structure saas with tools
This commit is contained in:
@@ -0,0 +1,447 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Copyright 2024 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import dataclasses
|
||||
from typing import List, Optional, Sequence, Union
|
||||
|
||||
from google.protobuf import timestamp_pb2
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RagFile:
|
||||
"""RAG file (output only).
|
||||
|
||||
Attributes:
|
||||
name: Generated resource name. Format:
|
||||
``projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}/ragFiles/{rag_file}``
|
||||
display_name: Display name that was configured at client side.
|
||||
description: The description of the RagFile.
|
||||
"""
|
||||
|
||||
name: Optional[str] = None
|
||||
display_name: Optional[str] = None
|
||||
description: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class VertexPredictionEndpoint:
|
||||
"""VertexPredictionEndpoint.
|
||||
|
||||
Attributes:
|
||||
publisher_model: 1P publisher model resource name. Format:
|
||||
``publishers/google/models/{model}`` or
|
||||
``projects/{project}/locations/{location}/publishers/google/models/{model}``
|
||||
endpoint: 1P fine tuned embedding model resource name. Format:
|
||||
``endpoints/{endpoint}`` or
|
||||
``projects/{project}/locations/{location}/endpoints/{endpoint}``.
|
||||
model:
|
||||
Output only. The resource name of the model that is deployed
|
||||
on the endpoint. Present only when the endpoint is not a
|
||||
publisher model. Pattern:
|
||||
``projects/{project}/locations/{location}/models/{model}``
|
||||
model_version_id:
|
||||
Output only. Version ID of the model that is
|
||||
deployed on the endpoint. Present only when the
|
||||
endpoint is not a publisher model.
|
||||
"""
|
||||
|
||||
endpoint: Optional[str] = None
|
||||
publisher_model: Optional[str] = None
|
||||
model: Optional[str] = None
|
||||
model_version_id: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RagEmbeddingModelConfig:
|
||||
"""RagEmbeddingModelConfig.
|
||||
|
||||
Attributes:
|
||||
vertex_prediction_endpoint: The Vertex AI Prediction Endpoint resource
|
||||
name. Format:
|
||||
``projects/{project}/locations/{location}/endpoints/{endpoint}``
|
||||
"""
|
||||
|
||||
vertex_prediction_endpoint: Optional[VertexPredictionEndpoint] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Weaviate:
|
||||
"""Weaviate.
|
||||
|
||||
Attributes:
|
||||
weaviate_http_endpoint: The Weaviate DB instance HTTP endpoint
|
||||
collection_name: The corresponding Weaviate collection this corpus maps to
|
||||
api_key: The SecretManager resource name for the Weaviate DB API token. Format:
|
||||
``projects/{project}/secrets/{secret}/versions/{version}``
|
||||
"""
|
||||
|
||||
weaviate_http_endpoint: Optional[str] = None
|
||||
collection_name: Optional[str] = None
|
||||
api_key: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class VertexFeatureStore:
|
||||
"""VertexFeatureStore.
|
||||
|
||||
Attributes:
|
||||
resource_name: The resource name of the FeatureView. Format:
|
||||
``projects/{project}/locations/{location}/featureOnlineStores/
|
||||
{feature_online_store}/featureViews/{feature_view}``
|
||||
"""
|
||||
|
||||
resource_name: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class VertexVectorSearch:
|
||||
"""VertexVectorSearch.
|
||||
|
||||
Attributes:
|
||||
index_endpoint (str):
|
||||
The resource name of the Index Endpoint. Format:
|
||||
``projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}``
|
||||
index (str):
|
||||
The resource name of the Index. Format:
|
||||
``projects/{project}/locations/{location}/indexes/{index}``
|
||||
"""
|
||||
|
||||
index_endpoint: Optional[str] = None
|
||||
index: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RagManagedDb:
|
||||
"""RagManagedDb."""
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Pinecone:
|
||||
"""Pinecone.
|
||||
|
||||
Attributes:
|
||||
index_name: The Pinecone index name.
|
||||
api_key: The SecretManager resource name for the Pinecone DB API token. Format:
|
||||
``projects/{project}/secrets/{secret}/versions/{version}``
|
||||
"""
|
||||
|
||||
index_name: Optional[str] = None
|
||||
api_key: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class VertexAiSearchConfig:
|
||||
"""VertexAiSearchConfig.
|
||||
|
||||
Attributes:
|
||||
serving_config: The resource name of the Vertex AI Search serving config.
|
||||
Format:
|
||||
``projects/{project}/locations/{location}/collections/{collection}/engines/{engine}/servingConfigs/{serving_config}``
|
||||
or
|
||||
``projects/{project}/locations/{location}/collections/{collection}/dataStores/{data_store}/servingConfigs/{serving_config}``
|
||||
"""
|
||||
|
||||
serving_config: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RagVectorDbConfig:
|
||||
"""RagVectorDbConfig.
|
||||
|
||||
Attributes:
|
||||
vector_db: Can be one of the following: RagManagedDb, Pinecone,
|
||||
VertexVectorSearch.
|
||||
rag_embedding_model_config: The embedding model config of the Vector DB.
|
||||
"""
|
||||
|
||||
vector_db: Optional[
|
||||
Union[
|
||||
VertexVectorSearch,
|
||||
Pinecone,
|
||||
RagManagedDb,
|
||||
]
|
||||
] = None
|
||||
rag_embedding_model_config: Optional[RagEmbeddingModelConfig] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RagCorpus:
|
||||
"""RAG corpus(output only).
|
||||
|
||||
Attributes:
|
||||
name: Generated resource name. Format:
|
||||
``projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}``
|
||||
display_name: Display name that was configured at client side.
|
||||
description: The description of the RagCorpus.
|
||||
vertex_ai_search_config: The Vertex AI Search config of the RagCorpus.
|
||||
backend_config: The backend config of the RagCorpus. It can be a data
|
||||
store and/or retrieval engine.
|
||||
"""
|
||||
|
||||
name: Optional[str] = None
|
||||
display_name: Optional[str] = None
|
||||
description: Optional[str] = None
|
||||
vertex_ai_search_config: Optional[VertexAiSearchConfig] = None
|
||||
backend_config: Optional[
|
||||
Union[
|
||||
RagVectorDbConfig,
|
||||
None,
|
||||
]
|
||||
] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RagResource:
|
||||
"""RagResource.
|
||||
|
||||
The representation of the rag source. It can be used to specify corpus only
|
||||
or ragfiles. Currently only support one corpus or multiple files from one
|
||||
corpus. In the future we may open up multiple corpora support.
|
||||
|
||||
Attributes:
|
||||
rag_corpus: A Rag corpus resource name or corpus id. Format:
|
||||
``projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}``
|
||||
or ``{rag_corpus_id}``.
|
||||
rag_files_id: List of Rag file resource name or file ids in the same corpus. Format:
|
||||
``{rag_file}``.
|
||||
"""
|
||||
|
||||
rag_corpus: Optional[str] = None
|
||||
rag_file_ids: Optional[List[str]] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class SlackChannel:
|
||||
"""SlackChannel.
|
||||
|
||||
Attributes:
|
||||
channel_id: The Slack channel ID.
|
||||
api_key: The SecretManager resource name for the Slack API token. Format:
|
||||
``projects/{project}/secrets/{secret}/versions/{version}``
|
||||
See: https://api.slack.com/tutorials/tracks/getting-a-token.
|
||||
start_time: The starting timestamp for messages to import.
|
||||
end_time: The ending timestamp for messages to import.
|
||||
"""
|
||||
|
||||
channel_id: str
|
||||
api_key: str
|
||||
start_time: Optional[timestamp_pb2.Timestamp] = None
|
||||
end_time: Optional[timestamp_pb2.Timestamp] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class SlackChannelsSource:
|
||||
"""SlackChannelsSource.
|
||||
|
||||
Attributes:
|
||||
channels: The Slack channels.
|
||||
"""
|
||||
|
||||
channels: Sequence[SlackChannel]
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class JiraQuery:
|
||||
"""JiraQuery.
|
||||
|
||||
Attributes:
|
||||
email: The Jira email address.
|
||||
jira_projects: A list of Jira projects to import in their entirety.
|
||||
custom_queries: A list of custom JQL Jira queries to import.
|
||||
api_key: The SecretManager version resource name for Jira API access. Format:
|
||||
``projects/{project}/secrets/{secret}/versions/{version}``
|
||||
See: https://support.atlassian.com/atlassian-account/docs/manage-api-tokens-for-your-atlassian-account/
|
||||
server_uri: The Jira server URI. Format:
|
||||
``{server}.atlassian.net``
|
||||
"""
|
||||
|
||||
email: str
|
||||
jira_projects: Sequence[str]
|
||||
custom_queries: Sequence[str]
|
||||
api_key: str
|
||||
server_uri: str
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class JiraSource:
|
||||
"""JiraSource.
|
||||
|
||||
Attributes:
|
||||
queries: The Jira queries.
|
||||
"""
|
||||
|
||||
queries: Sequence[JiraQuery]
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class SharePointSource:
|
||||
"""SharePointSource.
|
||||
|
||||
Attributes:
|
||||
sharepoint_folder_path: The path of the SharePoint folder to download
|
||||
from.
|
||||
sharepoint_folder_id: The ID of the SharePoint folder to download
|
||||
from.
|
||||
drive_name: The name of the drive to download from.
|
||||
drive_id: The ID of the drive to download from.
|
||||
client_id: The Application ID for the app registered in
|
||||
Microsoft Azure Portal. The application must
|
||||
also be configured with MS Graph permissions
|
||||
"Files.ReadAll", "Sites.ReadAll" and
|
||||
BrowserSiteLists.Read.All.
|
||||
client_secret: The application secret for the app registered
|
||||
in Azure.
|
||||
tenant_id: Unique identifier of the Azure Active
|
||||
Directory Instance.
|
||||
sharepoint_site_name: The name of the SharePoint site to download
|
||||
from. This can be the site name or the site id.
|
||||
"""
|
||||
|
||||
sharepoint_folder_path: Optional[str] = None
|
||||
sharepoint_folder_id: Optional[str] = None
|
||||
drive_name: Optional[str] = None
|
||||
drive_id: Optional[str] = None
|
||||
client_id: str = None
|
||||
client_secret: str = None
|
||||
tenant_id: str = None
|
||||
sharepoint_site_name: str = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class SharePointSources:
|
||||
"""SharePointSources.
|
||||
|
||||
Attributes:
|
||||
share_point_sources: The SharePoint sources.
|
||||
"""
|
||||
|
||||
share_point_sources: Sequence[SharePointSource]
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Filter:
|
||||
"""Filter.
|
||||
|
||||
Attributes:
|
||||
vector_distance_threshold: Only returns contexts with vector
|
||||
distance smaller than the threshold.
|
||||
vector_similarity_threshold: Only returns contexts with vector
|
||||
similarity larger than the threshold.
|
||||
metadata_filter: String for metadata filtering.
|
||||
"""
|
||||
|
||||
vector_distance_threshold: Optional[float] = None
|
||||
vector_similarity_threshold: Optional[float] = None
|
||||
metadata_filter: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class LlmRanker:
|
||||
"""LlmRanker.
|
||||
|
||||
Attributes:
|
||||
model_name: The model name used for ranking. Only Gemini models are
|
||||
supported for now.
|
||||
"""
|
||||
|
||||
model_name: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RankService:
|
||||
"""RankService.
|
||||
|
||||
Attributes:
|
||||
model_name: The model name of the rank service. Format:
|
||||
``semantic-ranker-512@latest``
|
||||
"""
|
||||
|
||||
model_name: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Ranking:
|
||||
"""Ranking.
|
||||
|
||||
Attributes:
|
||||
rank_service: Config for Rank Service.
|
||||
llm_ranker: Config for LlmRanker.
|
||||
"""
|
||||
|
||||
rank_service: Optional[RankService] = None
|
||||
llm_ranker: Optional[LlmRanker] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RagRetrievalConfig:
|
||||
"""RagRetrievalConfig.
|
||||
|
||||
Attributes:
|
||||
top_k: The number of contexts to retrieve.
|
||||
filter: Config for filters.
|
||||
ranking: Config for ranking.
|
||||
"""
|
||||
|
||||
top_k: Optional[int] = None
|
||||
filter: Optional[Filter] = None
|
||||
ranking: Optional[Ranking] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class ChunkingConfig:
|
||||
"""ChunkingConfig.
|
||||
|
||||
Attributes:
|
||||
chunk_size: The size of each chunk.
|
||||
chunk_overlap: The size of the overlap between chunks.
|
||||
"""
|
||||
|
||||
chunk_size: int
|
||||
chunk_overlap: int
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class TransformationConfig:
|
||||
"""TransformationConfig.
|
||||
|
||||
Attributes:
|
||||
chunking_config: The chunking config.
|
||||
"""
|
||||
|
||||
chunking_config: Optional[ChunkingConfig] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class LayoutParserConfig:
|
||||
"""Configuration for the Document AI Layout Parser Processor.
|
||||
|
||||
Attributes:
|
||||
processor_name: The full resource name of a Document AI processor or
|
||||
processor version. The processor must have type
|
||||
`LAYOUT_PARSER_PROCESSOR`.
|
||||
Format must be one of the following:
|
||||
- `projects/{project_id}/locations/{location}/processors/{processor_id}`
|
||||
- `projects/{project_id}/locations/{location}/processors/{processor_id}/processorVersions/{processor_version_id}`
|
||||
max_parsing_requests_per_min: The maximum number of requests the job is
|
||||
allowed to make to the Document AI processor per minute. Consult
|
||||
https://cloud.google.com/document-ai/quotas and the Quota page for
|
||||
your project to set an appropriate value here. If unspecified, a
|
||||
default value of 120 QPM will be used.
|
||||
"""
|
||||
|
||||
processor_name: str
|
||||
max_parsing_requests_per_min: Optional[int] = None
|
||||
Reference in New Issue
Block a user