||
if bedrock_route == "converse":
|
||||
@@ -4412,9 +4414,9 @@ def adapter_completion(
|
||||
new_kwargs = translation_obj.translate_completion_input_params(kwargs=kwargs)
|
||||
|
||||
response: Union[ModelResponse, CustomStreamWrapper] = completion(**new_kwargs) # type: ignore
|
||||
translated_response: Optional[
|
||||
Union[BaseModel, AdapterCompletionStreamWrapper]
|
||||
] = None
|
||||
translated_response: Optional[Union[BaseModel, AdapterCompletionStreamWrapper]] = (
|
||||
None
|
||||
)
|
||||
if isinstance(response, ModelResponse):
|
||||
translated_response = translation_obj.translate_completion_output_params(
|
||||
response=response
|
||||
@@ -4567,7 +4569,7 @@ def image_generation( # noqa: PLR0915
|
||||
prompt: str,
|
||||
model: Optional[str] = None,
|
||||
n: Optional[int] = None,
|
||||
quality: Optional[str] = None,
|
||||
quality: Optional[Union[str, ImageGenerationRequestQuality]] = None,
|
||||
response_format: Optional[str] = None,
|
||||
size: Optional[str] = None,
|
||||
style: Optional[str] = None,
|
||||
@@ -5510,7 +5512,10 @@ def speech( # noqa: PLR0915
|
||||
|
||||
|
||||
async def ahealth_check_wildcard_models(
|
||||
model: str, custom_llm_provider: str, model_params: dict
|
||||
model: str,
|
||||
custom_llm_provider: str,
|
||||
model_params: dict,
|
||||
litellm_logging_obj: Logging,
|
||||
) -> dict:
|
||||
# this is a wildcard model, we need to pick a random model from the provider
|
||||
cheapest_models = pick_cheapest_chat_models_from_llm_provider(
|
||||
@@ -5527,6 +5532,7 @@ async def ahealth_check_wildcard_models(
|
||||
else:
|
||||
fallback_models = None
|
||||
model_params["model"] = cheapest_models[0]
|
||||
model_params["litellm_logging_obj"] = litellm_logging_obj
|
||||
model_params["fallbacks"] = fallback_models
|
||||
model_params["max_tokens"] = 1
|
||||
await acompletion(**model_params)
|
||||
@@ -5593,6 +5599,7 @@ async def ahealth_check(
|
||||
model=model,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
model_params=model_params,
|
||||
litellm_logging_obj=litellm_logging_obj,
|
||||
)
|
||||
model_params["litellm_logging_obj"] = litellm_logging_obj
|
||||
|
||||
@@ -5834,9 +5841,9 @@ def stream_chunk_builder( # noqa: PLR0915
|
||||
]
|
||||
|
||||
if len(content_chunks) > 0:
|
||||
response["choices"][0]["message"][
|
||||
"content"
|
||||
] = processor.get_combined_content(content_chunks)
|
||||
response["choices"][0]["message"]["content"] = (
|
||||
processor.get_combined_content(content_chunks)
|
||||
)
|
||||
|
||||
reasoning_chunks = [
|
||||
chunk
|
||||
@@ -5847,9 +5854,9 @@ def stream_chunk_builder( # noqa: PLR0915
|
||||
]
|
||||
|
||||
if len(reasoning_chunks) > 0:
|
||||
response["choices"][0]["message"][
|
||||
"reasoning_content"
|
||||
] = processor.get_combined_reasoning_content(reasoning_chunks)
|
||||
response["choices"][0]["message"]["reasoning_content"] = (
|
||||
processor.get_combined_reasoning_content(reasoning_chunks)
|
||||
)
|
||||
|
||||
audio_chunks = [
|
||||
chunk
|
||||
|
||||
Reference in New Issue
Block a user