structure saas with tools

This commit is contained in:
Davidson Gomes
2025-04-25 15:30:54 -03:00
commit 1aef473937
16434 changed files with 6584257 additions and 0 deletions

View File

@@ -0,0 +1,72 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Evaluation Metrics Module."""
from vertexai.preview.evaluation.metrics import _base
from vertexai.preview.evaluation.metrics import _rouge
from vertexai.preview.evaluation.metrics import (
_trajectory_single_tool_use,
)
from vertexai.preview.evaluation.metrics import (
custom_output_config,
)
from vertexai.preview.evaluation.metrics import (
metric_prompt_template,
)
from vertexai.preview.evaluation.metrics import (
metric_prompt_template_examples,
)
from vertexai.preview.evaluation.metrics import pairwise_metric
from vertexai.preview.evaluation.metrics import pointwise_metric
from vertexai.preview.evaluation.metrics import (
predefined_rubric_metrics,
)
from vertexai.preview.evaluation.metrics import (
rubric_based_metric,
)
PairwiseMetric = pairwise_metric.PairwiseMetric
PointwiseMetric = pointwise_metric.PointwiseMetric
CustomMetric = _base.CustomMetric
PairwiseMetricPromptTemplate = metric_prompt_template.PairwiseMetricPromptTemplate
PointwiseMetricPromptTemplate = metric_prompt_template.PointwiseMetricPromptTemplate
MetricPromptTemplateExamples = (
metric_prompt_template_examples.MetricPromptTemplateExamples
)
Rouge = _rouge.Rouge
TrajectorySingleToolUse = _trajectory_single_tool_use.TrajectorySingleToolUse
CustomOutputConfig = custom_output_config.CustomOutputConfig
RubricBasedMetric = rubric_based_metric.RubricBasedMetric
RubricGenerationConfig = _base.RubricGenerationConfig
PredefinedRubricMetrics = predefined_rubric_metrics.PredefinedRubricMetrics
__all__ = [
"CustomMetric",
"PairwiseMetric",
"PointwiseMetric",
"PairwiseMetricPromptTemplate",
"PointwiseMetricPromptTemplate",
"MetricPromptTemplateExamples",
"Rouge",
"TrajectorySingleToolUse",
"CustomOutputConfig",
"RubricBasedMetric",
"RubricGenerationConfig",
"PredefinedRubricMetrics",
]

View File

@@ -0,0 +1,168 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Base classes for evaluation metrics."""
import abc
from typing import Any, Callable, Dict, Literal, Optional, Union, List
from google.cloud.aiplatform_v1beta1.types import (
evaluation_service as gapic_eval_service_types,
)
from vertexai import generative_models
from vertexai.preview.evaluation import constants
from vertexai.preview.evaluation.metrics import (
custom_output_config as custom_output_config_class,
)
from vertexai.preview.evaluation.metrics import (
metric_prompt_template as metric_prompt_template_base,
)
_ModelType = Union[generative_models.GenerativeModel, Callable[[str], str]]
class _Metric(abc.ABC):
"""The abstract class for evaluation metric."""
def __init__(self, metric: str):
self._metric = metric
def __str__(self):
return self.metric_name
@property
def metric_name(self) -> str:
return self._metric
class _ModelBasedMetric(_Metric):
"""A Model-based Metric.
An evaluation metric that evaluates generative AI model responses with
another generative model as a judge. This metric can be used to evaluate a
single model, or two models side-by-side.
For more details on when to use model-based metrics, see
[Evaluation methods and metrics](https://cloud.google.com/vertex-ai/generative-ai/docs/models/determine-eval).
"""
def __init__(
self,
*,
metric: str,
metric_prompt_template: Union[
metric_prompt_template_base.PointwiseMetricPromptTemplate,
metric_prompt_template_base.PairwiseMetricPromptTemplate,
str,
],
system_instruction: Optional[str] = None,
autorater_config: Optional[gapic_eval_service_types.AutoraterConfig] = None,
custom_output_config: Optional[
custom_output_config_class.CustomOutputConfig
] = None,
):
"""Initializes the model-based evaluation metric.
Args:
metric: Generic model based metric name.
metric_prompt_template: A metric prompt template for performing
the model-based evaluation. A freeform string is also accepted.
system_instruction: The system instruction to be used in the metric
prompt.
autorater_config: The config for judge model.
custom_output_config: Config for custom output from the judge model.
"""
super().__init__(metric=metric)
self.metric_prompt_template = str(metric_prompt_template)
self.system_instruction = system_instruction
self.autorater_config = autorater_config
self.custom_output_config = custom_output_config
class CustomMetric(_Metric):
"""The custom evaluation metric.
A fully-customized CustomMetric that can be used to evaluate a single model
by defining a metric function for a computation-based metric. The
CustomMetric is computed on the client-side using the user-defined metric
function in SDK only, not by the Vertex Gen AI Evaluation Service.
Attributes:
name: The name of the metric.
metric_function: The user-defined evaluation function to compute a metric
score. Must use the dataset row dictionary as the metric function
input and return per-instance metric result as a dictionary output.
The metric score must mapped to the name of the CustomMetric as key.
"""
def __init__(
self,
name: str,
metric_function: Callable[
[Dict[str, Any]],
Dict[str, Any],
],
):
"""Initializes the evaluation metric."""
super().__init__(name)
self.name = name
self.metric_function = metric_function
class _AutomaticMetric(_Metric):
"""An automatic metric that computes deterministic score based on reference.
An lexicon-based evaluation metric that evaluate a generative model's
response on the given evaluation task with reference ground truth answers.
It is a type of pointwise evaluation metric.
For more details on when to use automatic metrics, see
[Evaluation methods and
metrics](https://cloud.google.com/vertex-ai/generative-ai/docs/models/determine-eval).
"""
def __init__(
self,
metric: Literal[constants.Metric.ROUGE],
):
"""Initializes the automatic evaluation metric.
Args:
metric: The automatic evaluation metric name.
"""
super().__init__(metric=metric)
class RubricGenerationConfig:
"""The rubric generation config."""
def __init__(
self,
prompt_template: str,
model: Optional[_ModelType] = None,
parsing_fn: Optional[Callable[[str], List[str]]] = None,
):
"""Initializes the rubric generation config.
Args:
prompt_template: The prompt template for rubric generation.
model: The model to use for rubric generation.
parsing_fn: The function to parse the rubric generation response.
"""
self.prompt_template = prompt_template
self.model = model
self.parsing_fn = parsing_fn

View File

@@ -0,0 +1,802 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Library for metrics computation with Gen AI Evaluation Service."""
import json
from typing import Any, Dict, List, Union
from google import api_core
from google.cloud.aiplatform import base
from google.cloud.aiplatform import initializer
from google.cloud.aiplatform_v1beta1.services import (
evaluation_service as gapic_evaluation_services,
)
from google.cloud.aiplatform_v1beta1.types import (
evaluation_service as gapic_eval_service_types,
)
from vertexai.preview.evaluation import _base as eval_base
from vertexai.preview.evaluation import constants
from vertexai.preview.evaluation import multimodal_utils
from vertexai.preview.evaluation import (
prompt_template as prompt_template_base,
)
from vertexai.preview.evaluation import utils
from vertexai.preview.evaluation.metrics import (
_base as metrics_base,
)
from vertexai.preview.evaluation.metrics import (
_default_templates,
)
from vertexai.preview.evaluation.metrics import _rouge
from vertexai.preview.evaluation.metrics import (
_trajectory_single_tool_use,
)
from vertexai.preview.evaluation.metrics import (
custom_output_config as custom_output_config_class,
)
from vertexai.preview.evaluation.metrics import pairwise_metric
from vertexai.preview.evaluation.metrics import pointwise_metric
from google.protobuf import json_format
_LOGGER = base.Logger(__name__)
_METRIC_NAME_TO_METRIC_SPEC = {
# Automatic Metrics.
constants.Metric.EXACT_MATCH: (gapic_eval_service_types.ExactMatchSpec()),
constants.Metric.BLEU: gapic_eval_service_types.BleuSpec(),
constants.Metric.ROUGE: gapic_eval_service_types.RougeSpec(),
constants.Metric.ROUGE_1: gapic_eval_service_types.RougeSpec(rouge_type="rouge1"),
constants.Metric.ROUGE_2: gapic_eval_service_types.RougeSpec(rouge_type="rouge2"),
constants.Metric.ROUGE_L: gapic_eval_service_types.RougeSpec(rouge_type="rougeL"),
constants.Metric.ROUGE_L_SUM: gapic_eval_service_types.RougeSpec(
rouge_type="rougeLsum"
),
constants.Metric.TOOL_CALL_VALID: (gapic_eval_service_types.ToolCallValidSpec()),
constants.Metric.TOOL_NAME_MATCH: (gapic_eval_service_types.ToolNameMatchSpec()),
constants.Metric.TOOL_PARAMETER_KV_MATCH: (
gapic_eval_service_types.ToolParameterKVMatchSpec()
),
constants.Metric.TOOL_PARAMETER_KEY_MATCH: (
gapic_eval_service_types.ToolParameterKeyMatchSpec()
),
# Pointwise Metrics.
constants.Metric.POINTWISE_METRIC: (gapic_eval_service_types.PointwiseMetricSpec()),
# Pairwise Metrics.
constants.Metric.PAIRWISE_METRIC: (gapic_eval_service_types.PairwiseMetricSpec()),
constants.Metric.RUBRIC_BASED_INSTRUCTION_FOLLOWING: (
gapic_eval_service_types.RubricBasedInstructionFollowingSpec()
),
constants.Metric.TRAJECTORY_EXACT_MATCH: (
gapic_eval_service_types.TrajectoryExactMatchSpec()
),
constants.Metric.TRAJECTORY_IN_ORDER_MATCH: (
gapic_eval_service_types.TrajectoryInOrderMatchSpec()
),
constants.Metric.TRAJECTORY_ANY_ORDER_MATCH: (
gapic_eval_service_types.TrajectoryAnyOrderMatchSpec()
),
constants.Metric.TRAJECTORY_PRECISION: (
gapic_eval_service_types.TrajectoryPrecisionSpec()
),
constants.Metric.TRAJECTORY_RECALL: (
gapic_eval_service_types.TrajectoryRecallSpec()
),
constants.Metric.TRAJECTORY_SINGLE_TOOL_USE: (
gapic_eval_service_types.TrajectorySingleToolUseSpec()
),
}
_QUESTION_TEMPLATE = """<question>{question}"""
def _format_rubrics(questions: List[str]) -> str:
"""Formats the list of rubrics into a question block."""
question_block = "\n".join(
_QUESTION_TEMPLATE.format(question=q.strip()) for q in questions
)
return question_block
def build_custom_output_format_config(
custom_output_config: custom_output_config_class.CustomOutputConfig,
) -> Union[gapic_eval_service_types.CustomOutputFormatConfig, None]:
"""Builds a CustomOutputFormatConfig from user input."""
custom_output_cfg = gapic_eval_service_types.CustomOutputFormatConfig()
if custom_output_config.return_raw_output:
custom_output_cfg.return_raw_output = True
return custom_output_cfg
else:
return None
def build_trajectory(
trajectory: Union[str, List[Dict[str, Any]]],
) -> gapic_eval_service_types.Trajectory:
"""Builds a trajectory from user input."""
if not trajectory:
return
if isinstance(trajectory, str):
trajectory = json.loads(trajectory)
if isinstance(trajectory, List):
try:
tool_calls = []
for tool_call_dict in trajectory:
tool_input_str = json.dumps(tool_call_dict["tool_input"])
tool_calls.append(
gapic_eval_service_types.ToolCall(
tool_name=tool_call_dict["tool_name"], tool_input=tool_input_str
)
)
return gapic_eval_service_types.Trajectory(tool_calls=tool_calls)
except KeyError as e:
_LOGGER.error(f"Failed to parse trajectory: {e}")
else:
_LOGGER.error(
f"Unsupported trajectory type: {type(trajectory)}, expected list or"
" a JSON array."
)
def build_request(
metric: Union[str, metrics_base._Metric],
row_dict: Dict[str, Any],
evaluation_run_config: eval_base.EvaluationRunConfig,
) -> gapic_eval_service_types.EvaluateInstancesRequest:
"""Builds a metric instance and form the request for the evaluation service.
Args:
metric: The name of the metric to evaluate.
row_dict: An evaluation dataset instance as a dictionary.
evaluation_run_config: Evaluation run configurations.
Returns:
A single EvaluateInstancesRequest.
Raises:
ValueError: If required request fields are not provided.
"""
project = initializer.global_config.project
location = initializer.global_config.location
if not project or not location:
raise ValueError(
"No project or location specified. Please run `vertexai.init()` to"
" provide these parameters."
)
location_path = (
gapic_evaluation_services.EvaluationServiceClient.common_location_path(
project, location
)
)
if isinstance(metric, pointwise_metric.PointwiseMetric):
metric_name = constants.Metric.POINTWISE_METRIC
elif isinstance(metric, pairwise_metric.PairwiseMetric):
metric_name = constants.Metric.PAIRWISE_METRIC
else:
metric_name = str(metric)
try:
metric_spec = _METRIC_NAME_TO_METRIC_SPEC[metric_name]
except KeyError as e:
raise ValueError(f"Metric name: {metric_name} is not supported.") from e
model_based_metric_instance_input = {}
metric_column_mapping = evaluation_run_config.metric_column_mapping
if isinstance(
metric, metrics_base._ModelBasedMetric # pylint: disable=protected-access
):
metric_spec.metric_prompt_template = metric.metric_prompt_template
metric_spec.system_instruction = metric.system_instruction
if metric.custom_output_config:
metric_spec.custom_output_format_config = build_custom_output_format_config(
metric.custom_output_config
)
for variable in prompt_template_base.PromptTemplate(
metric.metric_prompt_template
).variables:
model_based_metric_instance_input[variable] = row_dict.get(
metric_column_mapping.get(variable),
"",
)
if isinstance(metric, pairwise_metric.PairwiseMetric):
metric_column_mapping = evaluation_run_config.metric_column_mapping
metric_spec.candidate_response_field_name = metric_column_mapping.get(
constants.Dataset.MODEL_RESPONSE_COLUMN,
constants.Dataset.MODEL_RESPONSE_COLUMN,
)
metric_spec.baseline_response_field_name = metric_column_mapping.get(
constants.Dataset.BASELINE_MODEL_RESPONSE_COLUMN,
constants.Dataset.BASELINE_MODEL_RESPONSE_COLUMN,
)
elif isinstance(metric, _rouge.Rouge):
metric_spec.rouge_type = metric.rouge_type
metric_spec.use_stemmer = metric.use_stemmer
metric_spec.split_summaries = metric.split_summaries
elif isinstance(metric, _trajectory_single_tool_use.TrajectorySingleToolUse):
metric_spec.tool_name = metric.tool_name
response = row_dict.get(
metric_column_mapping.get(constants.Dataset.MODEL_RESPONSE_COLUMN), ""
)
reference = row_dict.get(
metric_column_mapping.get(constants.Dataset.REFERENCE_COLUMN), ""
)
predicted_trajectory = build_trajectory(
row_dict.get(
metric_column_mapping.get(constants.Dataset.PREDICTED_TRAJECTORY_COLUMN),
"",
)
)
reference_trajectory = build_trajectory(
row_dict.get(
metric_column_mapping.get(constants.Dataset.REFERENCE_TRAJECTORY_COLUMN),
"",
)
)
if isinstance(metric, metrics_base._ModelBasedMetric):
if metric_spec.metric_prompt_template in (
_default_templates.INSTRUCTION_FOLLOWING_RUBRIC_CRITIQUE_TEMPLATE,
_default_templates.MULTIMODAL_UNDERSTANDING_RUBRIC_CRITIQUE_TEMPLATE,
_default_templates.TEXT_QUALITY_RUBRIC_CRITIQUE_TEMPLATE,
_default_templates.PAIRWISE_INSTRUCTION_FOLLOWING_RUBRIC_CRITIQUE_TEMPLATE,
_default_templates.PAIRWISE_MULTIMODAL_UNDERSTANDING_RUBRIC_CRITIQUE_TEMPLATE,
_default_templates.PAIRWISE_TEXT_QUALITY_RUBRIC_CRITIQUE_TEMPLATE,
):
model_based_metric_instance_input[
constants.Dataset.RUBRICS_COLUMN
] = _format_rubrics(
model_based_metric_instance_input[constants.Dataset.RUBRICS_COLUMN]
)
if (
constants.Dataset.RUBRICS_COLUMN in model_based_metric_instance_input
and isinstance(
model_based_metric_instance_input[constants.Dataset.RUBRICS_COLUMN],
List,
)
):
model_based_metric_instance_input[
constants.Dataset.RUBRICS_COLUMN
] = "\n".join(
model_based_metric_instance_input[constants.Dataset.RUBRICS_COLUMN]
)
if metric_name == constants.Metric.EXACT_MATCH:
instance = gapic_eval_service_types.ExactMatchInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.ExactMatchInstance(
prediction=response,
reference=reference,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
exact_match_input=instance,
)
elif metric_name == constants.Metric.BLEU:
instance = gapic_eval_service_types.BleuInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.BleuInstance(
prediction=response,
reference=reference,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
bleu_input=instance,
)
elif metric_name in (
constants.Metric.ROUGE,
constants.Metric.ROUGE_1,
constants.Metric.ROUGE_2,
constants.Metric.ROUGE_L,
constants.Metric.ROUGE_L_SUM,
):
instance = gapic_eval_service_types.RougeInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.RougeInstance(
prediction=response,
reference=reference,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
rouge_input=instance,
)
elif metric_name == constants.Metric.TOOL_CALL_VALID:
instance = gapic_eval_service_types.ToolCallValidInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.ToolCallValidInstance(
prediction=response,
reference=reference,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
tool_call_valid_input=instance,
)
elif metric_name == constants.Metric.TOOL_NAME_MATCH:
instance = gapic_eval_service_types.ToolNameMatchInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.ToolNameMatchInstance(
prediction=response,
reference=reference,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
tool_name_match_input=instance,
)
elif metric_name == constants.Metric.TOOL_PARAMETER_KEY_MATCH:
instance = gapic_eval_service_types.ToolParameterKeyMatchInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.ToolParameterKeyMatchInstance(
prediction=response,
reference=reference,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
tool_parameter_key_match_input=instance,
)
elif metric_name == constants.Metric.TOOL_PARAMETER_KV_MATCH:
instance = gapic_eval_service_types.ToolParameterKVMatchInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.ToolParameterKVMatchInstance(
prediction=response,
reference=reference,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
tool_parameter_kv_match_input=instance,
)
elif metric_name == constants.Metric.POINTWISE_METRIC:
if multimodal_utils.is_multimodal_instance(model_based_metric_instance_input):
instance = gapic_eval_service_types.PointwiseMetricInput(
metric_spec=metric_spec,
instance=gapic_eval_service_types.PointwiseMetricInstance(
content_map_instance=multimodal_utils.convert_multimodal_response_to_content_map(
model_based_metric_instance_input
),
),
)
else:
instance = gapic_eval_service_types.PointwiseMetricInput(
metric_spec=metric_spec,
instance=gapic_eval_service_types.PointwiseMetricInstance(
json_instance=json.dumps(model_based_metric_instance_input),
),
)
autorater_config = evaluation_run_config.autorater_config
if (
isinstance(metric, metrics_base._ModelBasedMetric)
and metric.autorater_config
):
autorater_config = metric.autorater_config
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
pointwise_metric_input=instance,
autorater_config=autorater_config,
)
elif metric_name == constants.Metric.PAIRWISE_METRIC:
if multimodal_utils.is_multimodal_instance(model_based_metric_instance_input):
instance = gapic_eval_service_types.PairwiseMetricInput(
metric_spec=metric_spec,
instance=gapic_eval_service_types.PairwiseMetricInstance(
content_map_instance=multimodal_utils.convert_multimodal_response_to_content_map(
model_based_metric_instance_input
),
),
)
else:
instance = gapic_eval_service_types.PairwiseMetricInput(
metric_spec=metric_spec,
instance=gapic_eval_service_types.PairwiseMetricInstance(
json_instance=json.dumps(model_based_metric_instance_input),
),
)
autorater_config = evaluation_run_config.autorater_config
if (
isinstance(metric, metrics_base._ModelBasedMetric)
and metric.autorater_config
):
autorater_config = metric.autorater_config
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
pairwise_metric_input=instance,
autorater_config=autorater_config,
)
elif metric_name == constants.Metric.RUBRIC_BASED_INSTRUCTION_FOLLOWING:
required_rbif_fields = [
constants.Dataset.MODEL_RESPONSE_COLUMN,
constants.Dataset.PROMPT_COLUMN,
]
for field in required_rbif_fields:
column_name = metric_column_mapping.get(field)
value = row_dict.get(column_name)
if value is None and field in required_rbif_fields:
raise ValueError(
f"Missing required field: `{field}` for "
f"{constants.Metric.RUBRIC_BASED_INSTRUCTION_FOLLOWING}."
)
else:
model_based_metric_instance_input[field] = value
instance = gapic_eval_service_types.RubricBasedInstructionFollowingInput(
metric_spec=metric_spec,
instance=gapic_eval_service_types.RubricBasedInstructionFollowingInstance(
json_instance=json.dumps(model_based_metric_instance_input),
),
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
rubric_based_instruction_following_input=instance,
)
elif metric_name == constants.Metric.TRAJECTORY_EXACT_MATCH:
instance = gapic_eval_service_types.TrajectoryExactMatchInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.TrajectoryExactMatchInstance(
predicted_trajectory=predicted_trajectory,
reference_trajectory=reference_trajectory,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
trajectory_exact_match_input=instance,
)
elif metric_name == constants.Metric.TRAJECTORY_IN_ORDER_MATCH:
instance = gapic_eval_service_types.TrajectoryInOrderMatchInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.TrajectoryInOrderMatchInstance(
predicted_trajectory=predicted_trajectory,
reference_trajectory=reference_trajectory,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
trajectory_in_order_match_input=instance,
)
elif metric_name == constants.Metric.TRAJECTORY_ANY_ORDER_MATCH:
instance = gapic_eval_service_types.TrajectoryAnyOrderMatchInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.TrajectoryAnyOrderMatchInstance(
predicted_trajectory=predicted_trajectory,
reference_trajectory=reference_trajectory,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
trajectory_any_order_match_input=instance,
)
elif metric_name == constants.Metric.TRAJECTORY_PRECISION:
instance = gapic_eval_service_types.TrajectoryPrecisionInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.TrajectoryPrecisionInstance(
predicted_trajectory=predicted_trajectory,
reference_trajectory=reference_trajectory,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
trajectory_precision_input=instance,
)
elif metric_name == constants.Metric.TRAJECTORY_RECALL:
instance = gapic_eval_service_types.TrajectoryRecallInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.TrajectoryRecallInstance(
predicted_trajectory=predicted_trajectory,
reference_trajectory=reference_trajectory,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
trajectory_recall_input=instance,
)
elif metric_name == constants.Metric.TRAJECTORY_SINGLE_TOOL_USE:
instance = gapic_eval_service_types.TrajectorySingleToolUseInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.TrajectorySingleToolUseInstance(
predicted_trajectory=predicted_trajectory,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
trajectory_single_tool_use_input=instance,
)
else:
raise ValueError(f"Unknown metric type: {metric_name}")
def _parse_autometric_results(
metric_result_dict: Dict[str, Any],
) -> Dict[str, Any]:
"""Parses the automatic metric results from the evaluation results.
Args:
metric_result_dict: The metric results dictionary.
Returns:
A dictionary containing metric score of the metric.
"""
for value in metric_result_dict.values():
return {
constants.MetricResult.SCORE_KEY: value[0].get(
constants.MetricResult.SCORE_KEY
)
}
def _parse_pointwise_results(
metric_result_dict: Dict[str, Any],
metric: Union[str, metrics_base._Metric],
) -> Dict[str, Any]:
"""Parses the model-based pointwise metric results from the evaluation results.
Args:
metric_result_dict: The metric results dictionary.
metric: The metric to evaluate.
Returns:
One of the following:
1. A dictionary containing raw outputs from the judge model if
return_raw_output is set to True in custom_output_config.
2. A dictionary containing metric score and explanation of the
metric if custom_output_config is not set.
"""
if (
isinstance(metric, pointwise_metric.PointwiseMetric)
and getattr(metric, "custom_output_config", None)
and getattr(metric.custom_output_config, "return_raw_output", False)
):
raw_outputs = (
metric_result_dict.get(constants.MetricResult.CUSTOM_OUTPUT_KEY)
.get(constants.MetricResult.RAW_OUTPUTS_KEY)
.get(constants.MetricResult.RAW_OUTPUT_KEY)
)
if (
isinstance(metric, pointwise_metric.PointwiseMetric)
and getattr(metric, "custom_output_config", None)
and getattr(metric.custom_output_config, "parsing_fn", None)
):
parsing_fn = metric.custom_output_config.parsing_fn
return parsing_fn(raw_outputs)
return {constants.MetricResult.RAW_OUTPUT_KEY: raw_outputs}
else:
return {
constants.MetricResult.SCORE_KEY: metric_result_dict.get(
constants.MetricResult.SCORE_KEY
),
constants.MetricResult.EXPLANATION_KEY: metric_result_dict.get(
constants.MetricResult.EXPLANATION_KEY
),
}
def _parse_pairwise_results(
metric_result_dict: Dict[str, Any],
metric: Union[str, metrics_base._Metric],
) -> Dict[str, Any]:
"""Parses the pairwise metric results from the evaluation results.
Args:
metric_result_dict: The metric results dictionary.
metric: The metric to evaluate.
Returns:
One of the following:
1. A dictionary containing raw outputs from the judge model if
return_raw_output is set to True in custom_output_config.
2. A dictionary containing metric score and explanation of the
metric if custom_output_config is not set.
"""
if (
isinstance(metric, pairwise_metric.PairwiseMetric)
and getattr(metric, "custom_output_config", None)
and getattr(metric.custom_output_config, "return_raw_output", False)
):
raw_outputs = (
metric_result_dict.get(constants.MetricResult.CUSTOM_OUTPUT_KEY)
.get(constants.MetricResult.RAW_OUTPUTS_KEY)
.get(constants.MetricResult.RAW_OUTPUT_KEY)
)
if (
isinstance(metric, pairwise_metric.PairwiseMetric)
and getattr(metric, "custom_output_config", None)
and getattr(metric.custom_output_config, "parsing_fn", None)
):
parsing_fn = metric.custom_output_config.parsing_fn
return parsing_fn(raw_outputs)
return {constants.MetricResult.RAW_OUTPUT_KEY: raw_outputs}
else:
return {
constants.MetricResult.PAIRWISE_CHOICE_KEY: metric_result_dict.get(
constants.MetricResult.PAIRWISE_CHOICE_KEY,
),
constants.MetricResult.EXPLANATION_KEY: metric_result_dict.get(
constants.MetricResult.EXPLANATION_KEY
),
}
def _parse_rubric_based_instruction_following_results(
metric_result_dict: Dict[str, Any],
) -> Dict[str, Any]:
"""Parses the rubric-based instruction following metric results from the evaluation results.
Args:
metric_result_dict: The metric results dictionary.
Returns:
A dictionary containing a list of rubrics and corresponding verdicts and
an overall instruction following score.
"""
rubric_critique_results = []
for rc_result in metric_result_dict["rubric_critique_results"]:
if "verdict" not in rc_result:
rc_result["verdict"] = False # proto3 shows False bool as unset
rubric_critique_results.append(
{
"rubric": rc_result["rubric"],
"verdict": rc_result["verdict"],
}
)
return {
constants.MetricResult.RUBRIC_LEVEL_INSTRUCTION_FOLLOWING_KEY: (
rubric_critique_results
),
constants.MetricResult.SCORE_KEY: (
metric_result_dict.get(constants.MetricResult.SCORE_KEY)
),
}
def handle_response(
response: Union[str, gapic_eval_service_types.EvaluateInstancesResponse],
metric: Union[str, metrics_base._Metric],
) -> Union[str, Dict[str, Any]]:
"""Handles the response from the evaluation service.
Args:
response: The response from the evaluation service.
metric: The metric to evaluate to check the output type.
Returns:
A parsed metric result dictionary, or an error message string.
"""
if isinstance(response, str):
return response
metric_type = response._pb.WhichOneof( # pylint: disable=protected-access
"evaluation_results"
)
if metric_type == constants.MetricResult.EXACT_MATCH_RESULTS:
metric_result = response.exact_match_results
elif metric_type == constants.MetricResult.BLEU_RESULTS:
metric_result = response.bleu_results
elif metric_type == constants.MetricResult.ROUGE_RESULTS:
metric_result = response.rouge_results
elif metric_type == constants.MetricResult.TOOL_CALL_VALID_RESULTS:
metric_result = response.tool_call_valid_results
elif metric_type == constants.MetricResult.TOOL_NAME_MATCH_RESULTS:
metric_result = response.tool_name_match_results
elif metric_type == constants.MetricResult.TOOL_PARAMETER_KEY_MATCH_RESULTS:
metric_result = response.tool_parameter_key_match_results
elif metric_type == constants.MetricResult.TOOL_PARAMETER_KV_MATCH_RESULTS:
metric_result = response.tool_parameter_kv_match_results
elif metric_type == constants.MetricResult.POINTWISE_METRIC_RESULT:
metric_result = response.pointwise_metric_result
elif metric_type == constants.MetricResult.PAIRWISE_METRIC_RESULT:
metric_result = response.pairwise_metric_result
elif metric_type == constants.MetricResult.TRAJECTORY_EXACT_MATCH_RESULTS:
metric_result = response.trajectory_exact_match_results
elif metric_type == constants.MetricResult.TRAJECTORY_IN_ORDER_MATCH_RESULTS:
metric_result = response.trajectory_in_order_match_results
elif metric_type == constants.MetricResult.TRAJECTORY_ANY_ORDER_MATCH_RESULTS:
metric_result = response.trajectory_any_order_match_results
elif metric_type == constants.MetricResult.TRAJECTORY_PRECISION_RESULTS:
metric_result = response.trajectory_precision_results
elif metric_type == constants.MetricResult.TRAJECTORY_RECALL_RESULTS:
metric_result = response.trajectory_recall_results
elif metric_type == constants.MetricResult.TRAJECTORY_SINGLE_TOOL_USE_RESULTS:
metric_result = response.trajectory_single_tool_use_results
elif (
metric_type == constants.MetricResult.RUBRIC_BASED_INSTRUCTION_FOLLOWING_RESULT
):
metric_result = response.rubric_based_instruction_following_result
else:
raise ValueError(f"Unknown metric type: {metric_type}")
metric_result_dict = json_format.MessageToDict(
metric_result._pb, # pylint: disable=protected-access
preserving_proto_field_name=True,
)
if metric_type in (constants.MetricResult.AUTOMATIC_METRIC_RESULTS_LIST):
result = _parse_autometric_results(metric_result_dict)
elif metric_type == constants.MetricResult.POINTWISE_METRIC_RESULT:
result = _parse_pointwise_results(metric_result_dict, metric)
elif metric_type == constants.MetricResult.PAIRWISE_METRIC_RESULT:
result = _parse_pairwise_results(metric_result_dict, metric)
elif (
metric_type == constants.MetricResult.RUBRIC_BASED_INSTRUCTION_FOLLOWING_RESULT
):
result = _parse_rubric_based_instruction_following_results(metric_result_dict)
else:
raise ValueError(f"Unknown metric type: {metric_type}")
return result
def evaluate_instances(
client: gapic_evaluation_services.EvaluationServiceClient,
request: gapic_eval_service_types.EvaluateInstancesRequest,
rate_limiter: utils.RateLimiter,
retry_timeout: float,
) -> gapic_eval_service_types.EvaluateInstancesResponse:
"""Evaluates an instance using Vertex Gen AI Evaluation Service.
Args:
client: The Vertex Gen AI evaluation service client for evaluation.
request: An EvaluateInstancesRequest.
rate_limiter: The rate limiter for evaluation service requests.
retry_timeout: How long to keep retrying the evaluation requests, in seconds.
Returns:
An EvaluateInstancesResponse from Vertex Gen AI Evaluation Service.
"""
rate_limiter.sleep_and_advance()
return client.evaluate_instances(
request=request,
retry=api_core.retry.Retry(
initial=0.250,
maximum=90.0,
multiplier=1.45,
timeout=retry_timeout,
predicate=api_core.retry.if_exception_type(
api_core.exceptions.Aborted,
api_core.exceptions.DeadlineExceeded,
api_core.exceptions.ResourceExhausted,
api_core.exceptions.ServiceUnavailable,
api_core.exceptions.Cancelled,
),
),
)

View File

@@ -0,0 +1,79 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""ROUGE Metric."""
from typing import Literal
from vertexai.preview.evaluation import constants
from vertexai.preview.evaluation.metrics import _base
class Rouge(_base._AutomaticMetric): # pylint: disable=protected-access
"""The ROUGE Metric.
Calculates the recall of n-grams in prediction as compared to reference and
returns a score ranging between 0 and 1. Supported rouge types are
rougen[1-9], rougeL, and rougeLsum.
"""
_metric_name = constants.Metric.ROUGE
def __init__(
self,
*,
rouge_type: Literal[
"rouge1",
"rouge2",
"rouge3",
"rouge4",
"rouge5",
"rouge6",
"rouge7",
"rouge8",
"rouge9",
"rougeL",
"rougeLsum",
],
use_stemmer: bool = False,
split_summaries: bool = False
):
"""Initializes the ROUGE metric.
Args:
rouge_type: Supported rouge types are rougen[1-9], rougeL, and rougeLsum.
use_stemmer: Whether to use stemmer to compute rouge score.
split_summaries: Whether to split summaries while using 'rougeLsum' to
compute rouge score.
"""
self._rouge_type = rouge_type
self._use_stemmer = use_stemmer
self._split_summaries = split_summaries
super().__init__(
metric=Rouge._metric_name,
)
@property
def rouge_type(self) -> str:
return self._rouge_type
@property
def use_stemmer(self) -> bool:
return self._use_stemmer
@property
def split_summaries(self) -> bool:
return self._split_summaries

View File

@@ -0,0 +1,148 @@
# -*- coding: utf-8 -*-
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Schema for autorater metric configuration."""
AUTORATER_METRIC_SCHEMA = """
$schema: https://json-schema.org/draft/2020-12/schema
title: AutoRater Metric Configuration
description: A metric definition for model-based evaluation.
type: object
properties:
metadata:
description: Useful information about the metric.
type: object
properties:
name:
description: Name of the metric.
type: string
description:
description: Description of the metric.
type: string
author:
description: Author of the metric.
type: string
contact:
description: PoC for the metric.
type: string
version:
description: Version of the metric.
type: string
classification:
description: Classification of the metric.
type: string
enum:
- experimental
- benchmarked
- deprecated
required_inputs:
description: Input fields used in the metric prompt template.
type: array
items:
type: string
minItems: 1
uniqueItems: true
benchmarks:
description: List of benchmarks used for the metric.
type: array
items:
type: object
properties:
dataset:
description: Dataset used for benchmarking.
type: string
results:
description: Results from benchmarking.
type: string
required:
- results
minItems: 1
uniqueItems: true
usage:
description: Links to documentation or notebooks with example usage.
type: array
items:
type: string
minItems: 1
uniqueItems: true
required:
- name
- version
- required_inputs
steps:
description: List of steps used for the autorater workflow.
type: array
items:
type: object
properties:
type:
description: Type of the step.
type: string
enum:
- pointwise_metric
- pairwise_metric
- rubric
prompt:
description: Prompt template for the step.
type: object
properties:
system_instruction:
description: System instruction for the model.
type: string
template:
description: Template to populate with inputs from the dataset.
type: string
required:
- template
model:
description: Configuration of the model for the step.
type: object
properties:
model_name_or_endpoint:
description: Name or endpoint of the model.
type: string
required:
- model_name_or_endpoint
options:
description: Options for the step.
type: object
properties:
sample_count:
description: Number of samples for each instance in the dataset.
type: integer
flip_enabled:
description: Whether to flip candidate and baseline responses.
type: boolean
output:
description: Output of the step.
type: object
properties:
type:
description: Type of the output.
type: string
enum:
- raw
required:
- type
required:
- type
- prompt
minItems: 1
uniqueItems: true
required:
- metadata
- steps
"""

View File

@@ -0,0 +1,49 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from vertexai.preview.evaluation import constants
from vertexai.preview.evaluation.metrics import _base
class TrajectorySingleToolUse(
_base._AutomaticMetric
): # pylint: disable=protected-access
"""The TrajectorySingleToolUse Metric.
Evaluates if a tool is present in the trajectory or not.
"""
_metric_name = constants.Metric.TRAJECTORY_SINGLE_TOOL_USE
def __init__(
self,
tool_name: str,
):
"""Initializes the TrajectorySingleToolUse metric.
Args:
tool_name: name of the tool to check.
"""
self._tool_name = tool_name
super().__init__(
metric=TrajectorySingleToolUse._metric_name,
)
@property
def tool_name(self) -> str:
return self._tool_name

View File

@@ -0,0 +1,39 @@
# -*- coding: utf-8 -*-
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Custom output config for model-based metrics."""
from typing import Any, Callable, Dict, Optional
class CustomOutputConfig:
"""Custom output config for model-based metrics.
Attributes:
return_raw_output: Whether to return the raw output of the metric
function.
parsing_fn: Function to parse the raw output of the metric.
"""
def __init__(
self,
return_raw_output: bool = False,
parsing_fn: Optional[Callable[[str], Dict[str, Any]]] = None,
):
"""Initializes CustomOutputConfig."""
self.return_raw_output = return_raw_output
self.parsing_fn = parsing_fn

View File

@@ -0,0 +1,395 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Metric prompt template classes for model-based metrics evaluation."""
from typing import Dict, List, Optional
from google.cloud.aiplatform import base
from vertexai.preview.evaluation import (
prompt_template,
)
_LOGGER = base.Logger(__name__)
_NEWLINE = "\n"
def serialize_dict_in_order(elements: Optional[Dict[str, str]]):
"""Serializes dictionary to ordered string value without brackets."""
if elements is None:
return ""
return _NEWLINE.join(f"{key}: {value}" for key, value in sorted(elements.items()))
class _MetricPromptTemplate(prompt_template.PromptTemplate):
"""Metric prompt template for generic model-based metrics evaluation."""
def __init__(
self,
*,
criteria: Dict[str, str],
rating_rubric: Dict[str, str],
input_variables: List[str],
instruction: Optional[str] = None,
evaluation_steps: Optional[Dict[str, str]] = None,
metric_definition: Optional[str] = None,
few_shot_examples: Optional[List[str]] = None,
):
"""Initializes a metric prompt template."""
self._input_variables = input_variables
self._instruction = instruction
self._metric_definition = metric_definition
self._criteria = criteria
self._rating_rubric = rating_rubric
self._evaluation_steps = evaluation_steps
self._few_shot_examples = few_shot_examples
self.template = self.__str__()
@property
def prompt_data(self) -> str:
return self.template
class PointwiseMetricPromptTemplate(_MetricPromptTemplate):
"""Pointwise metric prompt template for pointwise model-based metrics."""
def __init__(
self,
*,
criteria: Dict[str, str],
rating_rubric: Dict[str, str],
input_variables: Optional[List[str]] = None,
instruction: Optional[str] = None,
metric_definition: Optional[str] = None,
evaluation_steps: Optional[Dict[str, str]] = None,
few_shot_examples: Optional[List[str]] = None,
):
"""Initializes a pointwise metric prompt template.
Args:
criteria: The standards and measures used to evaluate the model
responses. It is a dictionary of criterion names and criterion
definitions.
rating_rubric: A dictionary mapping of rating name and rating
definition, used to assign ratings or scores based on specific
criteria.
input_variables: An optional list of input fields to use in the metric
prompt template for generating model-based evaluation results. Model
"response" column is included by default. If metric_column_mapping is
provided, the mapping values of the input fields will be used to
retrieve data from the evaluation dataset.
instruction: The general instruction to the model that performs the
evaluation. If not provided, a default pointwise metric instruction
will be used.
metric_definition: The optional metric definition. It is a string
describing the metric to be evaluated at a high level. If not
provided, this field will not be included in the prompt template.
evaluation_steps: The optional gudelines of evaluation steps. A
dictionary of evaluation step name and evaluation step definition. If
not provided, a default pointwise metric evaluation steps will be
used.
few_shot_examples: The optional list of few-shot examples to be used in
the prompt, to provide the model with demonstrations of how to perform
the evaluation, and improve the evaluation accuracy. If not provided,
this field will not be included in the prompt template.
"""
if not input_variables:
input_variables = []
_LOGGER.info(
"The `input_variables` parameter is empty. Only the `response`"
" column is used for computing this model-based metric."
)
input_variables = list(set(input_variables + ["response"]))
instruction = instruction or self.get_default_pointwise_instruction()
evaluation_steps = (
evaluation_steps or self.get_default_pointwise_evaluation_steps()
)
super().__init__(
input_variables=input_variables,
criteria=criteria,
rating_rubric=rating_rubric,
instruction=instruction,
metric_definition=metric_definition,
evaluation_steps=evaluation_steps,
few_shot_examples=few_shot_examples,
)
def get_default_pointwise_instruction(self) -> str:
"""Returns the default instruction for the metric prompt template."""
return (
"You are an expert evaluator. Your task is to evaluate the quality of"
" the responses generated by AI models. We will provide you with the"
" user prompt and an AI-generated responses.\nYou should first read"
" the user input carefully for analyzing the task, and then evaluate"
" the quality of the responses based on the Criteria provided in the"
" Evaluation section below.\nYou will assign the response a rating"
" following the Rating Rubric and Evaluation Steps. Give step by step"
" explanations for your rating, and only choose ratings from the Rating"
" Rubric."
)
def get_default_pointwise_evaluation_steps(self) -> Dict[str, str]:
"""Returns the default evaluation steps for the metric prompt template."""
return {
"Step 1": (
"Assess the response in aspects of all criteria provided. Provide"
" assessment according to each criterion."
),
"Step 2": (
"Score based on the rating rubric. Give a brief rationale to"
" explain your evaluation considering each individual criterion."
),
}
def __str__(self):
"""Serializes the pointwise metric prompt template to a string."""
metric_prompt_template_str = [
"# Instruction",
f"{self._instruction}",
_NEWLINE,
"# Evaluation",
]
if self._metric_definition:
metric_prompt_template_str.extend(
[
"## Metric Definition",
f"{self._metric_definition}\n",
]
)
metric_prompt_template_str.extend(
[
"## Criteria",
f"{serialize_dict_in_order(self._criteria)}\n",
"## Rating Rubric",
f"{serialize_dict_in_order(self._rating_rubric)}\n",
]
)
if self._evaluation_steps:
metric_prompt_template_str.extend(
[
"## Evaluation Steps",
f"{serialize_dict_in_order(self._evaluation_steps)}\n",
]
)
if self._few_shot_examples:
metric_prompt_template_str.extend(
[
"## Evaluation Examples",
f"{_NEWLINE.join(self._few_shot_examples)}\n",
]
)
metric_prompt_template_str.extend(
["\n# User Inputs and AI-generated Response", "## User Inputs"]
)
for input_variable in self._input_variables:
if input_variable == "response":
continue
metric_prompt_template_str.extend(
[
f"### {input_variable}",
f"{{{input_variable}}}\n",
]
)
metric_prompt_template_str.extend(
[
_NEWLINE,
"\n## AI-generated Response",
"{response}",
]
)
return _NEWLINE.join(metric_prompt_template_str)
def __repr__(self):
return (
f"PointwiseMetricPromptTemplate(prompt_data={self.prompt_data},"
f" variables={self.variables})"
)
class PairwiseMetricPromptTemplate(_MetricPromptTemplate):
"""Pairwise metric prompt template for pairwise model-based metrics."""
def __init__(
self,
*,
criteria: Dict[str, str],
rating_rubric: Dict[str, str],
input_variables: Optional[List[str]] = None,
instruction: Optional[str] = None,
metric_definition: Optional[str] = None,
evaluation_steps: Optional[Dict[str, str]] = None,
few_shot_examples: Optional[List[str]] = None,
):
"""Initializes a pairwise metric prompt template.
Args:
criteria: The standards and measures used to evaluate the model
responses. It is a dictionary of criterion names and criterion
definitions.
rating_rubric: A dictionary mapping of rating name and rating
definition, used to assign ratings or scores based on specific
criteria.
input_variables: An optional list of input fields to use in the metric
prompt template for generating model-based evaluation results.
Candidate model "response" column and "baseline_model_response" column
are included by default. If metric_column_mapping is provided, the
mapping values of the input fields will be used to retrieve data from
the evaluation dataset.
instruction: The general instruction to the model that performs the
evaluation. If not provided, a default pairwise metric instruction
will be used.
metric_definition: The optional metric definition. It is a string
describing the metric to be evaluated at a high level. If not
provided, this field will not be included in the prompt template.
evaluation_steps: The optional gudelines of evaluation steps. A
dictionary of evaluation step name and evaluation step definition. If
not provided, a default pairwise metric evaluation steps will be used.
few_shot_examples: The optional list of few-shot examples to be used in
the prompt, to provide the model with demonstrations of how to perform
the evaluation, and improve the evaluation accuracy. If not provided,
this field will not be included in the prompt template.
"""
if not input_variables:
input_variables = []
_LOGGER.info(
"The `input_variables` parameter is empty. Only the `response`"
" column and `baseline_model_response` columns are used for"
" computing this model-based metric."
)
input_variables = list(
set(input_variables + ["response", "baseline_model_response"])
)
instruction = instruction or self.get_default_pairwise_instruction()
evaluation_steps = (
evaluation_steps or self.get_default_pairwise_evaluation_steps()
)
super().__init__(
input_variables=input_variables,
criteria=criteria,
rating_rubric=rating_rubric,
instruction=instruction,
metric_definition=metric_definition,
evaluation_steps=evaluation_steps,
few_shot_examples=few_shot_examples,
)
def get_default_pairwise_instruction(self) -> str:
"""Returns the default instruction for the metric prompt template."""
return (
"You are an expert evaluator. Your task is to evaluate the quality of"
" the responses generated by two AI models. We will provide you with"
" the user input and a pair of AI-generated responses (Response A and"
" Response B).\nYou should first read the user input carefully for"
" analyzing the task, and then evaluate the quality of the responses"
" based on based on the Criteria provided in the Evaluation section"
" below.\nYou will first judge responses individually, following the"
" Rating Rubric and Evaluation Steps. Then you will give step by step"
" explanations for your judgement, compare results to declare the"
" winner based on the Rating Rubric and Evaluation Steps."
)
def get_default_pairwise_evaluation_steps(self) -> Dict[str, str]:
"""Returns the default evaluation steps for the metric prompt template."""
return {
"Step 1": "Analyze Response A based on all the Criteria.",
"Step 2": "Analyze Response B based on all the Criteria.",
"Step 3": (
"Compare the overall performance of Response A and Response B based"
" on your analyses and assessment."
),
"Step 4": (
'Output your preference of "A", "SAME" or "B" to the'
" pairwise_choice field according to the Rating Rubrics."
),
"Step 5": "Output your assessment reasoning in the explanation field",
}
def __str__(self):
"""Serializes the pairwise metric prompt template to a string."""
metric_prompt_template_str = [
"# Instruction",
f"{self._instruction}",
_NEWLINE,
"# Evaluation",
]
if self._metric_definition:
metric_prompt_template_str.extend(
[
"## Metric Definition",
f"{self._metric_definition}\n",
]
)
metric_prompt_template_str.extend(
[
"## Criteria",
f"{serialize_dict_in_order(self._criteria)}\n",
"## Rating Rubric",
f"{serialize_dict_in_order(self._rating_rubric)}\n",
]
)
if self._evaluation_steps:
metric_prompt_template_str.extend(
[
"## Evaluation Steps",
f"{serialize_dict_in_order(self._evaluation_steps)}\n",
]
)
if self._few_shot_examples:
metric_prompt_template_str.extend(
[
"## Evaluation Examples",
f"{_NEWLINE.join(self._few_shot_examples)}\n",
]
)
metric_prompt_template_str.extend(
["\n# User Inputs and AI-generated Responses", "## User Inputs"]
)
for input_variable in self._input_variables:
if input_variable in ["response", "baseline_model_response"]:
continue
metric_prompt_template_str.extend(
[
f"### {input_variable}",
f"{{{input_variable}}}\n",
]
)
metric_prompt_template_str.extend(
[
"\n## AI-generated Responses",
"### Response A",
"{baseline_model_response}\n",
"### Response B",
"{response}",
]
)
return _NEWLINE.join(metric_prompt_template_str)
def __repr__(self):
return (
f"PairwiseMetricPromptTemplate(prompt_data={self.prompt_data},"
f" variables={self.variables})"
)

View File

@@ -0,0 +1,197 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Example metric prompt templates for model-based evaluation."""
from typing import List
from vertexai.preview.evaluation import constants
from vertexai.preview.evaluation.metrics import (
_default_templates,
)
from vertexai.preview.evaluation.metrics import pairwise_metric
from vertexai.preview.evaluation.metrics import pointwise_metric
class MetricPromptTemplateExamples:
"""Examples of metric prompt templates for model-based evaluation."""
_PROMPT_TEMPLATE_MAP = {
constants.Metric.COHERENCE: _default_templates.COHERENCE_PROMPT_TEMPLATE,
constants.Metric.FLUENCY: _default_templates.FLUENCY_PROMPT_TEMPLATE,
constants.Metric.SAFETY: _default_templates.SAFETY_PROMPT_TEMPLATE,
constants.Metric.GROUNDEDNESS: (
_default_templates.GROUNDEDNESS_PROMPT_TEMPLATE
),
constants.Metric.INSTRUCTION_FOLLOWING: (
_default_templates.INSTRUCTION_FOLLOWING_PROMPT_TEMPLATE
),
constants.Metric.VERBOSITY: _default_templates.VERBOSITY_PROMPT_TEMPLATE,
constants.Metric.TEXT_QUALITY: (
_default_templates.TEXT_QUALITY_PROMPT_TEMPLATE
),
constants.Metric.SUMMARIZATION_QUALITY: (
_default_templates.SUMMARIZATION_QUALITY_PROMPT_TEMPLATE
),
constants.Metric.QUESTION_ANSWERING_QUALITY: (
_default_templates.QUESTION_ANSWERING_QUALITY_PROMPT_TEMPLATE
),
constants.Metric.MULTI_TURN_CHAT_QUALITY: (
_default_templates.MULTI_TURN_CHAT_QUALITY_PROMPT_TEMPLATE
),
constants.Metric.MULTI_TURN_SAFETY: (
_default_templates.MULTI_TURN_SAFETY_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_COHERENCE: (
_default_templates.PAIRWISE_COHERENCE_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_FLUENCY: (
_default_templates.PAIRWISE_FLUENCY_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_SAFETY: (
_default_templates.PAIRWISE_SAFETY_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_GROUNDEDNESS: (
_default_templates.PAIRWISE_GROUNDEDNESS_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_INSTRUCTION_FOLLOWING: (
_default_templates.PAIRWISE_INSTRUCTION_FOLLOWING_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_VERBOSITY: (
_default_templates.PAIRWISE_VERBOSITY_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_TEXT_QUALITY: (
_default_templates.PAIRWISE_TEXT_QUALITY_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_SUMMARIZATION_QUALITY: (
_default_templates.PAIRWISE_SUMMARIZATION_QUALITY_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_QUESTION_ANSWERING_QUALITY: (
_default_templates.PAIRWISE_QUESTION_ANSWERING_QUALITY_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_MULTI_TURN_CHAT_QUALITY: (
_default_templates.PAIRWISE_MULTI_TURN_CHAT_QUALITY_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_MULTI_TURN_SAFETY: (
_default_templates.PAIRWISE_MULTI_TURN_SAFETY_PROMPT_TEMPLATE
),
}
@classmethod
def get_prompt_template(cls, metric_name: str) -> str:
"""Returns the prompt template for the given metric name."""
return cls._PROMPT_TEMPLATE_MAP[metric_name]
@classmethod
def list_example_metric_names(cls) -> List[str]:
"""Returns a list of all metric prompt templates."""
return list(cls._PROMPT_TEMPLATE_MAP.keys())
class Pointwise:
"""Example PointwiseMetric instances."""
FLUENCY = pointwise_metric.PointwiseMetric(
metric=constants.Metric.FLUENCY,
metric_prompt_template=_default_templates.FLUENCY_PROMPT_TEMPLATE,
)
COHERENCE = pointwise_metric.PointwiseMetric(
metric=constants.Metric.COHERENCE,
metric_prompt_template=_default_templates.COHERENCE_PROMPT_TEMPLATE,
)
SAFETY = pointwise_metric.PointwiseMetric(
metric=constants.Metric.SAFETY,
metric_prompt_template=_default_templates.SAFETY_PROMPT_TEMPLATE,
)
GROUNDEDNESS = pointwise_metric.PointwiseMetric(
metric=constants.Metric.GROUNDEDNESS,
metric_prompt_template=_default_templates.GROUNDEDNESS_PROMPT_TEMPLATE,
)
INSTRUCTION_FOLLOWING = pointwise_metric.PointwiseMetric(
metric=constants.Metric.INSTRUCTION_FOLLOWING,
metric_prompt_template=_default_templates.INSTRUCTION_FOLLOWING_PROMPT_TEMPLATE,
)
VERBOSITY = pointwise_metric.PointwiseMetric(
metric=constants.Metric.VERBOSITY,
metric_prompt_template=_default_templates.VERBOSITY_PROMPT_TEMPLATE,
)
TEXT_QUALITY = pointwise_metric.PointwiseMetric(
metric=constants.Metric.TEXT_QUALITY,
metric_prompt_template=_default_templates.TEXT_QUALITY_PROMPT_TEMPLATE,
)
SUMMARIZATION_QUALITY = pointwise_metric.PointwiseMetric(
metric=constants.Metric.SUMMARIZATION_QUALITY,
metric_prompt_template=_default_templates.SUMMARIZATION_QUALITY_PROMPT_TEMPLATE,
)
QUESTION_ANSWERING_QUALITY = pointwise_metric.PointwiseMetric(
metric=constants.Metric.QUESTION_ANSWERING_QUALITY,
metric_prompt_template=_default_templates.QUESTION_ANSWERING_QUALITY_PROMPT_TEMPLATE,
)
MULTI_TURN_CHAT_QUALITY = pointwise_metric.PointwiseMetric(
metric=constants.Metric.MULTI_TURN_CHAT_QUALITY,
metric_prompt_template=_default_templates.MULTI_TURN_CHAT_QUALITY_PROMPT_TEMPLATE,
)
MULTI_TURN_SAFETY_QUALITY = pointwise_metric.PointwiseMetric(
metric=constants.Metric.MULTI_TURN_SAFETY,
metric_prompt_template=_default_templates.MULTI_TURN_SAFETY_PROMPT_TEMPLATE,
)
class Pairwise:
"""Example PairwiseMetric instances."""
FLUENCY = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_FLUENCY,
metric_prompt_template=_default_templates.PAIRWISE_FLUENCY_PROMPT_TEMPLATE,
)
COHERENCE = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_COHERENCE,
metric_prompt_template=_default_templates.PAIRWISE_COHERENCE_PROMPT_TEMPLATE,
)
SAFETY = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_SAFETY,
metric_prompt_template=_default_templates.PAIRWISE_SAFETY_PROMPT_TEMPLATE,
)
GROUNDEDNESS = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_GROUNDEDNESS,
metric_prompt_template=_default_templates.PAIRWISE_GROUNDEDNESS_PROMPT_TEMPLATE,
)
INSTRUCTION_FOLLOWING = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_INSTRUCTION_FOLLOWING,
metric_prompt_template=_default_templates.PAIRWISE_INSTRUCTION_FOLLOWING_PROMPT_TEMPLATE,
)
VERBOSITY = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_VERBOSITY,
metric_prompt_template=_default_templates.PAIRWISE_VERBOSITY_PROMPT_TEMPLATE,
)
TEXT_QUALITY = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_TEXT_QUALITY,
metric_prompt_template=_default_templates.PAIRWISE_TEXT_QUALITY_PROMPT_TEMPLATE,
)
SUMMARIZATION_QUALITY = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_SUMMARIZATION_QUALITY,
metric_prompt_template=_default_templates.PAIRWISE_SUMMARIZATION_QUALITY_PROMPT_TEMPLATE,
)
QUESTION_ANSWERING_QUALITY = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_QUESTION_ANSWERING_QUALITY,
metric_prompt_template=_default_templates.PAIRWISE_QUESTION_ANSWERING_QUALITY_PROMPT_TEMPLATE,
)
MULTI_TURN_CHAT_QUALITY = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_MULTI_TURN_CHAT_QUALITY,
metric_prompt_template=_default_templates.PAIRWISE_MULTI_TURN_CHAT_QUALITY_PROMPT_TEMPLATE,
)
MULTI_TURN_SAFETY_QUALITY = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_MULTI_TURN_SAFETY,
metric_prompt_template=_default_templates.PAIRWISE_MULTI_TURN_SAFETY_PROMPT_TEMPLATE,
)

View File

@@ -0,0 +1,133 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Model-based Pairwise Metric."""
from typing import Callable, Optional, Union
from google.cloud.aiplatform_v1beta1.types import (
evaluation_service as gapic_eval_service_types,
)
from vertexai.preview import generative_models
from vertexai.preview.evaluation.metrics import _base
from vertexai.preview.evaluation.metrics import (
custom_output_config as custom_output_config_class,
)
from vertexai.preview.evaluation.metrics import (
metric_prompt_template as metric_prompt_template_base,
)
class PairwiseMetric(_base._ModelBasedMetric): # pylint: disable=protected-access
"""A Model-based Pairwise Metric.
A model-based evaluation metric that compares two generative models' responses
side-by-side, and allows users to A/B test their generative models to
determine which model is performing better.
For more details on when to use pairwise metrics, see
[Evaluation methods and
metrics](https://cloud.google.com/vertex-ai/generative-ai/docs/models/determine-eval#pointwise_versus_pairwise).
Result Details:
* In `EvalResult.summary_metrics`, win rates for both the baseline and
candidate model are computed. The win rate is computed as proportion of
wins of one model's responses to total attempts as a decimal value
between 0 and 1.
* In `EvalResult.metrics_table`, a pairwise metric produces two
evaluation results per dataset row:
* `pairwise_choice`: The choice shows whether the candidate model or
the baseline model performs better, or if they are equally good.
* `explanation`: The rationale behind each verdict using
chain-of-thought reasoning. The explanation helps users scrutinize
the judgment and builds appropriate trust in the decisions.
See [documentation
page](https://cloud.google.com/vertex-ai/generative-ai/docs/models/determine-eval#understand-results)
for more details on understanding the metric results.
Usage Examples:
```
baseline_model = GenerativeModel("gemini-1.0-pro")
candidate_model = GenerativeModel("gemini-1.5-pro")
pairwise_groundedness = PairwiseMetric(
metric_prompt_template=MetricPromptTemplateExamples.get_prompt_template(
"pairwise_groundedness"
),
baseline_model=baseline_model,
)
eval_dataset = pd.DataFrame({
"prompt" : [...],
})
pairwise_task = EvalTask(
dataset=eval_dataset,
metrics=[pairwise_groundedness],
experiment="my-pairwise-experiment",
)
pairwise_result = pairwise_task.evaluate(
model=candidate_model,
experiment_run_name="gemini-pairwise-eval-run",
)
```
"""
def __init__(
self,
*,
metric: str,
metric_prompt_template: Union[
metric_prompt_template_base.PairwiseMetricPromptTemplate, str
],
baseline_model: Optional[
Union[generative_models.GenerativeModel, Callable[[str], str]]
] = None,
system_instruction: Optional[str] = None,
autorater_config: Optional[gapic_eval_service_types.AutoraterConfig] = None,
custom_output_config: Optional[
custom_output_config_class.CustomOutputConfig
] = None,
):
"""Initializes a pairwise evaluation metric.
Args:
metric: The pairwise evaluation metric name.
metric_prompt_template: Pairwise metric prompt template for performing
the pairwise model-based evaluation. A freeform string is also accepted.
baseline_model: The baseline model for side-by-side comparison. If not
specified, `baseline_model_response` column is required in the dataset
to perform bring-your-own-response(BYOR) evaluation.
system_instruction: The system instruction for the evaluation.
autorater_config: The config for judge model.
custom_output_config: Config for custom output from the judge model.
"""
super().__init__(
metric_prompt_template=metric_prompt_template,
metric=metric,
system_instruction=system_instruction,
autorater_config=autorater_config,
custom_output_config=custom_output_config,
)
self._baseline_model = baseline_model
@property
def baseline_model(
self,
) -> Union[generative_models.GenerativeModel, Callable[[str], str]]:
return self._baseline_model

View File

@@ -0,0 +1,95 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Model-based Pointwise Metric."""
from typing import Optional, Union
from google.cloud.aiplatform_v1beta1.types import (
evaluation_service as gapic_eval_service_types,
)
from vertexai.preview.evaluation.metrics import _base
from vertexai.preview.evaluation.metrics import (
custom_output_config as custom_output_config_class,
)
from vertexai.preview.evaluation.metrics import (
metric_prompt_template as metric_prompt_template_base,
)
class PointwiseMetric(_base._ModelBasedMetric): # pylint: disable=protected-access
"""A Model-based Pointwise Metric.
A model-based evaluation metric that evaluate a single generative model's
response.
For more details on when to use model-based pointwise metrics, see
[Evaluation methods and metrics](https://cloud.google.com/vertex-ai/generative-ai/docs/models/determine-eval).
Usage Examples:
```
candidate_model = GenerativeModel("gemini-1.5-pro")
eval_dataset = pd.DataFrame({
"prompt" : [...],
})
fluency_metric = PointwiseMetric(
metric="fluency",
metric_prompt_template=MetricPromptTemplateExamples.get_prompt_template('fluency'),
)
pointwise_eval_task = EvalTask(
dataset=eval_dataset,
metrics=[
fluency_metric,
MetricPromptTemplateExamples.Pointwise.GROUNDEDNESS,
],
)
pointwise_result = pointwise_eval_task.evaluate(
model=candidate_model,
)
```
"""
def __init__(
self,
*,
metric: str,
metric_prompt_template: Union[
metric_prompt_template_base.PointwiseMetricPromptTemplate, str
],
system_instruction: Optional[str] = None,
autorater_config: Optional[gapic_eval_service_types.AutoraterConfig] = None,
custom_output_config: Optional[
custom_output_config_class.CustomOutputConfig
] = None,
):
"""Initializes a pointwise evaluation metric.
Args:
metric: The pointwise evaluation metric name.
metric_prompt_template: Pointwise metric prompt template for performing
the model-based evaluation. A freeform string is also accepted.
system_instruction: The system instruction for the evaluation.
autorater_config: The config for judge model.
custom_output_config: Config for custom output from the judge model.
"""
super().__init__(
metric_prompt_template=metric_prompt_template,
metric=metric,
system_instruction=system_instruction,
autorater_config=autorater_config,
custom_output_config=custom_output_config,
)

View File

@@ -0,0 +1,126 @@
# -*- coding: utf-8 -*-
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from google.cloud.aiplatform_v1beta1.types import (
evaluation_service as gapic_eval_service_types,
)
from vertexai.preview.evaluation import utils
from vertexai.preview.evaluation.metrics import (
_base as metrics_base,
)
from vertexai.preview.evaluation.metrics import (
_default_templates,
)
from vertexai.preview.evaluation.metrics import (
custom_output_config,
)
from vertexai.preview.evaluation.metrics import pairwise_metric
from vertexai.preview.evaluation.metrics import pointwise_metric
from vertexai.preview.evaluation.metrics import (
rubric_based_metric,
)
AutoraterConfig = gapic_eval_service_types.AutoraterConfig
_POINTWISE_OUTPUT_CONFIG = custom_output_config.CustomOutputConfig(
return_raw_output=True,
parsing_fn=utils.parse_pointwise_rubric_result,
)
_PAIRWISE_OUTPUT_CONFIG = custom_output_config.CustomOutputConfig(
return_raw_output=True,
parsing_fn=utils.parse_pairwise_rubric_result,
)
_PAIRWISE_AUTORATER_CONFIG = AutoraterConfig(
sampling_count=1,
)
class PredefinedRubricMetrics:
"""Predefined rubric-based metrics."""
class Pointwise:
"""Pointwise rubric-based metrics."""
INSTRUCTION_FOLLOWING = rubric_based_metric.RubricBasedMetric(
generation_config=metrics_base.RubricGenerationConfig(
prompt_template=_default_templates.INSTRUCTION_FOLLOWING_RUBRIC_GENERATION_PROMPT_TEMPLATE,
),
critique_metric=pointwise_metric.PointwiseMetric(
metric="rb_instruction_following",
metric_prompt_template=_default_templates.INSTRUCTION_FOLLOWING_RUBRIC_CRITIQUE_TEMPLATE,
custom_output_config=_POINTWISE_OUTPUT_CONFIG,
),
)
MULTIMODAL_UNDERSTANDING = rubric_based_metric.RubricBasedMetric(
generation_config=metrics_base.RubricGenerationConfig(
prompt_template=_default_templates.MULTIMODAL_UNDERSTANDING_RUBRIC_GENERATION_PROMPT_TEMPLATE
),
critique_metric=pointwise_metric.PointwiseMetric(
metric="rb_multimodal_understanding",
metric_prompt_template=_default_templates.MULTIMODAL_UNDERSTANDING_RUBRIC_CRITIQUE_TEMPLATE,
custom_output_config=_POINTWISE_OUTPUT_CONFIG,
),
)
TEXT_QUALITY = rubric_based_metric.RubricBasedMetric(
generation_config=metrics_base.RubricGenerationConfig(
prompt_template=_default_templates.TEXT_QUALITY_RUBRIC_GENERATION_PROMPT_TEMPLATE
),
critique_metric=pointwise_metric.PointwiseMetric(
metric="rb_text_quality",
metric_prompt_template=_default_templates.TEXT_QUALITY_RUBRIC_CRITIQUE_TEMPLATE,
custom_output_config=_POINTWISE_OUTPUT_CONFIG,
),
)
class Pairwise:
"""Pairwise rubric-based metrics."""
INSTRUCTION_FOLLOWING = rubric_based_metric.RubricBasedMetric(
generation_config=metrics_base.RubricGenerationConfig(
prompt_template=_default_templates.INSTRUCTION_FOLLOWING_RUBRIC_GENERATION_PROMPT_TEMPLATE,
),
critique_metric=pairwise_metric.PairwiseMetric(
metric="pairwise_rb_instruction_following",
metric_prompt_template=_default_templates.PAIRWISE_INSTRUCTION_FOLLOWING_RUBRIC_CRITIQUE_TEMPLATE,
custom_output_config=_PAIRWISE_OUTPUT_CONFIG,
autorater_config=_PAIRWISE_AUTORATER_CONFIG,
),
)
MULTIMODAL_UNDERSTANDING = rubric_based_metric.RubricBasedMetric(
generation_config=metrics_base.RubricGenerationConfig(
prompt_template=_default_templates.MULTIMODAL_UNDERSTANDING_RUBRIC_GENERATION_PROMPT_TEMPLATE
),
critique_metric=pairwise_metric.PairwiseMetric(
metric="pairwise_rb_multimodal_understanding",
metric_prompt_template=_default_templates.PAIRWISE_MULTIMODAL_UNDERSTANDING_RUBRIC_CRITIQUE_TEMPLATE,
custom_output_config=_PAIRWISE_OUTPUT_CONFIG,
autorater_config=_PAIRWISE_AUTORATER_CONFIG,
),
)
TEXT_QUALITY = rubric_based_metric.RubricBasedMetric(
generation_config=metrics_base.RubricGenerationConfig(
prompt_template=_default_templates.TEXT_QUALITY_RUBRIC_GENERATION_PROMPT_TEMPLATE
),
critique_metric=pairwise_metric.PairwiseMetric(
metric="pairwise_rb_text_quality",
metric_prompt_template=_default_templates.PAIRWISE_TEXT_QUALITY_RUBRIC_CRITIQUE_TEMPLATE,
custom_output_config=_PAIRWISE_OUTPUT_CONFIG,
autorater_config=_PAIRWISE_AUTORATER_CONFIG,
),
)

View File

@@ -0,0 +1,104 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import collections
from typing import Union, TYPE_CHECKING
from google.cloud.aiplatform import base
from vertexai import generative_models
from vertexai.preview.evaluation import _pre_eval_utils
from vertexai.preview.evaluation import constants
from vertexai.preview.evaluation import utils
from vertexai.preview.evaluation.metrics import (
_base as metrics_base,
)
from vertexai.preview.evaluation.metrics import pairwise_metric
from vertexai.preview.evaluation.metrics import pointwise_metric
if TYPE_CHECKING:
import pandas as pd
_DEFAULT_MODEL_NAME = "gemini-2.0-flash-001"
_LOGGER = base.Logger(__name__)
class RubricBasedMetric(metrics_base._Metric):
"""Config for Rubric-Based Eval."""
def __init__(
self,
*,
generation_config: metrics_base.RubricGenerationConfig,
critique_metric: Union[
pointwise_metric.PointwiseMetric, pairwise_metric.PairwiseMetric
]
):
"""Initializes RubricBasedMetric.
Args:
generation_config: Config for rubric generation.
critique_metric: Pointwise/pairwise metric for rubric critique.
"""
super().__init__(metric=critique_metric._metric)
self.generation_config = generation_config
self.critique_metric = critique_metric
def generate_rubrics(
self,
eval_dataset: "pd.Dataframe",
) -> "pd.DataFrame":
"""Generates rubrics for given eval dataset."""
if not self.generation_config.model:
model = generative_models.GenerativeModel(model_name=_DEFAULT_MODEL_NAME)
else:
model = self.generation_config.model
if constants.Dataset.RUBRICS_COLUMN in eval_dataset.columns:
_LOGGER.warning(
"Rubrics column already exists in the dataset. Skipping rubric"
" generation."
)
return eval_dataset
responses = _pre_eval_utils._generate_responses_from_gemini_model(
model,
eval_dataset,
self.generation_config.prompt_template,
)
if self.generation_config.parsing_fn:
parsing_fn = self.generation_config.parsing_fn
else:
parsing_fn = utils.parse_rubrics
dataset_with_rubrics = eval_dataset.copy()
aggregated = collections.defaultdict(list)
for idx, response in enumerate(responses):
result = parsing_fn(response)
if isinstance(result, dict):
questions = result.pop("questions", None)
if questions is not None:
aggregated[constants.Dataset.RUBRICS_COLUMN].append(
(idx, questions)
)
for key, value in result.items():
aggregated[key].append((idx, value))
else:
aggregated[constants.Dataset.RUBRICS_COLUMN].append((idx, result))
for key, values in aggregated.items():
dataset_with_rubrics[key] = None
dataset_with_rubrics[key] = dataset_with_rubrics[key].astype(object)
for idx, value in values:
dataset_with_rubrics.at[idx, key] = value
return dataset_with_rubrics