structure saas with tools
This commit is contained in:
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,849 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Copyright 2024 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import re
|
||||
from typing import Any, Dict, Optional, Sequence, Union
|
||||
from google.cloud.aiplatform import initializer
|
||||
from google.cloud.aiplatform.utils import (
|
||||
VertexRagClientWithOverride,
|
||||
VertexRagDataAsyncClientWithOverride,
|
||||
VertexRagDataClientWithOverride,
|
||||
)
|
||||
from google.cloud.aiplatform_v1beta1 import (
|
||||
GoogleDriveSource,
|
||||
ImportRagFilesConfig,
|
||||
ImportRagFilesRequest,
|
||||
JiraSource as GapicJiraSource,
|
||||
RagCorpus as GapicRagCorpus,
|
||||
RagEmbeddingModelConfig as GapicRagEmbeddingModelConfig,
|
||||
RagEngineConfig as GapicRagEngineConfig,
|
||||
RagFileChunkingConfig,
|
||||
RagFileParsingConfig,
|
||||
RagFileTransformationConfig,
|
||||
RagFile as GapicRagFile,
|
||||
RagManagedDbConfig as GapicRagManagedDbConfig,
|
||||
RagVectorDbConfig as GapicRagVectorDbConfig,
|
||||
SharePointSources as GapicSharePointSources,
|
||||
SlackSource as GapicSlackSource,
|
||||
VertexAiSearchConfig as GapicVertexAiSearchConfig,
|
||||
)
|
||||
from google.cloud.aiplatform_v1beta1.types import api_auth
|
||||
from vertexai.preview.rag.utils.resources import (
|
||||
EmbeddingModelConfig,
|
||||
JiraSource,
|
||||
LayoutParserConfig,
|
||||
LlmParserConfig,
|
||||
Pinecone,
|
||||
RagCorpus,
|
||||
RagEmbeddingModelConfig,
|
||||
RagEngineConfig,
|
||||
RagFile,
|
||||
RagManagedDb,
|
||||
RagManagedDbConfig,
|
||||
RagVectorDbConfig,
|
||||
Basic,
|
||||
Enterprise,
|
||||
SharePointSources,
|
||||
SlackChannelsSource,
|
||||
TransformationConfig,
|
||||
VertexAiSearchConfig,
|
||||
VertexFeatureStore,
|
||||
VertexPredictionEndpoint,
|
||||
VertexVectorSearch,
|
||||
Weaviate,
|
||||
)
|
||||
|
||||
|
||||
_VALID_RESOURCE_NAME_REGEX = "[a-z][a-zA-Z0-9._-]{0,127}"
|
||||
_VALID_DOCUMENT_AI_PROCESSOR_NAME_REGEX = (
|
||||
r"projects/[^/]+/locations/[^/]+/processors/[^/]+(?:/processorVersions/[^/]+)?"
|
||||
)
|
||||
|
||||
|
||||
def create_rag_data_service_client():
|
||||
return initializer.global_config.create_client(
|
||||
client_class=VertexRagDataClientWithOverride,
|
||||
).select_version("v1beta1")
|
||||
|
||||
|
||||
def create_rag_data_service_async_client():
|
||||
return initializer.global_config.create_client(
|
||||
client_class=VertexRagDataAsyncClientWithOverride,
|
||||
).select_version("v1beta1")
|
||||
|
||||
|
||||
def create_rag_service_client():
|
||||
return initializer.global_config.create_client(
|
||||
client_class=VertexRagClientWithOverride,
|
||||
).select_version("v1beta1")
|
||||
|
||||
|
||||
def convert_gapic_to_embedding_model_config(
|
||||
gapic_embedding_model_config: GapicRagEmbeddingModelConfig,
|
||||
) -> EmbeddingModelConfig:
|
||||
"""Convert GapicRagEmbeddingModelConfig to EmbeddingModelConfig."""
|
||||
embedding_model_config = EmbeddingModelConfig()
|
||||
path = gapic_embedding_model_config.vertex_prediction_endpoint.endpoint
|
||||
publisher_model = re.match(
|
||||
r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/publishers/google/models/(?P<model_id>.+?)$",
|
||||
path,
|
||||
)
|
||||
endpoint = re.match(
|
||||
r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/endpoints/(?P<endpoint>.+?)$",
|
||||
path,
|
||||
)
|
||||
if publisher_model:
|
||||
embedding_model_config.publisher_model = path
|
||||
if endpoint:
|
||||
embedding_model_config.endpoint = path
|
||||
embedding_model_config.model = (
|
||||
gapic_embedding_model_config.vertex_prediction_endpoint.model
|
||||
)
|
||||
embedding_model_config.model_version_id = (
|
||||
gapic_embedding_model_config.vertex_prediction_endpoint.model_version_id
|
||||
)
|
||||
|
||||
return embedding_model_config
|
||||
|
||||
|
||||
def _check_weaviate(gapic_vector_db: GapicRagVectorDbConfig) -> bool:
|
||||
try:
|
||||
return gapic_vector_db.__contains__("weaviate")
|
||||
except AttributeError:
|
||||
return gapic_vector_db.weaviate.ByteSize() > 0
|
||||
|
||||
|
||||
def _check_rag_managed_db(gapic_vector_db: GapicRagVectorDbConfig) -> bool:
|
||||
try:
|
||||
return gapic_vector_db.__contains__("rag_managed_db")
|
||||
except AttributeError:
|
||||
return gapic_vector_db.rag_managed_db.ByteSize() > 0
|
||||
|
||||
|
||||
def _check_vertex_feature_store(gapic_vector_db: GapicRagVectorDbConfig) -> bool:
|
||||
try:
|
||||
return gapic_vector_db.__contains__("vertex_feature_store")
|
||||
except AttributeError:
|
||||
return gapic_vector_db.vertex_feature_store.ByteSize() > 0
|
||||
|
||||
|
||||
def _check_pinecone(gapic_vector_db: GapicRagVectorDbConfig) -> bool:
|
||||
try:
|
||||
return gapic_vector_db.__contains__("pinecone")
|
||||
except AttributeError:
|
||||
return gapic_vector_db.pinecone.ByteSize() > 0
|
||||
|
||||
|
||||
def _check_vertex_vector_search(gapic_vector_db: GapicRagVectorDbConfig) -> bool:
|
||||
try:
|
||||
return gapic_vector_db.__contains__("vertex_vector_search")
|
||||
except AttributeError:
|
||||
return gapic_vector_db.vertex_vector_search.ByteSize() > 0
|
||||
|
||||
|
||||
def _check_rag_embedding_model_config(
|
||||
gapic_vector_db: GapicRagVectorDbConfig,
|
||||
) -> bool:
|
||||
try:
|
||||
return gapic_vector_db.__contains__("rag_embedding_model_config")
|
||||
except AttributeError:
|
||||
return gapic_vector_db.rag_embedding_model_config.ByteSize() > 0
|
||||
|
||||
|
||||
def convert_gapic_to_vector_db(
|
||||
gapic_vector_db: GapicRagVectorDbConfig,
|
||||
) -> Union[Weaviate, VertexFeatureStore, VertexVectorSearch, Pinecone, RagManagedDb]:
|
||||
"""Convert Gapic GapicRagVectorDbConfig to Weaviate, VertexFeatureStore, VertexVectorSearch, RagManagedDb, or Pinecone."""
|
||||
if _check_weaviate(gapic_vector_db):
|
||||
return Weaviate(
|
||||
weaviate_http_endpoint=gapic_vector_db.weaviate.http_endpoint,
|
||||
collection_name=gapic_vector_db.weaviate.collection_name,
|
||||
api_key=gapic_vector_db.api_auth.api_key_config.api_key_secret_version,
|
||||
)
|
||||
elif _check_vertex_feature_store(gapic_vector_db):
|
||||
return VertexFeatureStore(
|
||||
resource_name=gapic_vector_db.vertex_feature_store.feature_view_resource_name,
|
||||
)
|
||||
elif _check_pinecone(gapic_vector_db):
|
||||
return Pinecone(
|
||||
index_name=gapic_vector_db.pinecone.index_name,
|
||||
api_key=gapic_vector_db.api_auth.api_key_config.api_key_secret_version,
|
||||
)
|
||||
elif _check_vertex_vector_search(gapic_vector_db):
|
||||
return VertexVectorSearch(
|
||||
index_endpoint=gapic_vector_db.vertex_vector_search.index_endpoint,
|
||||
index=gapic_vector_db.vertex_vector_search.index,
|
||||
)
|
||||
elif _check_rag_managed_db(gapic_vector_db):
|
||||
return RagManagedDb()
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def convert_gapic_to_vertex_ai_search_config(
|
||||
gapic_vertex_ai_search_config: VertexAiSearchConfig,
|
||||
) -> VertexAiSearchConfig:
|
||||
"""Convert Gapic VertexAiSearchConfig to VertexAiSearchConfig."""
|
||||
if gapic_vertex_ai_search_config.serving_config:
|
||||
return VertexAiSearchConfig(
|
||||
serving_config=gapic_vertex_ai_search_config.serving_config,
|
||||
)
|
||||
return None
|
||||
|
||||
|
||||
def convert_gapic_to_rag_embedding_model_config(
|
||||
gapic_embedding_model_config: GapicRagEmbeddingModelConfig,
|
||||
) -> RagEmbeddingModelConfig:
|
||||
"""Convert GapicRagEmbeddingModelConfig to RagEmbeddingModelConfig."""
|
||||
embedding_model_config = RagEmbeddingModelConfig()
|
||||
path = gapic_embedding_model_config.vertex_prediction_endpoint.endpoint
|
||||
publisher_model = re.match(
|
||||
r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/publishers/google/models/(?P<model_id>.+?)$",
|
||||
path,
|
||||
)
|
||||
endpoint = re.match(
|
||||
r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/endpoints/(?P<endpoint>.+?)$",
|
||||
path,
|
||||
)
|
||||
if publisher_model:
|
||||
embedding_model_config.vertex_prediction_endpoint = VertexPredictionEndpoint(
|
||||
publisher_model=path
|
||||
)
|
||||
if endpoint:
|
||||
embedding_model_config.vertex_prediction_endpoint = VertexPredictionEndpoint(
|
||||
endpoint=path,
|
||||
model=gapic_embedding_model_config.vertex_prediction_endpoint.model,
|
||||
model_version_id=gapic_embedding_model_config.vertex_prediction_endpoint.model_version_id,
|
||||
)
|
||||
return embedding_model_config
|
||||
|
||||
|
||||
def convert_gapic_to_backend_config(
|
||||
gapic_vector_db: GapicRagVectorDbConfig,
|
||||
) -> RagVectorDbConfig:
|
||||
"""Convert Gapic RagVectorDbConfig to VertexVectorSearch, Pinecone, or RagManagedDb."""
|
||||
vector_config = RagVectorDbConfig()
|
||||
if _check_pinecone(gapic_vector_db):
|
||||
vector_config.vector_db = Pinecone(
|
||||
index_name=gapic_vector_db.pinecone.index_name,
|
||||
api_key=gapic_vector_db.api_auth.api_key_config.api_key_secret_version,
|
||||
)
|
||||
elif _check_vertex_vector_search(gapic_vector_db):
|
||||
vector_config.vector_db = VertexVectorSearch(
|
||||
index_endpoint=gapic_vector_db.vertex_vector_search.index_endpoint,
|
||||
index=gapic_vector_db.vertex_vector_search.index,
|
||||
)
|
||||
elif _check_rag_managed_db(gapic_vector_db):
|
||||
vector_config.vector_db = RagManagedDb()
|
||||
if _check_rag_embedding_model_config(gapic_vector_db):
|
||||
vector_config.rag_embedding_model_config = (
|
||||
convert_gapic_to_rag_embedding_model_config(
|
||||
gapic_vector_db.rag_embedding_model_config
|
||||
)
|
||||
)
|
||||
return vector_config
|
||||
|
||||
|
||||
def convert_gapic_to_rag_corpus(gapic_rag_corpus: GapicRagCorpus) -> RagCorpus:
|
||||
"""Convert GapicRagCorpus to RagCorpus."""
|
||||
rag_corpus = RagCorpus(
|
||||
name=gapic_rag_corpus.name,
|
||||
display_name=gapic_rag_corpus.display_name,
|
||||
description=gapic_rag_corpus.description,
|
||||
embedding_model_config=convert_gapic_to_embedding_model_config(
|
||||
gapic_rag_corpus.rag_embedding_model_config
|
||||
),
|
||||
vector_db=convert_gapic_to_vector_db(gapic_rag_corpus.rag_vector_db_config),
|
||||
vertex_ai_search_config=convert_gapic_to_vertex_ai_search_config(
|
||||
gapic_rag_corpus.vertex_ai_search_config
|
||||
),
|
||||
backend_config=convert_gapic_to_backend_config(
|
||||
gapic_rag_corpus.rag_vector_db_config
|
||||
),
|
||||
)
|
||||
return rag_corpus
|
||||
|
||||
|
||||
def convert_gapic_to_rag_corpus_no_embedding_model_config(
|
||||
gapic_rag_corpus: GapicRagCorpus,
|
||||
) -> RagCorpus:
|
||||
"""Convert GapicRagCorpus without embedding model config (for UpdateRagCorpus) to RagCorpus."""
|
||||
rag_vector_db_config_no_embedding_model_config = gapic_rag_corpus.vector_db_config
|
||||
rag_vector_db_config_no_embedding_model_config.rag_embedding_model_config = None
|
||||
rag_corpus = RagCorpus(
|
||||
name=gapic_rag_corpus.name,
|
||||
display_name=gapic_rag_corpus.display_name,
|
||||
description=gapic_rag_corpus.description,
|
||||
vector_db=convert_gapic_to_vector_db(gapic_rag_corpus.rag_vector_db_config),
|
||||
vertex_ai_search_config=convert_gapic_to_vertex_ai_search_config(
|
||||
gapic_rag_corpus.vertex_ai_search_config
|
||||
),
|
||||
backend_config=convert_gapic_to_backend_config(
|
||||
rag_vector_db_config_no_embedding_model_config
|
||||
),
|
||||
)
|
||||
return rag_corpus
|
||||
|
||||
|
||||
def convert_gapic_to_rag_file(gapic_rag_file: GapicRagFile) -> RagFile:
|
||||
"""Convert GapicRagFile to RagFile."""
|
||||
rag_file = RagFile(
|
||||
name=gapic_rag_file.name,
|
||||
display_name=gapic_rag_file.display_name,
|
||||
description=gapic_rag_file.description,
|
||||
)
|
||||
return rag_file
|
||||
|
||||
|
||||
def convert_json_to_rag_file(upload_rag_file_response: Dict[str, Any]) -> RagFile:
|
||||
"""Converts a JSON response to a RagFile."""
|
||||
rag_file = RagFile(
|
||||
name=upload_rag_file_response.get("ragFile").get("name"),
|
||||
display_name=upload_rag_file_response.get("ragFile").get("displayName"),
|
||||
description=upload_rag_file_response.get("ragFile").get("description"),
|
||||
)
|
||||
return rag_file
|
||||
|
||||
|
||||
def convert_path_to_resource_id(
|
||||
path: str,
|
||||
) -> Union[str, GoogleDriveSource.ResourceId]:
|
||||
"""Converts a path to a Google Cloud storage uri or GoogleDriveSource.ResourceId."""
|
||||
if path.startswith("gs://"):
|
||||
# Google Cloud Storage source
|
||||
return path
|
||||
elif path.startswith("https://drive.google.com/"):
|
||||
# Google Drive source
|
||||
path_list = path.split("/")
|
||||
if "file" in path_list:
|
||||
index = path_list.index("file") + 2
|
||||
resource_id = path_list[index].split("?")[0]
|
||||
resource_type = GoogleDriveSource.ResourceId.ResourceType.RESOURCE_TYPE_FILE
|
||||
elif "folders" in path_list:
|
||||
index = path_list.index("folders") + 1
|
||||
resource_id = path_list[index].split("?")[0]
|
||||
resource_type = (
|
||||
GoogleDriveSource.ResourceId.ResourceType.RESOURCE_TYPE_FOLDER
|
||||
)
|
||||
else:
|
||||
raise ValueError("path %s is not a valid Google Drive url.", path)
|
||||
|
||||
return GoogleDriveSource.ResourceId(
|
||||
resource_id=resource_id,
|
||||
resource_type=resource_type,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"path must be a Google Cloud Storage uri or a Google Drive url."
|
||||
)
|
||||
|
||||
|
||||
def convert_source_for_rag_import(
|
||||
source: Union[SlackChannelsSource, JiraSource, SharePointSources]
|
||||
) -> Union[GapicSlackSource, GapicJiraSource]:
|
||||
"""Converts a SlackChannelsSource or JiraSource to a GapicSlackSource or GapicJiraSource."""
|
||||
if isinstance(source, SlackChannelsSource):
|
||||
result_source_channels = []
|
||||
for channel in source.channels:
|
||||
api_key = channel.api_key
|
||||
cid = channel.channel_id
|
||||
start_time = channel.start_time
|
||||
end_time = channel.end_time
|
||||
result_channels = GapicSlackSource.SlackChannels(
|
||||
channels=[
|
||||
GapicSlackSource.SlackChannels.SlackChannel(
|
||||
channel_id=cid,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
)
|
||||
],
|
||||
api_key_config=api_auth.ApiAuth.ApiKeyConfig(
|
||||
api_key_secret_version=api_key
|
||||
),
|
||||
)
|
||||
result_source_channels.append(result_channels)
|
||||
return GapicSlackSource(
|
||||
channels=result_source_channels,
|
||||
)
|
||||
elif isinstance(source, JiraSource):
|
||||
result_source_queries = []
|
||||
for query in source.queries:
|
||||
api_key = query.api_key
|
||||
custom_queries = query.custom_queries
|
||||
projects = query.jira_projects
|
||||
email = query.email
|
||||
server_uri = query.server_uri
|
||||
result_query = GapicJiraSource.JiraQueries(
|
||||
custom_queries=custom_queries,
|
||||
projects=projects,
|
||||
email=email,
|
||||
server_uri=server_uri,
|
||||
api_key_config=api_auth.ApiAuth.ApiKeyConfig(
|
||||
api_key_secret_version=api_key
|
||||
),
|
||||
)
|
||||
result_source_queries.append(result_query)
|
||||
return GapicJiraSource(
|
||||
jira_queries=result_source_queries,
|
||||
)
|
||||
elif isinstance(source, SharePointSources):
|
||||
result_source_share_point_sources = []
|
||||
for share_point_source in source.share_point_sources:
|
||||
sharepoint_folder_path = share_point_source.sharepoint_folder_path
|
||||
sharepoint_folder_id = share_point_source.sharepoint_folder_id
|
||||
drive_name = share_point_source.drive_name
|
||||
drive_id = share_point_source.drive_id
|
||||
client_id = share_point_source.client_id
|
||||
client_secret = share_point_source.client_secret
|
||||
tenant_id = share_point_source.tenant_id
|
||||
sharepoint_site_name = share_point_source.sharepoint_site_name
|
||||
result_share_point_source = GapicSharePointSources.SharePointSource(
|
||||
client_id=client_id,
|
||||
client_secret=api_auth.ApiAuth.ApiKeyConfig(
|
||||
api_key_secret_version=client_secret
|
||||
),
|
||||
tenant_id=tenant_id,
|
||||
sharepoint_site_name=sharepoint_site_name,
|
||||
)
|
||||
if sharepoint_folder_path is not None and sharepoint_folder_id is not None:
|
||||
raise ValueError(
|
||||
"sharepoint_folder_path and sharepoint_folder_id cannot both be set."
|
||||
)
|
||||
elif sharepoint_folder_path is not None:
|
||||
result_share_point_source.sharepoint_folder_path = (
|
||||
sharepoint_folder_path
|
||||
)
|
||||
elif sharepoint_folder_id is not None:
|
||||
result_share_point_source.sharepoint_folder_id = sharepoint_folder_id
|
||||
if drive_name is not None and drive_id is not None:
|
||||
raise ValueError("drive_name and drive_id cannot both be set.")
|
||||
elif drive_name is not None:
|
||||
result_share_point_source.drive_name = drive_name
|
||||
elif drive_id is not None:
|
||||
result_share_point_source.drive_id = drive_id
|
||||
else:
|
||||
raise ValueError("Either drive_name and drive_id must be set.")
|
||||
result_source_share_point_sources.append(result_share_point_source)
|
||||
return GapicSharePointSources(
|
||||
share_point_sources=result_source_share_point_sources,
|
||||
)
|
||||
else:
|
||||
raise TypeError(
|
||||
"source must be a SlackChannelsSource or JiraSource or SharePointSources."
|
||||
)
|
||||
|
||||
|
||||
def prepare_import_files_request(
|
||||
corpus_name: str,
|
||||
paths: Optional[Sequence[str]] = None,
|
||||
source: Optional[Union[SlackChannelsSource, JiraSource, SharePointSources]] = None,
|
||||
chunk_size: int = 1024,
|
||||
chunk_overlap: int = 200,
|
||||
transformation_config: Optional[TransformationConfig] = None,
|
||||
max_embedding_requests_per_min: int = 1000,
|
||||
use_advanced_pdf_parsing: bool = False,
|
||||
partial_failures_sink: Optional[str] = None,
|
||||
layout_parser: Optional[LayoutParserConfig] = None,
|
||||
llm_parser: Optional[LlmParserConfig] = None,
|
||||
) -> ImportRagFilesRequest:
|
||||
if len(corpus_name.split("/")) != 6:
|
||||
raise ValueError(
|
||||
"corpus_name must be of the format `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`"
|
||||
)
|
||||
|
||||
rag_file_parsing_config = RagFileParsingConfig(
|
||||
advanced_parser=RagFileParsingConfig.AdvancedParser(
|
||||
use_advanced_pdf_parsing=use_advanced_pdf_parsing,
|
||||
),
|
||||
)
|
||||
if layout_parser is not None:
|
||||
if (
|
||||
re.fullmatch(
|
||||
_VALID_DOCUMENT_AI_PROCESSOR_NAME_REGEX, layout_parser.processor_name
|
||||
)
|
||||
is None
|
||||
):
|
||||
raise ValueError(
|
||||
"processor_name must be of the format "
|
||||
"`projects/{project_id}/locations/{location}/processors/{processor_id}`"
|
||||
"or "
|
||||
"`projects/{project_id}/locations/{location}/processors/{processor_id}/processorVersions/{processor_version_id}`, "
|
||||
f"got {layout_parser.processor_name!r}"
|
||||
)
|
||||
rag_file_parsing_config.layout_parser = RagFileParsingConfig.LayoutParser(
|
||||
processor_name=layout_parser.processor_name,
|
||||
max_parsing_requests_per_min=layout_parser.max_parsing_requests_per_min,
|
||||
)
|
||||
if llm_parser is not None:
|
||||
rag_file_parsing_config.llm_parser = RagFileParsingConfig.LlmParser(
|
||||
model_name=llm_parser.model_name
|
||||
)
|
||||
if llm_parser.max_parsing_requests_per_min is not None:
|
||||
rag_file_parsing_config.llm_parser.max_parsing_requests_per_min = (
|
||||
llm_parser.max_parsing_requests_per_min
|
||||
)
|
||||
if llm_parser.custom_parsing_prompt is not None:
|
||||
rag_file_parsing_config.llm_parser.custom_parsing_prompt = (
|
||||
llm_parser.custom_parsing_prompt
|
||||
)
|
||||
|
||||
local_chunk_size = chunk_size
|
||||
local_chunk_overlap = chunk_overlap
|
||||
if transformation_config and transformation_config.chunking_config:
|
||||
local_chunk_size = transformation_config.chunking_config.chunk_size
|
||||
local_chunk_overlap = transformation_config.chunking_config.chunk_overlap
|
||||
|
||||
rag_file_transformation_config = RagFileTransformationConfig(
|
||||
rag_file_chunking_config=RagFileChunkingConfig(
|
||||
fixed_length_chunking=RagFileChunkingConfig.FixedLengthChunking(
|
||||
chunk_size=local_chunk_size,
|
||||
chunk_overlap=local_chunk_overlap,
|
||||
),
|
||||
),
|
||||
)
|
||||
import_rag_files_config = ImportRagFilesConfig(
|
||||
rag_file_transformation_config=rag_file_transformation_config,
|
||||
max_embedding_requests_per_min=max_embedding_requests_per_min,
|
||||
rag_file_parsing_config=rag_file_parsing_config,
|
||||
)
|
||||
|
||||
if source is not None:
|
||||
gapic_source = convert_source_for_rag_import(source)
|
||||
if isinstance(gapic_source, GapicSlackSource):
|
||||
import_rag_files_config.slack_source = gapic_source
|
||||
if isinstance(gapic_source, GapicJiraSource):
|
||||
import_rag_files_config.jira_source = gapic_source
|
||||
if isinstance(gapic_source, GapicSharePointSources):
|
||||
import_rag_files_config.share_point_sources = gapic_source
|
||||
else:
|
||||
uris = []
|
||||
resource_ids = []
|
||||
for p in paths:
|
||||
output = convert_path_to_resource_id(p)
|
||||
if isinstance(output, str):
|
||||
uris.append(p)
|
||||
else:
|
||||
resource_ids.append(output)
|
||||
if uris:
|
||||
import_rag_files_config.gcs_source.uris = uris
|
||||
if resource_ids:
|
||||
google_drive_source = GoogleDriveSource(
|
||||
resource_ids=resource_ids,
|
||||
)
|
||||
import_rag_files_config.google_drive_source = google_drive_source
|
||||
|
||||
if partial_failures_sink is not None:
|
||||
if partial_failures_sink.startswith("gs://"):
|
||||
import_rag_files_config.partial_failure_gcs_sink.output_uri_prefix = (
|
||||
partial_failures_sink
|
||||
)
|
||||
elif partial_failures_sink.startswith(
|
||||
"bq://"
|
||||
) or partial_failures_sink.startswith("bigquery://"):
|
||||
import_rag_files_config.partial_failure_bigquery_sink.output_uri = (
|
||||
partial_failures_sink
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"if provided, partial_failures_sink must be a GCS path or a BigQuery table."
|
||||
)
|
||||
|
||||
request = ImportRagFilesRequest(
|
||||
parent=corpus_name, import_rag_files_config=import_rag_files_config
|
||||
)
|
||||
return request
|
||||
|
||||
|
||||
def get_corpus_name(
|
||||
name: str,
|
||||
) -> str:
|
||||
if name:
|
||||
client = create_rag_data_service_client()
|
||||
if client.parse_rag_corpus_path(name):
|
||||
return name
|
||||
elif re.match("^{}$".format(_VALID_RESOURCE_NAME_REGEX), name):
|
||||
return client.rag_corpus_path(
|
||||
project=initializer.global_config.project,
|
||||
location=initializer.global_config.location,
|
||||
rag_corpus=name,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"name must be of the format `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}` or `{rag_corpus}`"
|
||||
)
|
||||
return name
|
||||
|
||||
|
||||
def get_file_name(
|
||||
name: str,
|
||||
corpus_name: str,
|
||||
) -> str:
|
||||
client = create_rag_data_service_client()
|
||||
if client.parse_rag_file_path(name):
|
||||
return name
|
||||
elif re.match("^{}$".format(_VALID_RESOURCE_NAME_REGEX), name):
|
||||
if not corpus_name:
|
||||
raise ValueError(
|
||||
"corpus_name must be provided if name is a `{rag_file}`, not a "
|
||||
"full resource name (`projects/{project}/locations/{location}/ragCorpora/{rag_corpus}/ragFiles/{rag_file}`). "
|
||||
)
|
||||
return client.rag_file_path(
|
||||
project=initializer.global_config.project,
|
||||
location=initializer.global_config.location,
|
||||
rag_corpus=get_corpus_name(corpus_name),
|
||||
rag_file=name,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"name must be of the format `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}/ragFiles/{rag_file}` or `{rag_file}`"
|
||||
)
|
||||
|
||||
|
||||
def set_embedding_model_config(
|
||||
embedding_model_config: EmbeddingModelConfig,
|
||||
rag_corpus: GapicRagCorpus,
|
||||
) -> None:
|
||||
if embedding_model_config.publisher_model and embedding_model_config.endpoint:
|
||||
raise ValueError("publisher_model and endpoint cannot be set at the same time.")
|
||||
if (
|
||||
not embedding_model_config.publisher_model
|
||||
and not embedding_model_config.endpoint
|
||||
):
|
||||
raise ValueError("At least one of publisher_model and endpoint must be set.")
|
||||
parent = initializer.global_config.common_location_path(project=None, location=None)
|
||||
|
||||
if embedding_model_config.publisher_model:
|
||||
publisher_model = embedding_model_config.publisher_model
|
||||
full_resource_name = re.match(
|
||||
r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/publishers/google/models/(?P<model_id>.+?)$",
|
||||
publisher_model,
|
||||
)
|
||||
resource_name = re.match(
|
||||
r"^publishers/google/models/(?P<model_id>.+?)$",
|
||||
publisher_model,
|
||||
)
|
||||
if full_resource_name:
|
||||
rag_corpus.rag_embedding_model_config.vertex_prediction_endpoint.endpoint = (
|
||||
publisher_model
|
||||
)
|
||||
elif resource_name:
|
||||
rag_corpus.rag_embedding_model_config.vertex_prediction_endpoint.endpoint = (
|
||||
parent + "/" + publisher_model
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"publisher_model must be of the format `projects/{project}/locations/{location}/publishers/google/models/{model_id}` or `publishers/google/models/{model_id}`"
|
||||
)
|
||||
|
||||
if embedding_model_config.endpoint:
|
||||
endpoint = embedding_model_config.endpoint
|
||||
full_resource_name = re.match(
|
||||
r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/endpoints/(?P<endpoint>.+?)$",
|
||||
endpoint,
|
||||
)
|
||||
resource_name = re.match(
|
||||
r"^endpoints/(?P<endpoint>.+?)$",
|
||||
endpoint,
|
||||
)
|
||||
if full_resource_name:
|
||||
rag_corpus.rag_embedding_model_config.vertex_prediction_endpoint.endpoint = (
|
||||
endpoint
|
||||
)
|
||||
elif resource_name:
|
||||
rag_corpus.rag_embedding_model_config.vertex_prediction_endpoint.endpoint = (
|
||||
parent + "/" + endpoint
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"endpoint must be of the format `projects/{project}/locations/{location}/endpoints/{endpoint}` or `endpoints/{endpoint}`"
|
||||
)
|
||||
|
||||
|
||||
def set_vector_db(
|
||||
vector_db: Union[
|
||||
Weaviate, VertexFeatureStore, VertexVectorSearch, Pinecone, RagManagedDb, None
|
||||
],
|
||||
rag_corpus: GapicRagCorpus,
|
||||
) -> None:
|
||||
"""Sets the vector db configuration for the rag corpus."""
|
||||
if vector_db is None or isinstance(vector_db, RagManagedDb):
|
||||
rag_corpus.rag_vector_db_config = GapicRagVectorDbConfig(
|
||||
rag_managed_db=GapicRagVectorDbConfig.RagManagedDb(),
|
||||
)
|
||||
elif isinstance(vector_db, Weaviate):
|
||||
http_endpoint = vector_db.weaviate_http_endpoint
|
||||
collection_name = vector_db.collection_name
|
||||
api_key = vector_db.api_key
|
||||
|
||||
rag_corpus.rag_vector_db_config = GapicRagVectorDbConfig(
|
||||
weaviate=GapicRagVectorDbConfig.Weaviate(
|
||||
http_endpoint=http_endpoint,
|
||||
collection_name=collection_name,
|
||||
),
|
||||
api_auth=api_auth.ApiAuth(
|
||||
api_key_config=api_auth.ApiAuth.ApiKeyConfig(
|
||||
api_key_secret_version=api_key
|
||||
),
|
||||
),
|
||||
)
|
||||
elif isinstance(vector_db, VertexFeatureStore):
|
||||
resource_name = vector_db.resource_name
|
||||
|
||||
rag_corpus.rag_vector_db_config = GapicRagVectorDbConfig(
|
||||
vertex_feature_store=GapicRagVectorDbConfig.VertexFeatureStore(
|
||||
feature_view_resource_name=resource_name,
|
||||
),
|
||||
)
|
||||
elif isinstance(vector_db, VertexVectorSearch):
|
||||
index_endpoint = vector_db.index_endpoint
|
||||
index = vector_db.index
|
||||
|
||||
rag_corpus.rag_vector_db_config = GapicRagVectorDbConfig(
|
||||
vertex_vector_search=GapicRagVectorDbConfig.VertexVectorSearch(
|
||||
index_endpoint=index_endpoint,
|
||||
index=index,
|
||||
),
|
||||
)
|
||||
elif isinstance(vector_db, Pinecone):
|
||||
index_name = vector_db.index_name
|
||||
api_key = vector_db.api_key
|
||||
|
||||
rag_corpus.rag_vector_db_config = GapicRagVectorDbConfig(
|
||||
pinecone=GapicRagVectorDbConfig.Pinecone(
|
||||
index_name=index_name,
|
||||
),
|
||||
api_auth=api_auth.ApiAuth(
|
||||
api_key_config=api_auth.ApiAuth.ApiKeyConfig(
|
||||
api_key_secret_version=api_key
|
||||
),
|
||||
),
|
||||
)
|
||||
else:
|
||||
raise TypeError(
|
||||
"vector_db must be a Weaviate, VertexFeatureStore, VertexVectorSearch, RagManagedDb, or Pinecone."
|
||||
)
|
||||
|
||||
|
||||
def set_vertex_ai_search_config(
|
||||
vertex_ai_search_config: VertexAiSearchConfig,
|
||||
rag_corpus: GapicRagCorpus,
|
||||
) -> None:
|
||||
if not vertex_ai_search_config.serving_config:
|
||||
raise ValueError("serving_config must be set.")
|
||||
engine_resource_name = re.match(
|
||||
r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/collections/(?P<collection>.+?)/engines/(?P<engine>.+?)/servingConfigs/(?P<serving_config>.+?)$",
|
||||
vertex_ai_search_config.serving_config,
|
||||
)
|
||||
data_store_resource_name = re.match(
|
||||
r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/collections/(?P<collection>.+?)/dataStores/(?P<data_store>.+?)/servingConfigs/(?P<serving_config>.+?)$",
|
||||
vertex_ai_search_config.serving_config,
|
||||
)
|
||||
if engine_resource_name or data_store_resource_name:
|
||||
rag_corpus.vertex_ai_search_config = GapicVertexAiSearchConfig(
|
||||
serving_config=vertex_ai_search_config.serving_config,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"serving_config must be of the format `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}/servingConfigs/{serving_config}` or `projects/{project}/locations/{location}/collections/{collection}/dataStores/{data_store}/servingConfigs/{serving_config}`"
|
||||
)
|
||||
|
||||
|
||||
def set_backend_config(
|
||||
backend_config: Optional[
|
||||
Union[
|
||||
RagVectorDbConfig,
|
||||
None,
|
||||
]
|
||||
],
|
||||
rag_corpus: GapicRagCorpus,
|
||||
) -> None:
|
||||
"""Sets the vector db configuration for the rag corpus."""
|
||||
if backend_config is None:
|
||||
return
|
||||
|
||||
if backend_config.vector_db is not None:
|
||||
vector_config = backend_config.vector_db
|
||||
if vector_config is None or isinstance(vector_config, RagManagedDb):
|
||||
rag_corpus.vector_db_config.rag_managed_db.CopyFrom(
|
||||
GapicRagVectorDbConfig.RagManagedDb()
|
||||
)
|
||||
elif isinstance(vector_config, VertexVectorSearch):
|
||||
index_endpoint = vector_config.index_endpoint
|
||||
index = vector_config.index
|
||||
|
||||
rag_corpus.vector_db_config.vertex_vector_search.index_endpoint = (
|
||||
index_endpoint
|
||||
)
|
||||
rag_corpus.vector_db_config.vertex_vector_search.index = index
|
||||
elif isinstance(vector_config, Pinecone):
|
||||
index_name = vector_config.index_name
|
||||
api_key = vector_config.api_key
|
||||
|
||||
rag_corpus.vector_db_config.pinecone.index_name = index_name
|
||||
rag_corpus.vector_db_config.api_auth.api_key_config.api_key_secret_version = (
|
||||
api_key
|
||||
)
|
||||
else:
|
||||
raise TypeError(
|
||||
"backend_config must be a VertexFeatureStore,"
|
||||
"RagManagedDb, or Pinecone."
|
||||
)
|
||||
if backend_config.rag_embedding_model_config:
|
||||
set_embedding_model_config(
|
||||
backend_config.rag_embedding_model_config, rag_corpus
|
||||
)
|
||||
|
||||
|
||||
def convert_gapic_to_rag_engine_config(
|
||||
response: GapicRagEngineConfig,
|
||||
) -> RagEngineConfig:
|
||||
"""Converts a GapicRagEngineConfig to a RagEngineConfig."""
|
||||
rag_managed_db_config = RagManagedDbConfig()
|
||||
# If future fields are added with similar names, beware that __contains__
|
||||
# may match them.
|
||||
if response.rag_managed_db_config.__contains__("enterprise"):
|
||||
rag_managed_db_config.tier = Enterprise()
|
||||
elif response.rag_managed_db_config.__contains__("basic"):
|
||||
rag_managed_db_config.tier = Basic()
|
||||
else:
|
||||
raise ValueError("At least one of rag_managed_db_config must be set.")
|
||||
return RagEngineConfig(
|
||||
name=response.name,
|
||||
rag_managed_db_config=rag_managed_db_config,
|
||||
)
|
||||
|
||||
|
||||
def convert_rag_engine_config_to_gapic(
|
||||
rag_engine_config: RagEngineConfig,
|
||||
) -> GapicRagEngineConfig:
|
||||
"""Converts a RagEngineConfig to a GapicRagEngineConfig."""
|
||||
rag_managed_db_config = GapicRagManagedDbConfig()
|
||||
if (
|
||||
rag_engine_config.rag_managed_db_config is None
|
||||
or rag_engine_config.rag_managed_db_config.tier is None
|
||||
):
|
||||
rag_managed_db_config = GapicRagManagedDbConfig(
|
||||
enterprise=GapicRagManagedDbConfig.Enterprise()
|
||||
)
|
||||
else:
|
||||
if isinstance(rag_engine_config.rag_managed_db_config.tier, Enterprise):
|
||||
rag_managed_db_config.enterprise = GapicRagManagedDbConfig.Enterprise()
|
||||
elif isinstance(rag_engine_config.rag_managed_db_config.tier, Basic):
|
||||
rag_managed_db_config.basic = GapicRagManagedDbConfig.Basic()
|
||||
return GapicRagEngineConfig(
|
||||
name=rag_engine_config.name,
|
||||
rag_managed_db_config=rag_managed_db_config,
|
||||
)
|
||||
@@ -0,0 +1,576 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Copyright 2024 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import dataclasses
|
||||
from typing import List, Optional, Sequence, Union
|
||||
|
||||
from google.protobuf import timestamp_pb2
|
||||
|
||||
DEPRECATION_DATE = "June 2025"
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RagFile:
|
||||
"""RAG file (output only).
|
||||
|
||||
Attributes:
|
||||
name: Generated resource name. Format:
|
||||
``projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}/ragFiles/{rag_file}``
|
||||
display_name: Display name that was configured at client side.
|
||||
description: The description of the RagFile.
|
||||
"""
|
||||
|
||||
name: Optional[str] = None
|
||||
display_name: Optional[str] = None
|
||||
description: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class EmbeddingModelConfig:
|
||||
"""EmbeddingModelConfig.
|
||||
|
||||
The representation of the embedding model config. Users input a 1P embedding
|
||||
model as a Publisher model resource, or a 1P fine tuned embedding model
|
||||
as an Endpoint resource.
|
||||
|
||||
Attributes:
|
||||
publisher_model: 1P publisher model resource name. Format:
|
||||
``publishers/google/models/{model}`` or
|
||||
``projects/{project}/locations/{location}/publishers/google/models/{model}``
|
||||
endpoint: 1P fine tuned embedding model resource name. Format:
|
||||
``endpoints/{endpoint}`` or
|
||||
``projects/{project}/locations/{location}/endpoints/{endpoint}``.
|
||||
model:
|
||||
Output only. The resource name of the model that is deployed
|
||||
on the endpoint. Present only when the endpoint is not a
|
||||
publisher model. Pattern:
|
||||
``projects/{project}/locations/{location}/models/{model}``
|
||||
model_version_id:
|
||||
Output only. Version ID of the model that is
|
||||
deployed on the endpoint. Present only when the
|
||||
endpoint is not a publisher model.
|
||||
"""
|
||||
|
||||
publisher_model: Optional[str] = None
|
||||
endpoint: Optional[str] = None
|
||||
model: Optional[str] = None
|
||||
model_version_id: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class VertexPredictionEndpoint:
|
||||
"""VertexPredictionEndpoint.
|
||||
|
||||
Attributes:
|
||||
publisher_model: 1P publisher model resource name. Format:
|
||||
``publishers/google/models/{model}`` or
|
||||
``projects/{project}/locations/{location}/publishers/google/models/{model}``
|
||||
endpoint: 1P fine tuned embedding model resource name. Format:
|
||||
``endpoints/{endpoint}`` or
|
||||
``projects/{project}/locations/{location}/endpoints/{endpoint}``.
|
||||
model:
|
||||
Output only. The resource name of the model that is deployed
|
||||
on the endpoint. Present only when the endpoint is not a
|
||||
publisher model. Pattern:
|
||||
``projects/{project}/locations/{location}/models/{model}``
|
||||
model_version_id:
|
||||
Output only. Version ID of the model that is
|
||||
deployed on the endpoint. Present only when the
|
||||
endpoint is not a publisher model.
|
||||
"""
|
||||
|
||||
endpoint: Optional[str] = None
|
||||
publisher_model: Optional[str] = None
|
||||
model: Optional[str] = None
|
||||
model_version_id: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RagEmbeddingModelConfig:
|
||||
"""RagEmbeddingModelConfig.
|
||||
|
||||
Attributes:
|
||||
vertex_prediction_endpoint: The Vertex AI Prediction Endpoint resource
|
||||
name. Format:
|
||||
``projects/{project}/locations/{location}/endpoints/{endpoint}``
|
||||
"""
|
||||
|
||||
vertex_prediction_endpoint: Optional[VertexPredictionEndpoint] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Weaviate:
|
||||
"""Weaviate.
|
||||
|
||||
Attributes:
|
||||
weaviate_http_endpoint: The Weaviate DB instance HTTP endpoint
|
||||
collection_name: The corresponding Weaviate collection this corpus maps to
|
||||
api_key: The SecretManager resource name for the Weaviate DB API token. Format:
|
||||
``projects/{project}/secrets/{secret}/versions/{version}``
|
||||
"""
|
||||
|
||||
weaviate_http_endpoint: Optional[str] = None
|
||||
collection_name: Optional[str] = None
|
||||
api_key: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class VertexFeatureStore:
|
||||
"""VertexFeatureStore.
|
||||
|
||||
Attributes:
|
||||
resource_name: The resource name of the FeatureView. Format:
|
||||
``projects/{project}/locations/{location}/featureOnlineStores/
|
||||
{feature_online_store}/featureViews/{feature_view}``
|
||||
"""
|
||||
|
||||
resource_name: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class VertexVectorSearch:
|
||||
"""VertexVectorSearch.
|
||||
|
||||
Attributes:
|
||||
index_endpoint (str):
|
||||
The resource name of the Index Endpoint. Format:
|
||||
``projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}``
|
||||
index (str):
|
||||
The resource name of the Index. Format:
|
||||
``projects/{project}/locations/{location}/indexes/{index}``
|
||||
"""
|
||||
|
||||
index_endpoint: Optional[str] = None
|
||||
index: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RagManagedDb:
|
||||
"""RagManagedDb."""
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Pinecone:
|
||||
"""Pinecone.
|
||||
|
||||
Attributes:
|
||||
index_name: The Pinecone index name.
|
||||
api_key: The SecretManager resource name for the Pinecone DB API token. Format:
|
||||
``projects/{project}/secrets/{secret}/versions/{version}``
|
||||
"""
|
||||
|
||||
index_name: Optional[str] = None
|
||||
api_key: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class VertexAiSearchConfig:
|
||||
"""VertexAiSearchConfig.
|
||||
|
||||
Attributes:
|
||||
serving_config: The resource name of the Vertex AI Search serving config.
|
||||
Format:
|
||||
``projects/{project}/locations/{location}/collections/{collection}/engines/{engine}/servingConfigs/{serving_config}``
|
||||
or
|
||||
``projects/{project}/locations/{location}/collections/{collection}/dataStores/{data_store}/servingConfigs/{serving_config}``
|
||||
"""
|
||||
|
||||
serving_config: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RagVectorDbConfig:
|
||||
"""RagVectorDbConfig.
|
||||
|
||||
Attributes:
|
||||
vector_db: Can be one of the following: Weaviate, VertexFeatureStore,
|
||||
VertexVectorSearch, Pinecone, RagManagedDb.
|
||||
rag_embedding_model_config: The embedding model config of the Vector DB.
|
||||
"""
|
||||
|
||||
vector_db: Optional[
|
||||
Union[Weaviate, VertexFeatureStore, VertexVectorSearch, Pinecone, RagManagedDb]
|
||||
] = None
|
||||
rag_embedding_model_config: Optional[RagEmbeddingModelConfig] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RagCorpus:
|
||||
"""RAG corpus(output only).
|
||||
|
||||
Attributes:
|
||||
name: Generated resource name. Format:
|
||||
``projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}``
|
||||
display_name: Display name that was configured at client side.
|
||||
description: The description of the RagCorpus.
|
||||
embedding_model_config: The embedding model config of the RagCorpus.
|
||||
Note: Deprecated. Use backend_config instead.
|
||||
vector_db: The Vector DB of the RagCorpus.
|
||||
Note: Deprecated. Use backend_config instead.
|
||||
vertex_ai_search_config: The Vertex AI Search config of the RagCorpus.
|
||||
backend_config: The backend config of the RagCorpus. It can specify a
|
||||
Vector DB and/or the embedding model config.
|
||||
"""
|
||||
|
||||
name: Optional[str] = None
|
||||
display_name: Optional[str] = None
|
||||
description: Optional[str] = None
|
||||
embedding_model_config: Optional[EmbeddingModelConfig] = None
|
||||
vector_db: Optional[
|
||||
Union[Weaviate, VertexFeatureStore, VertexVectorSearch, Pinecone, RagManagedDb]
|
||||
] = None
|
||||
vertex_ai_search_config: Optional[VertexAiSearchConfig] = None
|
||||
backend_config: Optional[RagVectorDbConfig] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RagResource:
|
||||
"""RagResource.
|
||||
|
||||
The representation of the rag source. It can be used to specify corpus only
|
||||
or ragfiles. Currently only support one corpus or multiple files from one
|
||||
corpus. In the future we may open up multiple corpora support.
|
||||
|
||||
Attributes:
|
||||
rag_corpus: A Rag corpus resource name or corpus id. Format:
|
||||
``projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}``
|
||||
or ``{rag_corpus_id}``.
|
||||
rag_files_id: List of Rag file resource name or file ids in the same corpus. Format:
|
||||
``{rag_file}``.
|
||||
"""
|
||||
|
||||
rag_corpus: Optional[str] = None
|
||||
rag_file_ids: Optional[List[str]] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class SlackChannel:
|
||||
"""SlackChannel.
|
||||
|
||||
Attributes:
|
||||
channel_id: The Slack channel ID.
|
||||
api_key: The SecretManager resource name for the Slack API token. Format:
|
||||
``projects/{project}/secrets/{secret}/versions/{version}``
|
||||
See: https://api.slack.com/tutorials/tracks/getting-a-token.
|
||||
start_time: The starting timestamp for messages to import.
|
||||
end_time: The ending timestamp for messages to import.
|
||||
"""
|
||||
|
||||
channel_id: str
|
||||
api_key: str
|
||||
start_time: Optional[timestamp_pb2.Timestamp] = None
|
||||
end_time: Optional[timestamp_pb2.Timestamp] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class SlackChannelsSource:
|
||||
"""SlackChannelsSource.
|
||||
|
||||
Attributes:
|
||||
channels: The Slack channels.
|
||||
"""
|
||||
|
||||
channels: Sequence[SlackChannel]
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class JiraQuery:
|
||||
"""JiraQuery.
|
||||
|
||||
Attributes:
|
||||
email: The Jira email address.
|
||||
jira_projects: A list of Jira projects to import in their entirety.
|
||||
custom_queries: A list of custom JQL Jira queries to import.
|
||||
api_key: The SecretManager version resource name for Jira API access. Format:
|
||||
``projects/{project}/secrets/{secret}/versions/{version}``
|
||||
See: https://support.atlassian.com/atlassian-account/docs/manage-api-tokens-for-your-atlassian-account/
|
||||
server_uri: The Jira server URI. Format:
|
||||
``{server}.atlassian.net``
|
||||
"""
|
||||
|
||||
email: str
|
||||
jira_projects: Sequence[str]
|
||||
custom_queries: Sequence[str]
|
||||
api_key: str
|
||||
server_uri: str
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class JiraSource:
|
||||
"""JiraSource.
|
||||
|
||||
Attributes:
|
||||
queries: The Jira queries.
|
||||
"""
|
||||
|
||||
queries: Sequence[JiraQuery]
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class SharePointSource:
|
||||
"""SharePointSource.
|
||||
|
||||
Attributes:
|
||||
sharepoint_folder_path: The path of the SharePoint folder to download
|
||||
from.
|
||||
sharepoint_folder_id: The ID of the SharePoint folder to download
|
||||
from.
|
||||
drive_name: The name of the drive to download from.
|
||||
drive_id: The ID of the drive to download from.
|
||||
client_id: The Application ID for the app registered in
|
||||
Microsoft Azure Portal. The application must
|
||||
also be configured with MS Graph permissions
|
||||
"Files.ReadAll", "Sites.ReadAll" and
|
||||
BrowserSiteLists.Read.All.
|
||||
client_secret: The application secret for the app registered
|
||||
in Azure.
|
||||
tenant_id: Unique identifier of the Azure Active
|
||||
Directory Instance.
|
||||
sharepoint_site_name: The name of the SharePoint site to download
|
||||
from. This can be the site name or the site id.
|
||||
"""
|
||||
|
||||
sharepoint_folder_path: Optional[str] = None
|
||||
sharepoint_folder_id: Optional[str] = None
|
||||
drive_name: Optional[str] = None
|
||||
drive_id: Optional[str] = None
|
||||
client_id: str = None
|
||||
client_secret: str = None
|
||||
tenant_id: str = None
|
||||
sharepoint_site_name: str = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class SharePointSources:
|
||||
"""SharePointSources.
|
||||
|
||||
Attributes:
|
||||
share_point_sources: The SharePoint sources.
|
||||
"""
|
||||
|
||||
share_point_sources: Sequence[SharePointSource]
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Filter:
|
||||
"""Filter.
|
||||
|
||||
Attributes:
|
||||
vector_distance_threshold: Only returns contexts with vector
|
||||
distance smaller than the threshold.
|
||||
vector_similarity_threshold: Only returns contexts with vector
|
||||
similarity larger than the threshold.
|
||||
metadata_filter: String for metadata filtering.
|
||||
"""
|
||||
|
||||
vector_distance_threshold: Optional[float] = None
|
||||
vector_similarity_threshold: Optional[float] = None
|
||||
metadata_filter: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class HybridSearch:
|
||||
"""HybridSearch.
|
||||
|
||||
Attributes:
|
||||
alpha: Alpha value controls the weight between dense and
|
||||
sparse vector search results. The range is [0, 1], while 0
|
||||
means sparse vector search only and 1 means dense vector
|
||||
search only. The default value is 0.5 which balances sparse
|
||||
and dense vector search equally.
|
||||
"""
|
||||
|
||||
alpha: Optional[float] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class LlmRanker:
|
||||
"""LlmRanker.
|
||||
|
||||
Attributes:
|
||||
model_name: The model name used for ranking. Only Gemini models are
|
||||
supported for now.
|
||||
"""
|
||||
|
||||
model_name: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RankService:
|
||||
"""RankService.
|
||||
|
||||
Attributes:
|
||||
model_name: The model name of the rank service. Format:
|
||||
``semantic-ranker-512@latest``
|
||||
"""
|
||||
|
||||
model_name: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Ranking:
|
||||
"""Ranking.
|
||||
|
||||
Attributes:
|
||||
rank_service: (google.cloud.aiplatform_v1beta1.types.RagRetrievalConfig.Ranking.RankService)
|
||||
Config for Rank Service.
|
||||
llm_ranker (google.cloud.aiplatform_v1beta1.types.RagRetrievalConfig.Ranking.LlmRanker):
|
||||
Config for LlmRanker.
|
||||
"""
|
||||
|
||||
rank_service: Optional[RankService] = None
|
||||
llm_ranker: Optional[LlmRanker] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RagRetrievalConfig:
|
||||
"""RagRetrievalConfig.
|
||||
|
||||
Attributes:
|
||||
top_k: The number of contexts to retrieve.
|
||||
filter: Config for filters.
|
||||
hybrid_search (google.cloud.aiplatform_v1beta1.types.RagRetrievalConfig.HybridSearch):
|
||||
Config for Hybrid Search.
|
||||
ranking (google.cloud.aiplatform_v1beta1.types.RagRetrievalConfig.Ranking):
|
||||
Config for ranking and reranking.
|
||||
"""
|
||||
|
||||
top_k: Optional[int] = None
|
||||
filter: Optional[Filter] = None
|
||||
hybrid_search: Optional[HybridSearch] = None
|
||||
ranking: Optional[Ranking] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class ChunkingConfig:
|
||||
"""ChunkingConfig.
|
||||
|
||||
Attributes:
|
||||
chunk_size: The size of each chunk.
|
||||
chunk_overlap: The size of the overlap between chunks.
|
||||
"""
|
||||
|
||||
chunk_size: int
|
||||
chunk_overlap: int
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class TransformationConfig:
|
||||
"""TransformationConfig.
|
||||
|
||||
Attributes:
|
||||
chunking_config: The chunking config.
|
||||
"""
|
||||
|
||||
chunking_config: Optional[ChunkingConfig] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class LayoutParserConfig:
|
||||
"""Configuration for the Document AI Layout Parser Processor.
|
||||
|
||||
Attributes:
|
||||
processor_name (str):
|
||||
The full resource name of a Document AI processor or processor
|
||||
version. The processor must have type `LAYOUT_PARSER_PROCESSOR`.
|
||||
Format:
|
||||
- `projects/{project_id}/locations/{location}/processors/{processor_id}`
|
||||
- `projects/{project_id}/locations/{location}/processors/{processor_id}/processorVersions/{processor_version_id}`
|
||||
max_parsing_requests_per_min (int):
|
||||
The maximum number of requests the job is allowed to make to the
|
||||
Document AI processor per minute. Consult
|
||||
https://cloud.google.com/document-ai/quotas and the Quota page for
|
||||
your project to set an appropriate value here. If unspecified, a
|
||||
default value of 120 QPM will be used.
|
||||
"""
|
||||
|
||||
processor_name: str
|
||||
max_parsing_requests_per_min: Optional[int] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class LlmParserConfig:
|
||||
"""Configuration for the Document AI Layout Parser Processor.
|
||||
|
||||
Attributes:
|
||||
model_name (str):
|
||||
The full resource name of a Vertex AI model. Format:
|
||||
- `projects/{project_id}/locations/{location}/publishers/google/models/{model_id}`
|
||||
- `projects/{project_id}/locations/{location}/models/{model_id}`
|
||||
max_parsing_requests_per_min (int):
|
||||
The maximum number of requests the job is allowed to make to the
|
||||
Vertex AI model per minute. Consult
|
||||
https://cloud.google.com/vertex-ai/generative-ai/docs/quotas and
|
||||
the Quota page for your project to set an appropriate value here.
|
||||
If unspecified, a default value of 5000 QPM will be used.
|
||||
custom_parsing_prompt (str):
|
||||
A custom prompt to use for parsing.
|
||||
"""
|
||||
|
||||
model_name: str
|
||||
max_parsing_requests_per_min: Optional[int] = None
|
||||
custom_parsing_prompt: Optional[str] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Enterprise:
|
||||
"""Enterprise tier offers production grade performance along with
|
||||
|
||||
autoscaling functionality. It is suitable for customers with large
|
||||
amounts of data or performance sensitive workloads.
|
||||
|
||||
NOTE: This is the default tier if not explicitly chosen.
|
||||
"""
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Basic:
|
||||
"""Basic tier is a cost-effective and low compute tier suitable for the following cases:
|
||||
|
||||
* Experimenting with RagManagedDb.
|
||||
* Small data size.
|
||||
* Latency insensitive workload.
|
||||
* Only using RAG Engine with external vector DBs.
|
||||
"""
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RagManagedDbConfig:
|
||||
"""RagManagedDbConfig.
|
||||
|
||||
The config of the RagManagedDb used by RagEngine.
|
||||
|
||||
Attributes:
|
||||
tier: The tier of the RagManagedDb. The default tier is Enterprise.
|
||||
"""
|
||||
|
||||
tier: Optional[Union[Enterprise, Basic]] = None
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class RagEngineConfig:
|
||||
"""RagEngineConfig.
|
||||
|
||||
Attributes:
|
||||
name: Generated resource name for singleton resource. Format:
|
||||
``projects/{project}/locations/{location}/ragEngineConfig``
|
||||
rag_managed_db_config: The config of the RagManagedDb used by RagEngine.
|
||||
The default tier is Enterprise.
|
||||
"""
|
||||
|
||||
name: str
|
||||
rag_managed_db_config: Optional[RagManagedDbConfig] = None
|
||||
Reference in New Issue
Block a user