structure saas with tools and mcps

This commit is contained in:
Davidson Gomes 2025-04-25 19:10:26 -03:00
parent d413984c5b
commit b3f87abce1
16 changed files with 299 additions and 148 deletions

13
.env
View File

@ -1,3 +1,14 @@
OPENAI_API_KEY=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
POSTGRES_CONNECTION_STRING=postgresql://postgres:root@localhost:5432/google-a2a-saas
POSTGRES_CONNECTION_STRING=postgresql://postgres:root@localhost:5432/google-a2a-saas
TENANT_ID=45cffb85-51c8-41ed-aa8d-710970a7ce50
KNOWLEDGE_API_URL=http://localhost:5540
KNOWLEDGE_API_KEY=79405047-7a5e-4b18-b25a-4af149d747dc
REDIS_HOST=localhost
REDIS_PORT=6379
REDIS_DB=3
REDIS_PASSWORD=
LOG_LEVEL=DEBUG

View File

@ -9,19 +9,19 @@ from src.schemas.schemas import (
Client, ClientCreate,
Contact, ContactCreate,
Agent, AgentCreate,
Message, MessageCreate
)
from src.services import (
client_service,
contact_service,
agent_service,
message_service
)
from src.schemas.chat import ChatRequest, ChatResponse, ErrorResponse
from src.services.agent_runner import run_agent
from src.core.exceptions import AgentNotFoundError, InternalServerError
from src.core.exceptions import AgentNotFoundError
from google.adk.artifacts.in_memory_artifact_service import InMemoryArtifactService
from google.adk.sessions import DatabaseSessionService
from google.adk.memory import InMemoryMemoryService
from google.adk.memory import InMemoryMemoryService
from src.config.settings import settings
router = APIRouter()
@ -32,6 +32,7 @@ POSTGRES_CONNECTION_STRING = settings.POSTGRES_CONNECTION_STRING
# Inicializar os serviços globalmente
session_service = DatabaseSessionService(db_url=POSTGRES_CONNECTION_STRING)
artifacts_service = InMemoryArtifactService()
memory_service = InMemoryMemoryService()
@router.post("/chat", response_model=ChatResponse, responses={
400: {"model": ErrorResponse},
@ -46,6 +47,7 @@ async def chat(request: ChatRequest, db: Session = Depends(get_db)):
request.message,
session_service,
artifacts_service,
memory_service,
db
)
@ -145,33 +147,4 @@ def update_agent(agent_id: uuid.UUID, agent: AgentCreate, db: Session = Depends(
def delete_agent(agent_id: uuid.UUID, db: Session = Depends(get_db)):
if not agent_service.delete_agent(db, agent_id):
raise HTTPException(status_code=404, detail="Agent not found")
return {"message": "Agent deleted successfully"}
# Rotas para Mensagens
@router.post("/messages/", response_model=Message)
def create_message(message: MessageCreate, db: Session = Depends(get_db)):
return message_service.create_message(db, message)
@router.get("/messages/{session_id}", response_model=List[Message])
def read_messages(session_id: uuid.UUID, skip: int = 0, limit: int = 100, db: Session = Depends(get_db)):
return message_service.get_messages_by_session(db, session_id, skip, limit)
@router.get("/message/{message_id}", response_model=Message)
def read_message(message_id: int, db: Session = Depends(get_db)):
db_message = message_service.get_message(db, message_id)
if db_message is None:
raise HTTPException(status_code=404, detail="Message not found")
return db_message
@router.put("/message/{message_id}", response_model=Message)
def update_message(message_id: int, message: MessageCreate, db: Session = Depends(get_db)):
db_message = message_service.update_message(db, message_id, message)
if db_message is None:
raise HTTPException(status_code=404, detail="Message not found")
return db_message
@router.delete("/message/{message_id}")
def delete_message(message_id: int, db: Session = Depends(get_db)):
if not message_service.delete_message(db, message_id):
raise HTTPException(status_code=404, detail="Message not found")
return {"message": "Message deleted successfully"}
return {"message": "Agent deleted successfully"}

View File

@ -28,6 +28,20 @@ class Settings(BaseSettings):
LOG_LEVEL: str = os.getenv("LOG_LEVEL", "INFO")
LOG_DIR: str = "logs"
# Configurações da API de Conhecimento
KNOWLEDGE_API_URL: str = os.getenv("KNOWLEDGE_API_URL", "http://localhost:5540")
KNOWLEDGE_API_KEY: str = os.getenv("KNOWLEDGE_API_KEY", "")
TENANT_ID: str = os.getenv("TENANT_ID", "")
# Configurações do Redis
REDIS_HOST: str = os.getenv("REDIS_HOST", "localhost")
REDIS_PORT: int = int(os.getenv("REDIS_PORT", 6379))
REDIS_DB: int = int(os.getenv("REDIS_DB", 0))
REDIS_PASSWORD: Optional[str] = os.getenv("REDIS_PASSWORD")
# TTL do cache de ferramentas em segundos (1 hora)
TOOLS_CACHE_TTL: int = int(os.getenv("TOOLS_CACHE_TTL", 3600))
class Config:
env_file = ".env"
case_sensitive = True

View File

@ -25,6 +25,7 @@ class Agent(Base):
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
client_id = Column(UUID(as_uuid=True), ForeignKey("clients.id", ondelete="CASCADE"))
name = Column(String, nullable=False)
description = Column(Text, nullable=True)
type = Column(String, nullable=False)
model = Column(String, nullable=False)
api_key = Column(String, nullable=False)
@ -33,13 +34,4 @@ class Agent(Base):
__table_args__ = (
CheckConstraint("type IN ('llm', 'sequential', 'parallel', 'loop')", name='check_agent_type'),
)
class Message(Base):
__tablename__ = "messages"
id = Column(BigInteger, primary_key=True, autoincrement=True)
session_id = Column(UUID(as_uuid=True))
sender = Column(String)
content = Column(Text)
created_at = Column(DateTime(timezone=True), server_default=func.now())
)

View File

@ -47,19 +47,4 @@ class Agent(AgentBase):
client_id: UUID
class Config:
from_attributes = True
class MessageBase(BaseModel):
session_id: UUID
sender: str
content: str
class MessageCreate(MessageBase):
pass
class Message(MessageBase):
id: int
created_at: datetime
class Config:
from_attributes = True
from_attributes = True

View File

@ -1,6 +1,7 @@
from typing import List, Optional, Tuple
from google.adk.agents.llm_agent import LlmAgent
from google.adk.agents import SequentialAgent, ParallelAgent, LoopAgent
from google.adk.memory import InMemoryMemoryService
from google.adk.models.lite_llm import LiteLlm
from src.utils.logger import setup_logger
from src.core.exceptions import AgentNotFoundError
@ -9,16 +10,166 @@ from src.services.custom_tools import CustomToolBuilder
from src.services.mcp_service import MCPService
from sqlalchemy.orm import Session
from contextlib import AsyncExitStack
from google.adk.agents.callback_context import CallbackContext
from google.adk.models import LlmResponse, LlmRequest
from typing import Optional
import logging
import os
import requests
from datetime import datetime
logger = setup_logger(__name__)
def before_model_callback(
callback_context: CallbackContext, llm_request: LlmRequest
) -> Optional[LlmResponse]:
"""
Callback executado antes do modelo gerar uma resposta.
Sempre executa a busca na base de conhecimento antes de prosseguir.
"""
try:
agent_name = callback_context.agent_name
logger.debug(f"🔄 Before model call for agent: {agent_name}")
# Extrai a última mensagem do usuário
last_user_message = ""
if llm_request.contents and llm_request.contents[-1].role == "user":
if llm_request.contents[-1].parts:
last_user_message = llm_request.contents[-1].parts[0].text
logger.debug(f"📝 Última mensagem do usuário: {last_user_message}")
# Extrai e formata o histórico de mensagens
history = []
for content in llm_request.contents:
if content.parts and content.parts[0].text:
# Substitui 'model' por 'assistant' no role
role = "assistant" if content.role == "model" else content.role
history.append(
{
"role": role,
"content": {
"type": "text",
"text": content.parts[0].text,
},
}
)
# loga o histórico de mensagens
logger.debug(f"📝 Histórico de mensagens: {history}")
if last_user_message:
logger.info("🔍 Executando busca na base de conhecimento")
# Executa a busca na base de conhecimento de forma síncrona
search_results = search_knowledge_base_function_sync(
last_user_message, history
)
if search_results:
logger.info("✅ Resultados encontrados, adicionando ao contexto")
# Obtém a instrução original do sistema
original_instruction = llm_request.config.system_instruction or ""
# Adiciona os resultados da busca e o histórico ao contexto do sistema
modified_text = (
original_instruction
+ "\n\n<knowledge_context>\n"
+ str(search_results)
+ "\n</knowledge_context>\n\n<history>\n"
+ str(history)
+ "\n</history>"
)
llm_request.config.system_instruction = modified_text
logger.debug(
f"📝 Instrução do sistema atualizada com resultados da busca e histórico"
)
else:
logger.warning("⚠️ Nenhum resultado encontrado na busca")
else:
logger.warning("⚠️ Nenhuma mensagem do usuário encontrada")
logger.info("✅ Before_model_callback finalizado")
return None
except Exception as e:
logger.error(f"❌ Erro no before_model_callback: {str(e)}", exc_info=True)
return None
def search_knowledge_base_function_sync(query: str, history=[]):
"""
Search knowledge base de forma síncrona.
Args:
query (str): The search query, with user message and history messages, all in one string
Returns:
dict: The search results
"""
try:
logger.info("🔍 Iniciando busca na base de conhecimento")
logger.debug(f"Query recebida: {query}")
# url = os.getenv("KNOWLEDGE_API_URL") + "/api/v1/search"
url = os.getenv("KNOWLEDGE_API_URL") + "/api/v1/knowledge"
tenant_id = os.getenv("TENANT_ID")
url = url + "?tenant_id=" + tenant_id
logger.debug(f"URL da API: {url}")
logger.debug(f"Tenant ID: {tenant_id}")
headers = {
"x-api-key": f"{os.getenv('KNOWLEDGE_API_KEY')}",
"Content-Type": "application/json",
}
logger.debug(f"Headers configurados: {headers}")
payload = {
"gemini_api_key": os.getenv("GOOGLE_API_KEY"),
"gemini_model": "gemini-2.0-flash-lite-001",
"gemini_temperature": 0.7,
"query": query,
"tenant_id": tenant_id,
"history": history,
}
logger.debug(f"Payload da requisição: {payload}")
# Usando requests para fazer a requisição síncrona com timeout
logger.info("🔄 Fazendo requisição síncrona para a API de conhecimento")
# response = requests.post(url, headers=headers, json=payload)
response = requests.get(url, headers=headers, timeout=10)
if response.status_code == 200:
logger.info("✅ Busca realizada com sucesso")
result = response.json()
logger.debug(f"Resultado da busca: {result}")
return result
else:
logger.error(
f"❌ Erro ao realizar busca. Status code: {response.status_code}"
)
return None
except requests.exceptions.Timeout:
logger.error("❌ Timeout ao realizar busca na base de conhecimento")
return None
except requests.exceptions.RequestException as e:
logger.error(f"❌ Erro na requisição: {str(e)}", exc_info=True)
return None
except Exception as e:
logger.error(f"❌ Erro ao realizar busca: {str(e)}", exc_info=True)
return None
class AgentBuilder:
def __init__(self, db: Session):
def __init__(self, db: Session, memory_service: InMemoryMemoryService):
self.db = db
self.custom_tool_builder = CustomToolBuilder()
self.mcp_service = MCPService()
self.memory_service = memory_service
async def _create_llm_agent(self, agent) -> Tuple[LlmAgent, Optional[AsyncExitStack]]:
async def _create_llm_agent(
self, agent
) -> Tuple[LlmAgent, Optional[AsyncExitStack]]:
"""Cria um agente LLM a partir dos dados do agente."""
# Obtém ferramentas personalizadas da configuração
custom_tools = []
@ -34,81 +185,129 @@ class AgentBuilder:
# Combina todas as ferramentas
all_tools = custom_tools + mcp_tools
return LlmAgent(
name=agent.name,
model=LiteLlm(model=agent.model, api_key=agent.api_key),
instruction=agent.instruction,
description=agent.config.get("description", ""),
tools=all_tools,
), mcp_exit_stack
# Verifica se load_memory está habilitado
before_model_callback_func = None
if agent.config.get("load_memory") == True:
before_model_callback_func = before_model_callback
now = datetime.now()
current_datetime = now.strftime("%d/%m/%Y %H:%M")
current_day_of_week = now.strftime("%A")
current_date_iso = now.strftime("%Y-%m-%d")
current_time = now.strftime("%H:%M")
async def _get_sub_agents(self, sub_agent_ids: List[str]) -> List[Tuple[LlmAgent, Optional[AsyncExitStack]]]:
# Substitui as variáveis no prompt
formatted_prompt = agent.instruction.format(
current_datetime=current_datetime,
current_day_of_week=current_day_of_week,
current_date_iso=current_date_iso,
current_time=current_time,
)
return (
LlmAgent(
name=agent.name,
model=LiteLlm(model=agent.model, api_key=agent.api_key),
instruction=formatted_prompt,
description=agent.description,
tools=all_tools,
before_model_callback=before_model_callback_func,
),
mcp_exit_stack,
)
async def _get_sub_agents(
self, sub_agent_ids: List[str]
) -> List[Tuple[LlmAgent, Optional[AsyncExitStack]]]:
"""Obtém e cria os sub-agentes LLM."""
sub_agents = []
for sub_agent_id in sub_agent_ids:
agent = get_agent(self.db, sub_agent_id)
if agent is None:
raise AgentNotFoundError(f"Agente com ID {sub_agent_id} não encontrado")
if agent.type != "llm":
raise ValueError(f"Agente {agent.name} (ID: {agent.id}) não é um agente LLM")
raise ValueError(
f"Agente {agent.name} (ID: {agent.id}) não é um agente LLM"
)
sub_agent, exit_stack = await self._create_llm_agent(agent)
sub_agents.append((sub_agent, exit_stack))
return sub_agents
async def build_llm_agent(self, root_agent) -> Tuple[LlmAgent, Optional[AsyncExitStack]]:
async def build_llm_agent(
self, root_agent
) -> Tuple[LlmAgent, Optional[AsyncExitStack]]:
"""Constrói um agente LLM com seus sub-agentes."""
logger.info("Criando agente LLM")
sub_agents = []
if root_agent.config.get("sub_agents"):
sub_agents_with_stacks = await self._get_sub_agents(root_agent.config.get("sub_agents"))
sub_agents_with_stacks = await self._get_sub_agents(
root_agent.config.get("sub_agents")
)
sub_agents = [agent for agent, _ in sub_agents_with_stacks]
root_llm_agent, exit_stack = await self._create_llm_agent(root_agent)
if sub_agents:
root_llm_agent.sub_agents = sub_agents
return root_llm_agent, exit_stack
async def build_composite_agent(self, root_agent) -> Tuple[SequentialAgent | ParallelAgent | LoopAgent, Optional[AsyncExitStack]]:
async def build_composite_agent(
self, root_agent
) -> Tuple[SequentialAgent | ParallelAgent | LoopAgent, Optional[AsyncExitStack]]:
"""Constrói um agente composto (Sequential, Parallel ou Loop) com seus sub-agentes."""
logger.info(f"Processando sub-agentes para agente {root_agent.type}")
sub_agents_with_stacks = await self._get_sub_agents(root_agent.config.get("sub_agents", []))
sub_agents_with_stacks = await self._get_sub_agents(
root_agent.config.get("sub_agents", [])
)
sub_agents = [agent for agent, _ in sub_agents_with_stacks]
if root_agent.type == "sequential":
logger.info("Criando SequentialAgent")
return SequentialAgent(
name=root_agent.name,
sub_agents=sub_agents,
description=root_agent.config.get("description", ""),
), None
return (
SequentialAgent(
name=root_agent.name,
sub_agents=sub_agents,
description=root_agent.config.get("description", ""),
),
None,
)
elif root_agent.type == "parallel":
logger.info("Criando ParallelAgent")
return ParallelAgent(
name=root_agent.name,
sub_agents=sub_agents,
description=root_agent.config.get("description", ""),
), None
return (
ParallelAgent(
name=root_agent.name,
sub_agents=sub_agents,
description=root_agent.config.get("description", ""),
),
None,
)
elif root_agent.type == "loop":
logger.info("Criando LoopAgent")
return LoopAgent(
name=root_agent.name,
sub_agents=sub_agents,
description=root_agent.config.get("description", ""),
max_iterations=root_agent.config.get("max_iterations", 5),
), None
return (
LoopAgent(
name=root_agent.name,
sub_agents=sub_agents,
description=root_agent.config.get("description", ""),
max_iterations=root_agent.config.get("max_iterations", 5),
),
None,
)
else:
raise ValueError(f"Tipo de agente inválido: {root_agent.type}")
async def build_agent(self, root_agent) -> Tuple[LlmAgent | SequentialAgent | ParallelAgent | LoopAgent, Optional[AsyncExitStack]]:
async def build_agent(
self, root_agent
) -> Tuple[
LlmAgent | SequentialAgent | ParallelAgent | LoopAgent, Optional[AsyncExitStack]
]:
"""Constrói o agente apropriado baseado no tipo do agente root."""
if root_agent.type == "llm":
return await self.build_llm_agent(root_agent)
else:
return await self.build_composite_agent(root_agent)
return await self.build_composite_agent(root_agent)

View File

@ -6,6 +6,7 @@ from google.adk.agents import SequentialAgent, ParallelAgent, LoopAgent
from google.adk.runners import Runner
from google.genai.types import Content, Part
from google.adk.sessions import DatabaseSessionService
from google.adk.memory import InMemoryMemoryService
from google.adk.artifacts.in_memory_artifact_service import InMemoryArtifactService
from src.utils.logger import setup_logger
from src.core.exceptions import AgentNotFoundError, InternalServerError
@ -23,6 +24,7 @@ async def run_agent(
message: str,
session_service: DatabaseSessionService,
artifacts_service: InMemoryArtifactService,
memory_service: InMemoryMemoryService,
db: Session,
):
try:
@ -40,7 +42,7 @@ async def run_agent(
raise AgentNotFoundError(f"Agente com ID {agent_id} não encontrado")
# Usando o AgentBuilder para criar o agente
agent_builder = AgentBuilder(db)
agent_builder = AgentBuilder(db, memory_service)
root_agent, exit_stack = await agent_builder.build_agent(get_root_agent)
logger.info("Configurando Runner")

View File

@ -1,35 +0,0 @@
from sqlalchemy.orm import Session
from src.models.models import Message
from src.schemas.schemas import MessageCreate
from typing import List
import uuid
def get_message(db: Session, message_id: int) -> Message:
return db.query(Message).filter(Message.id == message_id).first()
def get_messages_by_session(db: Session, session_id: uuid.UUID, skip: int = 0, limit: int = 100) -> List[Message]:
return db.query(Message).filter(Message.session_id == session_id).offset(skip).limit(limit).all()
def create_message(db: Session, message: MessageCreate) -> Message:
db_message = Message(**message.model_dump())
db.add(db_message)
db.commit()
db.refresh(db_message)
return db_message
def update_message(db: Session, message_id: int, message: MessageCreate) -> Message:
db_message = db.query(Message).filter(Message.id == message_id).first()
if db_message:
for key, value in message.model_dump().items():
setattr(db_message, key, value)
db.commit()
db.refresh(db_message)
return db_message
def delete_message(db: Session, message_id: int) -> bool:
db_message = db.query(Message).filter(Message.id == message_id).first()
if db_message:
db.delete(db_message)
db.commit()
return True
return False

View File

@ -1,6 +1,8 @@
import logging
import os
import sys
from typing import Optional
from src.config.settings import settings
class CustomFormatter(logging.Formatter):
"""Formatação personalizada para logs"""
@ -26,25 +28,33 @@ class CustomFormatter(logging.Formatter):
formatter = logging.Formatter(log_fmt)
return formatter.format(record)
def setup_logger(name: str, level: Optional[int] = logging.INFO) -> logging.Logger:
def setup_logger(name: str) -> logging.Logger:
"""
Configura um logger personalizado
Args:
name: Nome do logger
level: Nível de log (default: INFO)
Returns:
logging.Logger: Logger configurado
"""
logger = logging.getLogger(name)
logger.setLevel(level)
# Evitar duplicação de handlers
if not logger.handlers:
# Handler para console
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(CustomFormatter())
logger.addHandler(console_handler)
# Remove handlers existentes para evitar duplicação
if logger.handlers:
logger.handlers.clear()
# Configura o nível do logger baseado na variável de ambiente ou configuração
log_level = getattr(logging, os.getenv("LOG_LEVEL", settings.LOG_LEVEL).upper())
logger.setLevel(log_level)
# Handler para console
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(CustomFormatter())
console_handler.setLevel(log_level)
logger.addHandler(console_handler)
# Impede que os logs sejam propagados para o logger root
logger.propagate = False
return logger