Merge branch 'release/0.0.4'
This commit is contained in:
commit
b21e355ce1
45
README.md
45
README.md
@ -301,6 +301,51 @@ Authorization: Bearer your-token-jwt
|
||||
- **LangGraph**: Framework for building stateful, multi-agent workflows
|
||||
- **ReactFlow**: Library for building node-based visual workflows
|
||||
|
||||
## 📊 Langfuse Integration (Tracing & Observability)
|
||||
|
||||
Evo AI platform natively supports integration with [Langfuse](https://langfuse.com/) for detailed tracing of agent executions, prompts, model responses, and tool calls, using the OpenTelemetry (OTel) standard.
|
||||
|
||||
### Why use Langfuse?
|
||||
|
||||
- Visual dashboard for agent traces, prompts, and executions
|
||||
- Detailed analytics for debugging and evaluating LLM apps
|
||||
- Easy integration with Google ADK and other frameworks
|
||||
|
||||
### How it works
|
||||
|
||||
- Every agent execution (including streaming) is automatically traced via OpenTelemetry spans
|
||||
- Data is sent to Langfuse, where it can be visualized and analyzed
|
||||
|
||||
### How to configure
|
||||
|
||||
1. **Set environment variables in your `.env`:**
|
||||
|
||||
```env
|
||||
LANGFUSE_PUBLIC_KEY="pk-lf-..." # Your Langfuse public key
|
||||
LANGFUSE_SECRET_KEY="sk-lf-..." # Your Langfuse secret key
|
||||
OTEL_EXPORTER_OTLP_ENDPOINT="https://cloud.langfuse.com/api/public/otel" # (or us.cloud... for US region)
|
||||
```
|
||||
|
||||
> **Attention:** Do not swap the keys! `pk-...` is public, `sk-...` is secret.
|
||||
|
||||
2. **Automatic initialization**
|
||||
|
||||
- Tracing is automatically initialized when the application starts (`src/main.py`).
|
||||
- Agent execution functions are already instrumented with spans (`src/services/agent_runner.py`).
|
||||
|
||||
3. **View in the Langfuse dashboard**
|
||||
- Access your Langfuse dashboard to see real-time traces.
|
||||
|
||||
### Troubleshooting
|
||||
|
||||
- **401 Error (Invalid credentials):**
|
||||
- Check if the keys are correct and not swapped in your `.env`.
|
||||
- Make sure the endpoint matches your region (EU or US).
|
||||
- **Context error in async generator:**
|
||||
- The code is already adjusted to avoid OpenTelemetry context issues in async generators.
|
||||
- **Questions about integration:**
|
||||
- See the [official Langfuse documentation - Google ADK](https://langfuse.com/docs/integrations/google-adk)
|
||||
|
||||
## 🤖 Agent 2 Agent (A2A) Protocol Support
|
||||
|
||||
Evo AI implements the Google's Agent 2 Agent (A2A) protocol, enabling seamless communication and interoperability between AI agents. This implementation includes:
|
||||
|
@ -3,6 +3,7 @@ import asyncio
|
||||
from collections.abc import AsyncIterable
|
||||
from typing import Dict, Optional
|
||||
from uuid import UUID
|
||||
import json
|
||||
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
@ -306,7 +307,7 @@ class A2ATaskManager:
|
||||
external_id = task_params.sessionId
|
||||
full_response = ""
|
||||
|
||||
# We use the same streaming function used in the WebSocket
|
||||
# Use the same pattern as chat_routes.py: deserialize each chunk
|
||||
async for chunk in run_agent_stream(
|
||||
agent_id=str(agent.id),
|
||||
external_id=external_id,
|
||||
@ -316,9 +317,14 @@ class A2ATaskManager:
|
||||
memory_service=memory_service,
|
||||
db=self.db,
|
||||
):
|
||||
# Send incremental progress updates
|
||||
update_text_part = {"type": "text", "text": chunk}
|
||||
update_message = Message(role="agent", parts=[update_text_part])
|
||||
try:
|
||||
chunk_data = json.loads(chunk)
|
||||
except Exception as e:
|
||||
logger.warning(f"Invalid chunk received: {chunk} - {e}")
|
||||
continue
|
||||
|
||||
# The chunk_data must be a dict with 'type' and 'text' (or other expected format)
|
||||
update_message = Message(role="agent", parts=[chunk_data])
|
||||
|
||||
# Update the task with each intermediate message
|
||||
await self.update_store(
|
||||
@ -337,24 +343,24 @@ class A2ATaskManager:
|
||||
final=False,
|
||||
),
|
||||
)
|
||||
full_response += chunk
|
||||
# If it's text, accumulate for the final response
|
||||
if chunk_data.get("type") == "text":
|
||||
full_response += chunk_data.get("text", "")
|
||||
|
||||
# Determine the task state
|
||||
# Determine the final state of the task
|
||||
task_state = (
|
||||
TaskState.INPUT_REQUIRED
|
||||
if "MISSING_INFO:" in full_response
|
||||
else TaskState.COMPLETED
|
||||
)
|
||||
|
||||
# Create the final response part
|
||||
# Create the final response
|
||||
final_text_part = {"type": "text", "text": full_response}
|
||||
parts = [final_text_part]
|
||||
final_message = Message(role="agent", parts=parts)
|
||||
|
||||
# Create the final artifact from the final response
|
||||
final_artifact = Artifact(parts=parts, index=0)
|
||||
|
||||
# Update the task in the store with the final response
|
||||
# Update the task with the final response
|
||||
await self.update_store(
|
||||
task_params.id,
|
||||
TaskStatus(state=task_state, message=final_message),
|
||||
|
Loading…
Reference in New Issue
Block a user