Merge branch 'release/0.0.4'

This commit is contained in:
Davidson Gomes 2025-05-12 17:51:36 -03:00
commit b21e355ce1
2 changed files with 61 additions and 10 deletions

View File

@ -301,6 +301,51 @@ Authorization: Bearer your-token-jwt
- **LangGraph**: Framework for building stateful, multi-agent workflows
- **ReactFlow**: Library for building node-based visual workflows
## 📊 Langfuse Integration (Tracing & Observability)
Evo AI platform natively supports integration with [Langfuse](https://langfuse.com/) for detailed tracing of agent executions, prompts, model responses, and tool calls, using the OpenTelemetry (OTel) standard.
### Why use Langfuse?
- Visual dashboard for agent traces, prompts, and executions
- Detailed analytics for debugging and evaluating LLM apps
- Easy integration with Google ADK and other frameworks
### How it works
- Every agent execution (including streaming) is automatically traced via OpenTelemetry spans
- Data is sent to Langfuse, where it can be visualized and analyzed
### How to configure
1. **Set environment variables in your `.env`:**
```env
LANGFUSE_PUBLIC_KEY="pk-lf-..." # Your Langfuse public key
LANGFUSE_SECRET_KEY="sk-lf-..." # Your Langfuse secret key
OTEL_EXPORTER_OTLP_ENDPOINT="https://cloud.langfuse.com/api/public/otel" # (or us.cloud... for US region)
```
> **Attention:** Do not swap the keys! `pk-...` is public, `sk-...` is secret.
2. **Automatic initialization**
- Tracing is automatically initialized when the application starts (`src/main.py`).
- Agent execution functions are already instrumented with spans (`src/services/agent_runner.py`).
3. **View in the Langfuse dashboard**
- Access your Langfuse dashboard to see real-time traces.
### Troubleshooting
- **401 Error (Invalid credentials):**
- Check if the keys are correct and not swapped in your `.env`.
- Make sure the endpoint matches your region (EU or US).
- **Context error in async generator:**
- The code is already adjusted to avoid OpenTelemetry context issues in async generators.
- **Questions about integration:**
- See the [official Langfuse documentation - Google ADK](https://langfuse.com/docs/integrations/google-adk)
## 🤖 Agent 2 Agent (A2A) Protocol Support
Evo AI implements the Google's Agent 2 Agent (A2A) protocol, enabling seamless communication and interoperability between AI agents. This implementation includes:

View File

@ -3,6 +3,7 @@ import asyncio
from collections.abc import AsyncIterable
from typing import Dict, Optional
from uuid import UUID
import json
from sqlalchemy.orm import Session
@ -306,7 +307,7 @@ class A2ATaskManager:
external_id = task_params.sessionId
full_response = ""
# We use the same streaming function used in the WebSocket
# Use the same pattern as chat_routes.py: deserialize each chunk
async for chunk in run_agent_stream(
agent_id=str(agent.id),
external_id=external_id,
@ -316,9 +317,14 @@ class A2ATaskManager:
memory_service=memory_service,
db=self.db,
):
# Send incremental progress updates
update_text_part = {"type": "text", "text": chunk}
update_message = Message(role="agent", parts=[update_text_part])
try:
chunk_data = json.loads(chunk)
except Exception as e:
logger.warning(f"Invalid chunk received: {chunk} - {e}")
continue
# The chunk_data must be a dict with 'type' and 'text' (or other expected format)
update_message = Message(role="agent", parts=[chunk_data])
# Update the task with each intermediate message
await self.update_store(
@ -337,24 +343,24 @@ class A2ATaskManager:
final=False,
),
)
full_response += chunk
# If it's text, accumulate for the final response
if chunk_data.get("type") == "text":
full_response += chunk_data.get("text", "")
# Determine the task state
# Determine the final state of the task
task_state = (
TaskState.INPUT_REQUIRED
if "MISSING_INFO:" in full_response
else TaskState.COMPLETED
)
# Create the final response part
# Create the final response
final_text_part = {"type": "text", "text": full_response}
parts = [final_text_part]
final_message = Message(role="agent", parts=parts)
# Create the final artifact from the final response
final_artifact = Artifact(parts=parts, index=0)
# Update the task in the store with the final response
# Update the task with the final response
await self.update_store(
task_params.id,
TaskStatus(state=task_state, message=final_message),