structure saas with tools

This commit is contained in:
Davidson Gomes
2025-04-25 15:30:54 -03:00
commit 1aef473937
16434 changed files with 6584257 additions and 0 deletions

View File

@@ -0,0 +1,43 @@
# -*- coding: utf-8 -*-
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from google.cloud.aiplatform.metadata import metadata
# For Vertex AI Experiment.
# ExperimentRun manipulation.
start_run = metadata._experiment_tracker.start_run
end_run = metadata._experiment_tracker.end_run
get_experiment_df = metadata._experiment_tracker.get_experiment_df
# Experiment logging.
log_params = metadata._experiment_tracker.log_params
log_metrics = metadata._experiment_tracker.log_metrics
log_time_series_metrics = metadata._experiment_tracker.log_time_series_metrics
log_classification_metrics = metadata._experiment_tracker.log_classification_metrics
__all__ = (
"start_run",
"end_run",
"get_experiment_df",
"log_params",
"log_metrics",
"log_time_series_metrics",
"log_classification_metrics",
)

View File

@@ -0,0 +1,25 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Classes for batch prediction."""
# We just want to re-export certain classes
# pylint: disable=g-multiple-import,g-importing-member
from vertexai.batch_prediction._batch_prediction import (
BatchPredictionJob,
)
__all__ = [
"BatchPredictionJob",
]

View File

@@ -0,0 +1,20 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from vertexai.caching._caching import CachedContent
__all__ = [
"CachedContent",
]

View File

@@ -0,0 +1,56 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Vertex Gen AI Evaluation Service Module."""
from vertexai.preview.evaluation import _base
from vertexai.preview.evaluation import autorater_utils
from vertexai.preview.evaluation import eval_task
from vertexai.preview.evaluation import metrics
from vertexai.preview.evaluation import prompt_template
EvalResult = _base.EvalResult
EvalTask = eval_task.EvalTask
PairwiseMetric = metrics.PairwiseMetric
PointwiseMetric = metrics.PointwiseMetric
CustomMetric = metrics.CustomMetric
PromptTemplate = prompt_template.PromptTemplate
PairwiseMetricPromptTemplate = metrics.PairwiseMetricPromptTemplate
PointwiseMetricPromptTemplate = metrics.PointwiseMetricPromptTemplate
MetricPromptTemplateExamples = metrics.MetricPromptTemplateExamples
AutoraterConfig = autorater_utils.AutoraterConfig
CustomOutputConfig = metrics.CustomOutputConfig
RubricBasedMetric = metrics.RubricBasedMetric
RubricGenerationConfig = metrics.RubricGenerationConfig
PredefinedRubricMetrics = metrics.PredefinedRubricMetrics
__all__ = [
"EvalTask",
"EvalResult",
"PairwiseMetric",
"PointwiseMetric",
"CustomMetric",
"PromptTemplate",
"PairwiseMetricPromptTemplate",
"PointwiseMetricPromptTemplate",
"MetricPromptTemplateExamples",
"AutoraterConfig",
"CustomOutputConfig",
"RubricBasedMetric",
"RubricGenerationConfig",
"PredefinedRubricMetrics",
]

View File

@@ -0,0 +1,130 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Base classes for evaluation."""
import dataclasses
from typing import Any, Dict, List, Optional, Union, TYPE_CHECKING
from google.cloud.aiplatform_v1beta1.services import (
evaluation_service as gapic_evaluation_services,
)
from google.cloud.aiplatform_v1beta1.types import (
evaluation_service as gapic_eval_service_types,
)
from vertexai.preview.evaluation.metrics import (
_base as metrics_base,
)
if TYPE_CHECKING:
import pandas as pd
AutoraterConfig = gapic_eval_service_types.AutoraterConfig
@dataclasses.dataclass
class EvaluationRunConfig:
"""Evaluation Run Configurations.
Attributes:
dataset: The dataset to evaluate.
metrics: The list of metric names, or Metric instances to evaluate.
metric_column_mapping: An optional dictionary column mapping that overrides
the metric prompt template input variable names with mapped the evaluation
dataset column names, used during evaluation. For example, if the
input_variables of the metric prompt template are ["context",
"reference"], the metric_column_mapping can be { "context":
"news_context", "reference": "ground_truth", "response":
"model_1_response" } if the dataset has columns "news_context",
"ground_truth" and "model_1_response".
client: The evaluation service client.
evaluation_service_qps: The custom QPS limit for the evaluation service.
retry_timeout: How long to keep retrying the evaluation requests, in
seconds.
autorater_config: The autorater config for model based evaluation.
"""
dataset: "pd.DataFrame"
metrics: List[Union[str, metrics_base._Metric]]
metric_column_mapping: Dict[str, str]
client: gapic_evaluation_services.EvaluationServiceClient
evaluation_service_qps: float
retry_timeout: float
autorater_config: Optional[AutoraterConfig] = None
def validate_dataset_column(self, column_name: str) -> None:
"""Validates that the column names in the column map are in the dataset.
Args:
column_name: The column name to validate.
Raises:
KeyError: If any of the column names are not in the dataset.
"""
if (
self.metric_column_mapping.get(column_name, column_name)
not in self.dataset.columns
):
raise KeyError(
"Required column"
f" `{self.metric_column_mapping.get(column_name, column_name)}` not"
" found in the evaluation dataset. The columns in the evaluation"
f" dataset are {list(self.dataset.columns)}."
)
@dataclasses.dataclass
class EvalResult:
"""Evaluation result.
Attributes:
summary_metrics: A dictionary of summary evaluation metrics for an
evaluation run.
metrics_table: A pandas.DataFrame table containing evaluation dataset
inputs, predictions, explanations, and metric results per row.
metadata: The metadata for the evaluation run.
"""
summary_metrics: Dict[str, float]
metrics_table: Optional["pd.DataFrame"] = None
metadata: Optional[Dict[str, str]] = None
@dataclasses.dataclass
class AutoraterEvalResult:
"""Evaluation result for autorater evaluation."""
def __init__(
self,
eval_result: Optional[List[Dict[str, Any]]],
eval_dataset_metadata: Optional[Dict[str, Any]],
autorater_config: Optional[AutoraterConfig],
**kwargs,
):
"""Initializes an AutoraterEvalResult.
Args:
eval_result: Evaluation result from an evaluation run.
eval_dataset_metadata: Evaluation dataset metadata.
autorater_config: Autorater configuration.
**kwargs: Additional arguments added to AutoraterEvalResult.
"""
self.eval_result = eval_result
self.eval_dataset_metadata = eval_dataset_metadata
self.autorater_config = autorater_config
self.__dict__.update(kwargs)

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,272 @@
# -*- coding: utf-8 -*-
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Utility functions for all pre-evaluation steps."""
from __future__ import annotations
from concurrent import futures
from typing import Callable, Optional, Set, TYPE_CHECKING, Union, List
from google.cloud.aiplatform import base
from google.cloud.aiplatform_v1beta1.types import (
content as gapic_content_types,
)
from vertexai import generative_models
from vertexai.preview.evaluation import _base as evaluation_base
from vertexai.preview.evaluation import constants
from vertexai.preview.evaluation import multimodal_utils
from vertexai.preview.evaluation import (
prompt_template as prompt_template_base,
)
if TYPE_CHECKING:
import pandas as pd
try:
from tqdm import tqdm
except ImportError:
raise ImportError(
'tqdm is not installed. Please install the SDK using "pip install'
' google-cloud-aiplatform[evaluation]"'
)
_LOGGER = base.Logger(__name__)
_SUCCESSFUL_FINISH_REASONS = [
gapic_content_types.Candidate.FinishReason.STOP,
gapic_content_types.Candidate.FinishReason.MAX_TOKENS,
# Many responses have this finish reason
gapic_content_types.Candidate.FinishReason.FINISH_REASON_UNSPECIFIED,
]
def _assemble_prompt(
row: "pd.Series",
prompt_template: Union[prompt_template_base.PromptTemplate, str],
) -> str:
"""Assembles the prompt template with the given row data."""
if isinstance(prompt_template, str):
prompt_template = prompt_template_base.PromptTemplate(prompt_template)
_check_variable_columns_exist(row, prompt_template.variables)
return str(
prompt_template.assemble(
**row[list(prompt_template.variables)].astype(str).to_dict()
)
)
def _generate_content_text_response(
model: generative_models.GenerativeModel, prompt: str, max_attempts: int = 3
) -> str:
"""Generates a text response from Gemini model from a text prompt with retries .
Args:
model: The Gemini model instance.
prompt: The prompt to send to the model.
max_attempts: Maximum number of attempts for response generation.
Returns:
The text response from the model.
Raises:
RuntimeError if the prompt or the response for the prompt is blocked for
safety reasons.
"""
for attempt in range(max_attempts):
try:
response = model.generate_content(prompt)
if not response.candidates:
error_message = (
f"The model response was blocked due to"
f" {response._raw_response.prompt_feedback.block_reason.name}.\n"
f"Blocked reason message:"
f" {response._raw_response.prompt_feedback.block_reason_message}.\n"
"The input prompt may be blocked for safety reasons.\n"
f"Prompt: {prompt}.\n"
f"Attempt: {attempt + 1}/{max_attempts}"
)
_LOGGER.warning(error_message)
break
else:
candidate = response.candidates[0]
if candidate.finish_reason not in _SUCCESSFUL_FINISH_REASONS:
error_message = (
"The model response did not finish"
" successfully.\n"
f"Finish reason: {candidate.finish_reason}.\n"
f"Finish message: {candidate.finish_message}.\n"
f"Safety ratings: {candidate.safety_ratings}.\n"
"Please adjust the model safety_settings, or"
" try a different prompt.\n"
f"Attempt: {attempt + 1}/{max_attempts}"
)
_LOGGER.warning(error_message)
else:
return response.candidates[0].content.parts[0].text
except Exception as e:
error_message = (
f"Failed to generate response candidates from Gemini model"
f" {model._model_name}.\n"
f"Error: {e}.\n"
f"Prompt: {prompt}.\n"
f"Attempt: {attempt + 1}/{max_attempts}"
)
_LOGGER.warning(error_message)
if attempt < max_attempts - 1:
_LOGGER.info(
f"Retrying response generation for prompt: {prompt}, attempt"
f" {attempt + 1}/{max_attempts}..."
)
final_error_message = (
f"Failed to generate response from Gemini model {model._model_name}.\n"
f"Prompt: {prompt}."
)
_LOGGER.error(final_error_message)
return constants.RESPONSE_ERROR
def _generate_responses_from_gemini_model(
model: generative_models.GenerativeModel,
df: "pd.DataFrame",
rubric_generation_prompt_template: Optional[str] = None,
) -> List[str]:
"""Generates responses from Gemini model for the given evaluation dataset.
Args:
model: The Gemini model instance.
df: Evaluation Dataset.
Returns:
The list of model responses.
"""
_LOGGER.info(
f"Generating a total of {df.shape[0]} "
f"responses from Gemini model {model._model_name.split('/')[-1]}."
)
tasks = []
with tqdm(total=len(df)) as pbar:
with futures.ThreadPoolExecutor(max_workers=constants.MAX_WORKERS) as executor:
for idx, row in df.iterrows():
if rubric_generation_prompt_template:
input_columns = prompt_template_base.PromptTemplate(
rubric_generation_prompt_template
).variables
if multimodal_utils.is_multimodal_instance(
row[list(input_columns)].to_dict()
):
prompt = multimodal_utils._assemble_multi_modal_prompt(
rubric_generation_prompt_template, row, idx, input_columns
)
else:
prompt = _assemble_prompt(
row, rubric_generation_prompt_template
)
else:
prompt = row[constants.Dataset.PROMPT_COLUMN]
task = executor.submit(
_generate_content_text_response,
prompt=prompt,
model=model,
)
task.add_done_callback(lambda _: pbar.update(1))
tasks.append(task)
responses = [future.result() for future in tasks]
return responses
def _generate_response_from_custom_model_fn(
model_fn: Callable[[str], str], eval_dataset: "pd.DataFrame"
) -> List[str]:
"""Generates responses from a custom model function.
Args:
model_fn: The custom model function.
eval_dataset: Evaluation Dataset.
Returns:
The list of model responses.
"""
max_workers = 5
_LOGGER.info(
f"Generating a total of {eval_dataset.shape[0]} "
"responses from the custom model function."
)
tasks = []
try:
with tqdm(total=len(eval_dataset)) as pbar:
with futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
for _, row in eval_dataset.iterrows():
task = executor.submit(
model_fn, row[constants.Dataset.PROMPT_COLUMN]
)
task.add_done_callback(lambda _: pbar.update(1))
tasks.append(task)
except (ValueError, IndexError) as e:
_LOGGER.warning(f"Failed to generate response from model function: {e}")
responses = [task.result() for task in tasks]
return responses
def populate_eval_dataset_with_model_responses(
responses: List[str],
evaluation_run_config: evaluation_base.EvaluationRunConfig,
is_baseline_model: bool = False,
) -> None:
"""Populates the evaluation dataset with model responses.
Args:
responses: The list of model responses.
evaluation_run_config: Evaluation Run Configurations.
is_baseline_model: Whether the model is a baseline model for
PairwiseMetric.
"""
df = evaluation_run_config.dataset.copy()
if is_baseline_model:
evaluation_run_config.dataset = df.assign(baseline_model_response=responses)
else:
evaluation_run_config.dataset = df.assign(response=responses)
_LOGGER.info(
f"All {evaluation_run_config.dataset.shape[0]} responses are successfully"
f" generated from model."
)
def _check_variable_columns_exist(
dataset_row: "pd.Series", variable_names_set: Set[str]
) -> None:
"""Checks if all variable names exist in the dataset columns.
Args:
dataset: The dataset to evaluate.
variable_names_set: A set of variable names.
Raises:
ValueError: If any variable names do not exist in the dataset columns
or the prompt template is invalid.
"""
actual_column_names_set = set(dataset_row.to_dict().keys())
if not variable_names_set.issubset(actual_column_names_set):
missing_columns = variable_names_set - actual_column_names_set
raise ValueError(
"Failed to assemble prompt template: The following column(s) are"
f" missing: {', '.join(missing_columns)}. "
f"Please verify prompt_template variables {variable_names_set} and "
f"evaluation dataset column names {actual_column_names_set}."
)

View File

@@ -0,0 +1,238 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Autorater Utils Class and Functions."""
import logging
import time
from typing import Any, Dict, List, Literal, Optional, TYPE_CHECKING, Union
from vertexai import generative_models
from vertexai.preview.evaluation import _base as evaluation_base
from vertexai.preview.evaluation import eval_task
from vertexai.preview.evaluation.metrics import pairwise_metric
from vertexai.preview.evaluation.metrics import pointwise_metric
from vertexai.preview.tuning import sft
from sklearn import metrics
if TYPE_CHECKING:
import pandas as pd
AutoraterConfig = evaluation_base.AutoraterConfig
AutoraterEvalResult = evaluation_base.AutoraterEvalResult
EvalTask = eval_task.EvalTask
PointwiseMetric = pointwise_metric.PointwiseMetric
PairwiseMetric = pairwise_metric.PairwiseMetric
_SCORE = "score"
_METRIC = "metric"
_PAIRWISE_CHOICE = "pairwise_choice"
_HUMAN_RATING = "human_rating"
_HUMAN_PAIRWISE_CHOICE = "human_pairwise_choice"
_ACCURACY_BALANCED = "accuracy_balanced"
_F1_SCORE_BALANCED = "f1_score_balanced"
_CONFUSION_MATRIX = "confusion_matrix"
_CONFUSION_MATRIX_LABELS = "confusion_matrix_labels"
_METRICS_CATEGORY_LIMIT = 10
_NAN = "nan"
_ERROR = "error"
def tune_autorater(
*,
base_model: Union[str, generative_models.GenerativeModel],
train_dataset: str,
validation_dataset: Optional[str] = None,
tuned_model_display_name: Optional[str] = None,
epochs: Optional[int] = None,
learning_rate_multiplier: Optional[float] = None,
adapter_size: Optional[Literal[1, 4, 8, 16]] = None,
labels: Optional[Dict[str, str]] = None,
time_out_hours: int = 10,
) -> AutoraterConfig:
"""Lora Tune an autorater model.
Args:
base_model: Model name for tuning, e.g., "gemini-1.0-pro-002".
train_dataset: Cloud Storage path to file containing training dataset for
tuning. The dataset should be in JSONL format.
validation_dataset: Cloud Storage path to file containing validation
dataset for tuning. The dataset should be in JSONL format.
tuned_model_display_name: The display name of the
[TunedModel][google.cloud.aiplatform.v1.Model]. The name can be up to
128 characters long and can consist of any UTF-8 characters.
epochs: Number of training epoches for this tuning job.
learning_rate_multiplier: Learning rate multiplier for tuning.
adapter_size: Adapter size for tuning.
labels: User-defined metadata to be associated with trained models
time_out_hours: Timeout in hours for tuning job. Default value is 10
hours.
Returns:
A `AutoraterConfig` object with tuned model endpoint.
"""
tune_job = sft.train(
source_model=base_model,
train_dataset=train_dataset,
validation_dataset=validation_dataset,
tuned_model_display_name=tuned_model_display_name,
epochs=epochs,
learning_rate_multiplier=learning_rate_multiplier,
adapter_size=adapter_size,
labels=labels,
)
time_out_seconds = time_out_hours * 60 * 60
while not tune_job.refresh().has_ended and time_out_seconds > 0:
time.sleep(60)
time_out_seconds -= 60
if tune_job.has_succeeded:
return AutoraterConfig(autorater_model=tune_job.tuned_model_endpoint_name)
else:
raise ValueError(
"Failed to tune autorater model. Please check the logs for more details."
)
def _get_evaluation_result(
metric: Union[PointwiseMetric, PairwiseMetric],
autorater_eval_results: List[str],
human_eval_results: List[str],
) -> Dict[str, Any]:
"""Get evaluation result for autorater."""
filtered_autorater_eval_results = []
filtered_human_eval_results = []
for autorater_eval_result, human_eval_result in zip(
autorater_eval_results, human_eval_results
):
# Filter failed pointwise evaluation results.
if autorater_eval_result.lower() == _NAN or human_eval_result.lower() == _NAN:
continue
# Filter failed pairwise evaluation results.
if (
autorater_eval_result.lower() == _ERROR
or human_eval_result.lower() == _ERROR
):
continue
filtered_autorater_eval_results.append(autorater_eval_result)
filtered_human_eval_results.append(human_eval_result)
labels = list(
sorted(set(filtered_autorater_eval_results) | set(filtered_human_eval_results))
)
eval_result = {_METRIC: metric.metric_name}
eval_result[_ACCURACY_BALANCED] = metrics.balanced_accuracy_score(
filtered_human_eval_results, filtered_autorater_eval_results
)
eval_result[_F1_SCORE_BALANCED] = metrics.f1_score(
filtered_human_eval_results,
filtered_autorater_eval_results,
average="weighted",
)
if len(labels) > _METRICS_CATEGORY_LIMIT:
logging.warning(
"Confusion matrix is not provided as the number of"
" rating rubric values %d is greater than the limit %d.",
len(labels),
_METRICS_CATEGORY_LIMIT,
)
else:
eval_result[_CONFUSION_MATRIX] = metrics.confusion_matrix(
filtered_human_eval_results,
filtered_autorater_eval_results,
labels=labels,
)
eval_result[_CONFUSION_MATRIX_LABELS] = labels
return eval_result
def evaluate_autorater(
*,
evaluate_autorater_input: "pd.DataFrame",
eval_metrics: List[Union[PointwiseMetric, PairwiseMetric]],
autorater_config: Optional[AutoraterConfig] = None,
eval_dataset_metadata: Dict[str, Any] = None,
**kwargs,
) -> AutoraterEvalResult:
"""Evaluates the autorater model using human evaluation results.
Args:
evaluate_autorater_input: Autorater evaluation input, including
evaluation results from human evaluation and autorater model.
eval_metrics: List of model based metrics.
autorater_config: Autorater configuration.
eval_dataset_metadata: Evaluation dataset metadata.
**kwargs: Additional arguments added to AutoraterEvalResult.
Returns:
Autorater evalaution result .
"""
eval_result = []
for metric in eval_metrics:
if isinstance(metric, PointwiseMetric):
autorater_score = list(
map(
lambda x: str(float(x)),
list(evaluate_autorater_input[metric.metric_name + "/" + _SCORE]),
)
)
human_score = list(
map(
lambda x: str(float(x)),
list(
evaluate_autorater_input[
metric.metric_name + "/" + _HUMAN_RATING
]
),
)
)
eval_result.append(
_get_evaluation_result(metric, autorater_score, human_score)
)
elif isinstance(metric, PairwiseMetric):
autorater_choice = list(
map(
str,
list(
evaluate_autorater_input[
metric.metric_name + "/" + _PAIRWISE_CHOICE
]
),
)
)
human_choice = list(
map(
str,
list(
evaluate_autorater_input[
metric.metric_name + "/" + _HUMAN_PAIRWISE_CHOICE
]
),
)
)
eval_result.append(
_get_evaluation_result(metric, autorater_choice, human_choice)
)
else:
continue
return AutoraterEvalResult(
eval_result=eval_result,
eval_dataset_metadata=eval_dataset_metadata,
autorater_config=autorater_config,
**kwargs,
)

View File

@@ -0,0 +1,206 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Constants for evaluation."""
import dataclasses
# The number of concurrent workers to use for making model inference and
# evaluation requests.
MAX_WORKERS = 100
RESPONSE_ERROR = "Error"
@dataclasses.dataclass(frozen=True)
class Metric:
"""Namespace for Metrics."""
# Model-based Pointwise Metrics.
COHERENCE = "coherence"
FLUENCY = "fluency"
SAFETY = "safety"
GROUNDEDNESS = "groundedness"
INSTRUCTION_FOLLOWING = "instruction_following"
VERBOSITY = "verbosity"
TEXT_QUALITY = "text_quality"
SUMMARIZATION_QUALITY = "summarization_quality"
QUESTION_ANSWERING_QUALITY = "question_answering_quality"
MULTI_TURN_CHAT_QUALITY = "multi_turn_chat_quality"
MULTI_TURN_SAFETY = "multi_turn_safety"
RUBRIC_BASED_INSTRUCTION_FOLLOWING = "rubric_based_instruction_following"
# Model-based Pairwise Metrics.
PAIRWISE_COHERENCE = "pairwise_coherence"
PAIRWISE_FLUENCY = "pairwise_fluency"
PAIRWISE_SAFETY = "pairwise_safety"
PAIRWISE_GROUNDEDNESS = "pairwise_groundedness"
PAIRWISE_INSTRUCTION_FOLLOWING = "pairwise_instruction_following"
PAIRWISE_VERBOSITY = "pairwise_verbosity"
PAIRWISE_TEXT_QUALITY = "pairwise_text_quality"
PAIRWISE_SUMMARIZATION_QUALITY = "pairwise_summarization_quality"
PAIRWISE_QUESTION_ANSWERING_QUALITY = "pairwise_question_answering_quality"
PAIRWISE_MULTI_TURN_CHAT_QUALITY = "pairwise_multi_turn_chat_quality"
PAIRWISE_MULTI_TURN_SAFETY = "pairwise_multi_turn_safety"
POINTWISE_METRIC = "pointwise_metric"
PAIRWISE_METRIC = "pairwise_metric"
# Automatic Metrics.
EXACT_MATCH = "exact_match"
BLEU = "bleu"
ROUGE = "rouge"
ROUGE_1 = "rouge_1"
ROUGE_2 = "rouge_2"
ROUGE_L = "rouge_l"
ROUGE_L_SUM = "rouge_l_sum"
TOOL_CALL_VALID = "tool_call_valid"
TOOL_NAME_MATCH = "tool_name_match"
TOOL_PARAMETER_KEY_MATCH = "tool_parameter_key_match"
TOOL_PARAMETER_KV_MATCH = "tool_parameter_kv_match"
TRAJECTORY_EXACT_MATCH = "trajectory_exact_match"
TRAJECTORY_IN_ORDER_MATCH = "trajectory_in_order_match"
TRAJECTORY_ANY_ORDER_MATCH = "trajectory_any_order_match"
TRAJECTORY_PRECISION = "trajectory_precision"
TRAJECTORY_RECALL = "trajectory_recall"
TRAJECTORY_SINGLE_TOOL_USE = "trajectory_single_tool_use"
LATENCY = "latency_in_seconds"
FAILURE = "failure"
AUTOMATIC_METRIC_LIST = (
EXACT_MATCH,
BLEU,
ROUGE,
ROUGE_1,
ROUGE_2,
ROUGE_L,
ROUGE_L_SUM,
TOOL_CALL_VALID,
TOOL_NAME_MATCH,
TOOL_PARAMETER_KEY_MATCH,
TOOL_PARAMETER_KV_MATCH,
)
TRAJECTORY_METRIC_LIST = (
TRAJECTORY_EXACT_MATCH,
TRAJECTORY_IN_ORDER_MATCH,
TRAJECTORY_ANY_ORDER_MATCH,
TRAJECTORY_PRECISION,
TRAJECTORY_RECALL,
TRAJECTORY_SINGLE_TOOL_USE,
)
DEFAULT_METRIC_LIST = (
LATENCY,
FAILURE,
)
POINTWISE_METRIC_PROMPT_TEMPLATE_EXAMPLE_LIST = (
COHERENCE,
FLUENCY,
SAFETY,
GROUNDEDNESS,
INSTRUCTION_FOLLOWING,
VERBOSITY,
TEXT_QUALITY,
SUMMARIZATION_QUALITY,
QUESTION_ANSWERING_QUALITY,
MULTI_TURN_CHAT_QUALITY,
MULTI_TURN_SAFETY,
)
PAIRWISE_METRIC_PROMPT_TEMPLATE_EXAMPLE_LIST = (
PAIRWISE_COHERENCE,
PAIRWISE_FLUENCY,
PAIRWISE_SAFETY,
PAIRWISE_GROUNDEDNESS,
PAIRWISE_INSTRUCTION_FOLLOWING,
PAIRWISE_VERBOSITY,
PAIRWISE_TEXT_QUALITY,
PAIRWISE_SUMMARIZATION_QUALITY,
PAIRWISE_QUESTION_ANSWERING_QUALITY,
PAIRWISE_MULTI_TURN_CHAT_QUALITY,
PAIRWISE_MULTI_TURN_SAFETY,
)
@dataclasses.dataclass(frozen=True)
class MetricResult:
ROW_COUNT_KEY = "row_count"
SCORE_KEY = "score"
EXPLANATION_KEY = "explanation"
CUSTOM_OUTPUT_KEY = "custom_output"
RAW_OUTPUT_KEY = "raw_output"
RAW_OUTPUTS_KEY = "raw_outputs"
PAIRWISE_CHOICE_KEY = "pairwise_choice"
IS_UNSAFE_KEY = "is_unsafe"
IS_UNSAFE_PROBABILITY_KEY = "is_unsafe_probability"
VIOLATED_POLICIES_KEY = "violated_policies"
RUBRIC_LEVEL_INSTRUCTION_FOLLOWING_KEY = "per_rubric_result"
# Automatic Metrics.
EXACT_MATCH_RESULTS = "exact_match_results"
BLEU_RESULTS = "bleu_results"
ROUGE_RESULTS = "rouge_results"
TOOL_CALL_VALID_RESULTS = "tool_call_valid_results"
TOOL_NAME_MATCH_RESULTS = "tool_name_match_results"
TOOL_PARAMETER_KEY_MATCH_RESULTS = "tool_parameter_key_match_results"
TOOL_PARAMETER_KV_MATCH_RESULTS = "tool_parameter_kv_match_results"
TRAJECTORY_EXACT_MATCH_RESULTS = "trajectory_exact_match_results"
TRAJECTORY_IN_ORDER_MATCH_RESULTS = "trajectory_in_order_match_results"
TRAJECTORY_ANY_ORDER_MATCH_RESULTS = "trajectory_any_order_match_results"
TRAJECTORY_PRECISION_RESULTS = "trajectory_precision_results"
TRAJECTORY_RECALL_RESULTS = "trajectory_recall_results"
TRAJECTORY_SINGLE_TOOL_USE_RESULTS = "trajectory_single_tool_use_results"
POINTWISE_METRIC_RESULT = "pointwise_metric_result"
PAIRWISE_METRIC_RESULT = "pairwise_metric_result"
RUBRIC_BASED_INSTRUCTION_FOLLOWING_RESULT = (
"rubric_based_instruction_following_result"
)
AUTOMATIC_METRIC_RESULTS_LIST = (
EXACT_MATCH_RESULTS,
BLEU_RESULTS,
ROUGE_RESULTS,
TOOL_CALL_VALID_RESULTS,
TOOL_NAME_MATCH_RESULTS,
TOOL_PARAMETER_KEY_MATCH_RESULTS,
TOOL_PARAMETER_KV_MATCH_RESULTS,
TRAJECTORY_EXACT_MATCH_RESULTS,
TRAJECTORY_IN_ORDER_MATCH_RESULTS,
TRAJECTORY_ANY_ORDER_MATCH_RESULTS,
TRAJECTORY_PRECISION_RESULTS,
TRAJECTORY_RECALL_RESULTS,
TRAJECTORY_SINGLE_TOOL_USE_RESULTS,
)
@dataclasses.dataclass(frozen=True)
class Dataset:
# Default evaluation dataset schema column names.
MODEL_RESPONSE_COLUMN = "response"
BASELINE_MODEL_RESPONSE_COLUMN = "baseline_model_response"
PROMPT_COLUMN = "prompt"
REFERENCE_COLUMN = "reference"
PREDICTED_TRAJECTORY_COLUMN = "predicted_trajectory"
REFERENCE_TRAJECTORY_COLUMN = "reference_trajectory"
RUBRICS_COLUMN = "rubrics"
@dataclasses.dataclass(frozen=True)
class QuotaLimit:
"""Generative AI on Vertex AI quota limits."""
# Default Evaluation Service QPS limit.
EVAL_SERVICE_QPS = 10

View File

@@ -0,0 +1,630 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Evaluation Task class."""
import logging
from typing import Any, Callable, Dict, List, Literal, Optional, TYPE_CHECKING, Union
import uuid
import warnings
from google.api_core import exceptions
import vertexai
from google.cloud.aiplatform import base
from google.cloud.aiplatform import utils
from google.cloud.aiplatform.metadata import metadata
from vertexai import generative_models
from vertexai.preview import reasoning_engines
from vertexai.preview.evaluation import _base as eval_base
from vertexai.preview.evaluation import _evaluation
from vertexai.preview.evaluation import constants
from vertexai.preview.evaluation import utils as eval_utils
from vertexai.preview.evaluation.metrics import (
_base as metrics_base,
)
from vertexai.preview.evaluation.metrics import pairwise_metric
from vertexai.preview.evaluation.metrics import pointwise_metric
from vertexai.preview.evaluation.metrics import (
rubric_based_metric,
)
import numpy as np
if TYPE_CHECKING:
import pandas as pd
from google.colab import sheets
# pylint: disable=g-import-not-at-top
try:
from IPython import display as IPython_display
except ImportError:
IPython_display = None
_LOGGER = base.Logger(__name__)
logging.getLogger("urllib3.connectionpool").setLevel(logging.ERROR)
warnings.filterwarnings("ignore")
AutoraterConfig = eval_base.AutoraterConfig
EvalResult = eval_base.EvalResult
GenerativeModel = generative_models.GenerativeModel
_RunnableType = Union[reasoning_engines.Queryable, Callable[[str], Dict[str, str]]]
_ModelType = Union[generative_models.GenerativeModel, Callable[[str], str]]
class EvalTask:
"""A class representing an EvalTask.
An evaluation task assesses the ability of a Gen AI model, agent or
application to perform a specific task in response to prompts.
Each evaluation task includes an evaluation dataset, which can be a set of
test cases and a set of metrics for assessment. These tasks provide the
framework for running evaluations in a standardized and repeatable way,
allowing for comparative assessment with varying run-specific parameters.
Dataset Details:
Default dataset column names:
* prompt_column_name: "prompt"
* reference_column_name: "reference"
* response_column_name: "response"
* baseline_model_response_column_name: "baseline_model_response"
* rubrics_column_name: "rubrics"
Requirement for different use cases:
* Bring-your-own-response (BYOR): You already have the data that you
want to evaluate stored in the dataset. Response column name can be
customized by providing `response_column_name` parameter, or in the
`metric_column_mapping`. For BYOR pairwise evaluation, the baseline
model response column name can be customized by providing
`baseline_model_response_column_name` parameter, or
in the `metric_column_mapping`. If the `response` column or
`baseline_model_response` column is present while the
corresponding model is specified, an error will be raised.
* Perform model/agent inference without a prompt template: You have a dataset
containing the input prompts to the model/agent and want to perform
inference before evaluation. A column named `prompt` is required
in the evaluation dataset and is used directly as input to the model/agent.
* Perform model/agent inference with a prompt template: You have a dataset
containing the input variables to the prompt template and want to
assemble the prompts for inference. Evaluation dataset
must contain column names corresponding to the variable names in
the prompt template. For example, if prompt template is
"Instruction: {instruction}, context: {context}", the dataset must
contain `instruction` and `context` columns.
Metrics Details:
The supported metrics descriptions, rating rubrics, and the required
input variables can be found on the Vertex AI public documentation page.
[Evaluation methods and metrics](https://cloud.google.com/vertex-ai/generative-ai/docs/models/determine-eval).
Usage Examples:
1. To perform bring-your-own-response(BYOR) evaluation, provide the model
responses in the `response` column in the dataset. If a pairwise metric is
used for BYOR evaluation, provide the baseline model responses in the
`baseline_model_response` column.
```
eval_dataset = pd.DataFrame({
"prompt" : [...],
"reference": [...],
"response" : [...],
"baseline_model_response": [...],
})
eval_task = EvalTask(
dataset=eval_dataset,
metrics=[
"bleu",
"rouge_l_sum",
MetricPromptTemplateExamples.Pointwise.FLUENCY,
MetricPromptTemplateExamples.Pairwise.SAFETY
],
experiment="my-experiment",
)
eval_result = eval_task.evaluate(experiment_run_name="eval-experiment-run")
```
2. To perform evaluation with Gemini model inference, specify the `model`
parameter with a `GenerativeModel` instance. The input column name to the
model is `prompt` and must be present in the dataset.
```
eval_dataset = pd.DataFrame({
"reference": [...],
"prompt" : [...],
})
result = EvalTask(
dataset=eval_dataset,
metrics=["exact_match", "bleu", "rouge_1", "rouge_l_sum"],
experiment="my-experiment",
).evaluate(
model=GenerativeModel("gemini-1.5-pro"),
experiment_run_name="gemini-eval-run"
)
```
3. If a `prompt_template` is specified, the `prompt` column is not required.
Prompts can be assembled from the evaluation dataset, and all prompt
template variable names must be present in the dataset columns.
```
eval_dataset = pd.DataFrame({
"context" : [...],
"instruction": [...],
})
result = EvalTask(
dataset=eval_dataset,
metrics=[MetricPromptTemplateExamples.Pointwise.SUMMARIZATION_QUALITY],
).evaluate(
model=GenerativeModel("gemini-1.5-pro"),
prompt_template="{instruction}. Article: {context}. Summary:",
)
```
4. To perform evaluation with custom model inference, specify the `model`
parameter with a custom inference function. The input column name to the
custom inference function is `prompt` and must be present in the dataset.
```
from openai import OpenAI
client = OpenAI()
def custom_model_fn(input: str) -> str:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": input}
]
)
return response.choices[0].message.content
eval_dataset = pd.DataFrame({
"prompt" : [...],
"reference": [...],
})
result = EvalTask(
dataset=eval_dataset,
metrics=[MetricPromptTemplateExamples.Pointwise.SAFETY],
experiment="my-experiment",
).evaluate(
model=custom_model_fn,
experiment_run_name="gpt-eval-run"
)
```
5. To perform pairwise metric evaluation with model inference step, specify
the `baseline_model` input to a `PairwiseMetric` instance and the candidate
`model` input to the `EvalTask.evaluate()` function. The input column name
to both models is `prompt` and must be present in the dataset.
```
baseline_model = GenerativeModel("gemini-1.0-pro")
candidate_model = GenerativeModel("gemini-1.5-pro")
pairwise_groundedness = PairwiseMetric(
metric_prompt_template=MetricPromptTemplateExamples.get_prompt_template(
"pairwise_groundedness"
),
baseline_model=baseline_model,
)
eval_dataset = pd.DataFrame({
"prompt" : [...],
})
result = EvalTask(
dataset=eval_dataset,
metrics=[pairwise_groundedness],
experiment="my-pairwise-experiment",
).evaluate(
model=candidate_model,
experiment_run_name="gemini-pairwise-eval-run",
)
```
"""
def __init__(
self,
*,
dataset: Union["pd.DataFrame", str, Dict[str, Any], "sheets.InteractiveSheet"],
metrics: List[
Union[
Literal[
"exact_match",
"bleu",
"rouge_1",
"rouge_2",
"rouge_l",
"rouge_l_sum",
"tool_call_valid",
"tool_name_match",
"tool_parameter_key_match",
"tool_parameter_kv_match",
"trajectory_exact_match",
"trajectory_in_order_match",
"trajectory_any_order_match",
"trajectory_precision",
"trajectory_recall",
"rubric_based_instruction_following",
],
metrics_base.CustomMetric,
metrics_base._AutomaticMetric,
pointwise_metric.PointwiseMetric,
pairwise_metric.PairwiseMetric,
rubric_based_metric.RubricBasedMetric,
]
],
experiment: Optional[str] = None,
metric_column_mapping: Optional[Dict[str, str]] = None,
output_uri_prefix: Optional[str] = "",
autorater_config: Optional[AutoraterConfig] = None,
):
"""Initializes an EvalTask.
Args:
dataset: The dataset to be evaluated.
Supports the following dataset formats:
* pandas.DataFrame: Used directly for evaluation.
* Dict: Converted to a pandas DataFrame before evaluation.
* str: Interpreted as a file path or URI. Supported formats include:
* Local JSONL or CSV files: Loaded from the local filesystem.
* GCS JSONL or CSV files: Loaded from Google Cloud Storage
(e.g., 'gs://bucket/data.csv').
* BigQuery table URI: Loaded from Google Cloud BigQuery
(e.g., 'bq://project-id.dataset.table_name').
metrics: The list of metric names, or Metric instances to evaluate.
Prompt template is required for PairwiseMetric.
experiment: The name of the experiment to log the evaluations to.
metric_column_mapping: An optional dictionary column mapping that
overrides the metric prompt template input variable names with
mapped the evaluation dataset column names, used during evaluation.
For example, if the input_variables of the metric prompt template
are ["context", "reference"], the metric_column_mapping can be
{
"context": "news_context",
"reference": "ground_truth",
"response": "model_1_response"
}
if the dataset has columns "news_context", "ground_truth" and
"model_1_response".
output_uri_prefix: GCS location to store the metrics_table from
evaluation results.
autorater_config: The autorater config for model based evaluation.
If autorater config is specified on a metric, it will override the
autorater config specified here.
"""
self._dataset = eval_utils.load_dataset(dataset)
self._metrics = metrics
self._experiment = experiment
self._metric_column_mapping = eval_utils.initialize_metric_column_mapping(
metric_column_mapping, self._dataset
)
self.output_uri_prefix = output_uri_prefix
self._autorater_config = autorater_config
@property
def dataset(self) -> "pd.DataFrame":
"""Returns evaluation dataset."""
return self._dataset
@property
def metrics(self) -> List[Union[str, metrics_base.CustomMetric]]:
"""Returns metrics."""
return self._metrics
@property
def autorater_config(self) -> Optional[AutoraterConfig]:
"""Returns autorater config."""
return self._autorater_config
@property
def experiment(self) -> Optional[str]:
"""Returns experiment name."""
return self._experiment
def _evaluate_with_experiment(
self,
model: Optional[_ModelType] = None,
runnable: Optional[_RunnableType] = None,
prompt_template: Optional[str] = None,
experiment_run_name: Optional[str] = None,
evaluation_service_qps: Optional[float] = None,
retry_timeout: float = 120.0,
output_file_name: Optional[str] = None,
) -> EvalResult:
"""Runs an evaluation for the EvalTask with an experiment.
Args:
model: A GenerativeModel instance or a custom model function to generate
responses to evaluate. If not provided, the evaluation is computed with
the `response` column in the `dataset`.
runnable: The runnable to generate responses to evaluate. If not provided,
the evaluation is computed with the `response` and/or `predicted_trajectory`
column in the `dataset`.
prompt_template: The prompt template to use for the evaluation. If not
set, the prompt template that was used to create the EvalTask will be
used.
experiment_run_name: The name of the experiment run to log the evaluation
to if an experiment is set for this EvalTask. If not provided, a random
unique experiment run name is used.
evaluation_service_qps: The custom QPS limit for the evaluation service.
retry_timeout: How long to keep retrying the evaluation requests for
the whole evaluation dataset, in seconds.
output_path: The file name with csv suffix to store the output
metrics_table to be tracked in the experiment run.
Returns:
The evaluation result.
"""
self._validate_experiment_run()
with vertexai.preview.start_run(experiment_run_name):
self._log_eval_experiment_param(
model=model,
runnable=runnable,
prompt_template=prompt_template,
output_file_name=output_file_name,
)
eval_result = _evaluation.evaluate(
dataset=self._dataset,
metrics=self._metrics,
model=model,
runnable=runnable,
prompt_template=prompt_template,
metric_column_mapping=self._metric_column_mapping,
evaluation_service_qps=evaluation_service_qps,
retry_timeout=retry_timeout,
autorater_config=self._autorater_config,
)
eval_result.summary_metrics = {
k: ("NaN" if isinstance(v, float) and np.isnan(v) else v)
for k, v in eval_result.summary_metrics.items()
}
eval_result.metadata = {
"experiment": self._experiment,
"experiment_run": experiment_run_name,
}
try:
vertexai.preview.log_metrics(eval_result.summary_metrics)
except (TypeError, exceptions.InvalidArgument) as e:
_LOGGER.warning(f"Experiment metrics logging failed: {str(e)}")
return eval_result
def evaluate(
self,
*,
model: Optional[_ModelType] = None,
runnable: Optional[_RunnableType] = None,
prompt_template: Optional[str] = None,
experiment_run_name: Optional[str] = None,
response_column_name: Optional[str] = None,
baseline_model_response_column_name: Optional[str] = None,
evaluation_service_qps: Optional[float] = None,
retry_timeout: float = 120.0,
output_file_name: Optional[str] = "",
) -> EvalResult:
"""Runs an evaluation for the EvalTask.
Args:
model: A GenerativeModel instance or a custom model function to generate
responses to evaluate. If not provided, the evaluation can be performed
in the bring-your-own-response (BYOR) mode.
runnable: The runnable to generate responses to evaluate. If not provided,
the evaluation is computed with the `response` and/or `predicted_trajectory`
column in the `dataset`.
prompt_template: The prompt template to use for the evaluation. If not
set, the prompt template that was used to create the EvalTask will be
used.
experiment_run_name: The name of the experiment run to log the evaluation
to if an experiment is set for this EvalTask. If not provided, a random
unique experiment run name is used.
response_column_name: The column name of model response in the dataset. If
provided, this will override the `metric_column_mapping` of the `EvalTask`.
baseline_model_response_column_name: The column name of baseline model
response in the dataset for pairwise metrics. If provided, this will
override the `metric_column_mapping` of the `EvalTask`
evaluation_service_qps: The custom QPS limit for the evaluation service.
retry_timeout: How long to keep retrying the evaluation requests for
the whole evaluation dataset, in seconds.
output_file_name: The file name with csv suffix to store the output
metrics_table.
Returns:
The evaluation result.
"""
global_experiment_name = (
metadata._experiment_tracker.experiment_name
) # pylint: disable=protected-access
if experiment_run_name and not self._experiment and not global_experiment_name:
raise ValueError(
"Experiment is not set. Please initialize EvalTask with an"
" experiment, or initialize a global experiment with "
"`vertexai.init(experiment='experiment_name')`for logging this"
" evaluation run."
)
self._verify_and_set_response_column_name(
response_column_name=response_column_name,
metric_column_mapping_key=constants.Dataset.MODEL_RESPONSE_COLUMN,
)
self._verify_and_set_response_column_name(
response_column_name=baseline_model_response_column_name,
metric_column_mapping_key=constants.Dataset.BASELINE_MODEL_RESPONSE_COLUMN,
)
if self.output_uri_prefix and not output_file_name:
output_file_name = f"eval_results_{utils.timestamped_unique_name()}.csv"
experiment_run_name = experiment_run_name or f"{uuid.uuid4()}"
if self._experiment and global_experiment_name:
metadata._experiment_tracker.set_experiment( # pylint: disable=protected-access
experiment=self._experiment, backing_tensorboard=False
)
eval_result = self._evaluate_with_experiment(
model=model,
runnable=runnable,
prompt_template=prompt_template,
experiment_run_name=experiment_run_name,
evaluation_service_qps=evaluation_service_qps,
retry_timeout=retry_timeout,
output_file_name=output_file_name,
)
metadata._experiment_tracker.set_experiment( # pylint: disable=protected-access
experiment=global_experiment_name, backing_tensorboard=False
)
elif self._experiment and not global_experiment_name:
metadata._experiment_tracker.set_experiment( # pylint: disable=protected-access
experiment=self._experiment, backing_tensorboard=False
)
eval_result = self._evaluate_with_experiment(
model=model,
runnable=runnable,
prompt_template=prompt_template,
experiment_run_name=experiment_run_name,
evaluation_service_qps=evaluation_service_qps,
retry_timeout=retry_timeout,
output_file_name=output_file_name,
)
metadata._experiment_tracker.reset() # pylint: disable=protected-access
elif not self._experiment and global_experiment_name:
eval_result = self._evaluate_with_experiment(
model=model,
runnable=runnable,
prompt_template=prompt_template,
experiment_run_name=experiment_run_name,
evaluation_service_qps=evaluation_service_qps,
retry_timeout=retry_timeout,
output_file_name=output_file_name,
)
else:
eval_result = _evaluation.evaluate(
dataset=self._dataset,
metrics=self._metrics,
model=model,
runnable=runnable,
prompt_template=prompt_template,
metric_column_mapping=self._metric_column_mapping,
evaluation_service_qps=evaluation_service_qps,
retry_timeout=retry_timeout,
autorater_config=self._autorater_config,
)
eval_utils.upload_evaluation_results(
eval_result, self.output_uri_prefix, output_file_name
)
return eval_result
def _validate_experiment_run(self) -> None:
"""Checks if an experiment run already exists."""
if (
metadata._experiment_tracker.experiment_run
): # pylint: disable=protected-access
raise ValueError(
"Experiment run already exists. Please specify the name of the"
" experiment run to assign current session within this evaluation."
)
def _log_eval_experiment_param(
self,
model: _ModelType = None,
runnable: _RunnableType = None,
prompt_template: Optional[str] = None,
output_file_name: Optional[str] = None,
) -> None:
"""Logs variable input parameters of an evaluation to an experiment run."""
eval_metadata = {}
if prompt_template is not None:
eval_metadata.update({"prompt_template": prompt_template})
if model:
if isinstance(model, GenerativeModel):
eval_metadata.update(
{
"model_name": model._model_name, # pylint: disable=protected-access
}
)
if (
model._generation_config
and isinstance( # pylint: disable=protected-access
model._generation_config,
dict, # pylint: disable=protected-access
)
):
eval_metadata.update(
**model._generation_config
) # pylint: disable=protected-access
if model._safety_settings and isinstance(
model._safety_settings, dict
): # pylint: disable=protected-access
safety_settings = (
model._safety_settings
) # pylint: disable=protected-access
safety_settings_as_str = {
category.name: threshold.name
for category, threshold in safety_settings.items()
}
eval_metadata.update(safety_settings_as_str)
if runnable:
if isinstance(runnable, reasoning_engines.LangchainAgent):
eval_metadata.update(
{
"model_name": runnable._model_name,
"tools": runnable._tools,
} # pylint: disable=protected-access
)
if self.output_uri_prefix and output_file_name:
eval_metadata.update(
{"output_file": self.output_uri_prefix + "/" + output_file_name}
)
if eval_metadata:
_LOGGER.info(
f"Logging Eval experiment evaluation metadata: {eval_metadata}"
)
try:
vertexai.preview.log_params(eval_metadata)
except (ValueError, TypeError) as e:
_LOGGER.warning(
f"Experiment evaluation metadata logging failed: {str(e)}"
)
def _verify_and_set_response_column_name(
self, response_column_name: str, metric_column_mapping_key: str
) -> None:
"""Verifies and sets the model response column names."""
if response_column_name:
if response_column_name in self._dataset.columns:
self._metric_column_mapping[
metric_column_mapping_key
] = response_column_name
else:
raise ValueError(
f"(Baseline) Model response column {response_column_name} is not"
" found in the dataset."
)
def display_runs(self):
"""Displays experiment runs associated with this EvalTask."""
if not self._experiment:
raise ValueError("Experiment is not set.")
elif IPython_display:
IPython_display.display(
vertexai.preview.get_experiment_df(self._experiment)
)

View File

@@ -0,0 +1,324 @@
# -*- coding: utf-8 -*-
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Utility functions for metrics."""
import datetime
import io
from typing import Any, Dict, List, Optional, Union, Callable
from google.cloud.aiplatform import initializer
from google.cloud.aiplatform_v1beta1.types import (
evaluation_service as gapic_eval_service_types,
)
from vertexai.preview.evaluation import metrics
from vertexai.preview.evaluation import prompt_template
from vertexai.preview.evaluation import utils
from vertexai.preview.evaluation.metrics import _schema
from vertexai.preview.evaluation.metrics import (
custom_output_config,
)
from vertexai import generative_models
from vertexai.generative_models import _generative_models
import jsonschema
import ruamel.yaml
from ruamel.yaml import scalarstring
AutoraterConfig = gapic_eval_service_types.AutoraterConfig
GenerativeModel = generative_models.GenerativeModel
CustomOutputConfig = custom_output_config.CustomOutputConfig
PairwiseMetric = metrics.PairwiseMetric
PointwiseMetric = metrics.PointwiseMetric
RubricBasedMetric = metrics.RubricBasedMetric
RubricGenerationConfig = metrics.RubricGenerationConfig
PromptTemplate = prompt_template.PromptTemplate
# Initialize schema validator.
_schema = ruamel.yaml.YAML(typ="safe").load(_schema.AUTORATER_METRIC_SCHEMA)
_schema_validator = jsonschema.Draft202012Validator(schema=_schema)
def dump(
metric: Union[PointwiseMetric, PairwiseMetric, RubricBasedMetric],
file_path: str,
version: Optional[str] = None,
):
"""Dumps a metric object to a YAML file.
Args:
metric: The metric to be dumped to a file.
file_path: The path to the file. Local and GCS files are supported.
version: Optional. The version of the metric. Defaults to the timestamp
when the metric file is created.
"""
yaml_data = dumps(metric, version)
if file_path.startswith(utils._GCS_PREFIX):
utils._upload_string_to_gcs(file_path, yaml_data)
else:
with open(file_path, "w") as f:
f.write(yaml_data)
def dumps(
metric: Union[PointwiseMetric, PairwiseMetric, RubricBasedMetric],
version: Optional[str] = None,
) -> str:
"""Dumps a metric object to YAML data.
Args:
metric: The metric to be dumped to YAML data.
version: Optional. The version of the metric. Defaults to the timestamp
when the metric file is created.
Returns:
The YAML data of the metric.
"""
steps = []
metric_name = None
if isinstance(metric, PointwiseMetric) or isinstance(metric, PairwiseMetric):
metric_name = metric.metric_name
steps.append(_dump_metric(metric))
elif isinstance(metric, RubricBasedMetric):
metric_name = metric.critique_metric.metric_name
steps.append(_dump_rubric(metric.generation_config))
steps.append(_dump_metric(metric.critique_metric))
metadata = {
"name": metric_name,
"version": (
datetime.datetime.now().strftime("%Y%m%d%H%M%S")
if version is None
else version
),
"required_inputs": _parse_required_inputs(metric),
}
metric_config = {
"metadata": metadata,
"steps": steps,
}
yaml = ruamel.yaml.YAML()
yaml.indent(sequence=4, offset=2)
with io.StringIO() as s:
yaml.dump(metric_config, s)
return s.getvalue()
def _dump_metric(metric: Union[PointwiseMetric, PairwiseMetric]) -> Dict[str, Any]:
"""Dumps a metric object to autorater metric schema."""
output_type = None
if metric.custom_output_config and metric.custom_output_config.return_raw_output:
output_type = "raw"
step = {
"type": (
"pairwise_metric"
if isinstance(metric, PairwiseMetric)
else "pointwise_metric"
),
"prompt": {
"template": scalarstring.preserve_literal(metric.metric_prompt_template),
},
}
if metric.system_instruction:
step["prompt"]["system_instruction"] = metric.system_instruction
if output_type:
step["output"] = {
"type": output_type,
}
if metric.autorater_config:
step["model"] = {
"model_name_or_endpoint": (metric.autorater_config.autorater_model),
}
options = {}
if metric.autorater_config.flip_enabled:
options["flip_enabled"] = metric.autorater_config.flip_enabled
if metric.autorater_config.sampling_count:
options["sample_count"] = metric.autorater_config.sampling_count
if options:
step["options"] = options
return step
def _dump_rubric(generation_config: RubricGenerationConfig) -> Dict[str, Any]:
"""Dumps a rubric generation config to autorater metric schema."""
# TODO: b/396217889 - add support for custom output.
step = {
"type": "rubric",
"prompt": {
"template": scalarstring.preserve_literal(
generation_config.prompt_template
),
},
}
if generation_config.model and isinstance(generation_config.model, GenerativeModel):
step["model"] = {
"model_name_or_endpoint": generation_config.model._model_name,
}
return step
def _parse_required_inputs(
metric: Union[PointwiseMetric, PairwiseMetric, RubricBasedMetric],
) -> List[str]:
"""Parses required inputs from a metric object."""
if isinstance(metric, PointwiseMetric) or isinstance(metric, PairwiseMetric):
return list(PromptTemplate(metric.metric_prompt_template).variables)
elif isinstance(metric, RubricBasedMetric):
met = PromptTemplate(metric.critique_metric.metric_prompt_template).variables
gen = PromptTemplate(metric.generation_config.prompt_template).variables
return list(met.union(gen))
else:
raise ValueError(f"Unsupported metric type: {type(metric)}")
def load(
file_path: str,
baseline_model: Optional[Union[GenerativeModel, Callable[[str], str]]] = None,
) -> Union[PointwiseMetric, PairwiseMetric, RubricBasedMetric]:
"""Loads a metric object from a YAML file.
Args:
file_path: Path to the file containing the autorater metric configuration.
Local and GCS files are supported.
baseline_model: Optional. The baseline model to use for pairwise metrics.
Returns:
The metric object loaded from the file.
"""
if file_path.startswith(utils._GCS_PREFIX):
file_contents = utils._read_gcs_file_contents(file_path)
return loads(file_contents, baseline_model)
with open(file_path, "r") as f:
return loads(f.read(), baseline_model)
def loads(
yaml_data: str,
baseline_model: Optional[Union[GenerativeModel, Callable[[str], str]]] = None,
) -> Union[PointwiseMetric, PairwiseMetric, RubricBasedMetric]:
"""Loads a metric object from YAML data.
Args:
yaml_data: YAML data containing the autorater metric configuration.
baseline_model: Optional. The baseline model to use for pairwise metrics.
Returns:
The metric object loaded from the YAML data.
"""
yaml = ruamel.yaml.YAML(typ="safe")
yaml_obj = yaml.load(yaml_data)
try:
_schema_validator.validate(yaml_obj)
except jsonschema.exceptions.ValidationError as e:
raise ValueError(
f"Invalid autorater metric config: {e.message} for {e.path.pop()}"
) from e
metadata = yaml_obj["metadata"]
steps = yaml_obj["steps"]
required_inputs = set(metadata["required_inputs"])
metric = None
rubric = None
for step in steps:
_validate_template(step["prompt"]["template"], required_inputs)
model_name = None
flip = None
sampling = None
if "model" in step:
model_name = _parse_model_name(step["model"]["model_name_or_endpoint"])
if "options" in step:
flip = step["options"].get("flip_enabled", False)
sampling = step["options"].get("sample_count", 1)
autorater = None
if model_name:
autorater = AutoraterConfig(
autorater_model=model_name,
flip_enabled=flip,
sampling_count=sampling,
)
system_instruction = step["prompt"].get("system_instruction")
custom_output = None
if "output" in step and step["output"]["type"] == "raw":
custom_output = CustomOutputConfig(return_raw_output=True)
if step["type"] == "pointwise_metric":
if metric is not None:
raise ValueError("Only one metric step is supported.")
if baseline_model:
raise ValueError("Baseline model provided for pointwise metric.")
metric = PointwiseMetric(
metric=metadata["name"],
metric_prompt_template=step["prompt"]["template"],
system_instruction=system_instruction,
autorater_config=autorater,
custom_output_config=custom_output,
)
elif step["type"] == "pairwise_metric":
if metric is not None:
raise ValueError("Only one metric step is supported.")
metric = PairwiseMetric(
metric=metadata["name"],
metric_prompt_template=step["prompt"]["template"],
system_instruction=system_instruction,
baseline_model=baseline_model,
autorater_config=autorater,
custom_output_config=custom_output,
)
elif step["type"] == "rubric":
if rubric is not None:
raise ValueError("Only one rubric step is supported.")
model = None
if model_name:
model = generative_models.GenerativeModel(model_name=model_name)
rubric = RubricGenerationConfig(
prompt_template=step["prompt"]["template"],
model=model,
)
if metric is None:
raise ValueError("A metric step must be provided.")
if rubric is not None:
return RubricBasedMetric(
generation_config=rubric,
critique_metric=metric,
)
return metric
def _parse_model_name(model_name_or_endpoint: str) -> str:
"""Parses model name or endpoint.
Args:
model_name_or_endpoint: Model Garden model name or tuned model endpoint
resource name can be provided.
Returns:
The model resource name.
"""
project = initializer.global_config.project
location = initializer.global_config.location
model_name = _generative_models._reconcile_model_name(
model_name_or_endpoint, project, location
)
return _generative_models._get_resource_name_from_model_name(
model_name, project, location
)
def _validate_template(template: str, required_inputs: List[str]) -> None:
"""Validates the template contains only required inputs."""
placeholders = PromptTemplate(template).variables
if not placeholders.issubset(required_inputs):
raise ValueError(
"Template contains placeholders that are not in required inputs:"
f" {placeholders - required_inputs}"
)

View File

@@ -0,0 +1,72 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Evaluation Metrics Module."""
from vertexai.preview.evaluation.metrics import _base
from vertexai.preview.evaluation.metrics import _rouge
from vertexai.preview.evaluation.metrics import (
_trajectory_single_tool_use,
)
from vertexai.preview.evaluation.metrics import (
custom_output_config,
)
from vertexai.preview.evaluation.metrics import (
metric_prompt_template,
)
from vertexai.preview.evaluation.metrics import (
metric_prompt_template_examples,
)
from vertexai.preview.evaluation.metrics import pairwise_metric
from vertexai.preview.evaluation.metrics import pointwise_metric
from vertexai.preview.evaluation.metrics import (
predefined_rubric_metrics,
)
from vertexai.preview.evaluation.metrics import (
rubric_based_metric,
)
PairwiseMetric = pairwise_metric.PairwiseMetric
PointwiseMetric = pointwise_metric.PointwiseMetric
CustomMetric = _base.CustomMetric
PairwiseMetricPromptTemplate = metric_prompt_template.PairwiseMetricPromptTemplate
PointwiseMetricPromptTemplate = metric_prompt_template.PointwiseMetricPromptTemplate
MetricPromptTemplateExamples = (
metric_prompt_template_examples.MetricPromptTemplateExamples
)
Rouge = _rouge.Rouge
TrajectorySingleToolUse = _trajectory_single_tool_use.TrajectorySingleToolUse
CustomOutputConfig = custom_output_config.CustomOutputConfig
RubricBasedMetric = rubric_based_metric.RubricBasedMetric
RubricGenerationConfig = _base.RubricGenerationConfig
PredefinedRubricMetrics = predefined_rubric_metrics.PredefinedRubricMetrics
__all__ = [
"CustomMetric",
"PairwiseMetric",
"PointwiseMetric",
"PairwiseMetricPromptTemplate",
"PointwiseMetricPromptTemplate",
"MetricPromptTemplateExamples",
"Rouge",
"TrajectorySingleToolUse",
"CustomOutputConfig",
"RubricBasedMetric",
"RubricGenerationConfig",
"PredefinedRubricMetrics",
]

View File

@@ -0,0 +1,168 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Base classes for evaluation metrics."""
import abc
from typing import Any, Callable, Dict, Literal, Optional, Union, List
from google.cloud.aiplatform_v1beta1.types import (
evaluation_service as gapic_eval_service_types,
)
from vertexai import generative_models
from vertexai.preview.evaluation import constants
from vertexai.preview.evaluation.metrics import (
custom_output_config as custom_output_config_class,
)
from vertexai.preview.evaluation.metrics import (
metric_prompt_template as metric_prompt_template_base,
)
_ModelType = Union[generative_models.GenerativeModel, Callable[[str], str]]
class _Metric(abc.ABC):
"""The abstract class for evaluation metric."""
def __init__(self, metric: str):
self._metric = metric
def __str__(self):
return self.metric_name
@property
def metric_name(self) -> str:
return self._metric
class _ModelBasedMetric(_Metric):
"""A Model-based Metric.
An evaluation metric that evaluates generative AI model responses with
another generative model as a judge. This metric can be used to evaluate a
single model, or two models side-by-side.
For more details on when to use model-based metrics, see
[Evaluation methods and metrics](https://cloud.google.com/vertex-ai/generative-ai/docs/models/determine-eval).
"""
def __init__(
self,
*,
metric: str,
metric_prompt_template: Union[
metric_prompt_template_base.PointwiseMetricPromptTemplate,
metric_prompt_template_base.PairwiseMetricPromptTemplate,
str,
],
system_instruction: Optional[str] = None,
autorater_config: Optional[gapic_eval_service_types.AutoraterConfig] = None,
custom_output_config: Optional[
custom_output_config_class.CustomOutputConfig
] = None,
):
"""Initializes the model-based evaluation metric.
Args:
metric: Generic model based metric name.
metric_prompt_template: A metric prompt template for performing
the model-based evaluation. A freeform string is also accepted.
system_instruction: The system instruction to be used in the metric
prompt.
autorater_config: The config for judge model.
custom_output_config: Config for custom output from the judge model.
"""
super().__init__(metric=metric)
self.metric_prompt_template = str(metric_prompt_template)
self.system_instruction = system_instruction
self.autorater_config = autorater_config
self.custom_output_config = custom_output_config
class CustomMetric(_Metric):
"""The custom evaluation metric.
A fully-customized CustomMetric that can be used to evaluate a single model
by defining a metric function for a computation-based metric. The
CustomMetric is computed on the client-side using the user-defined metric
function in SDK only, not by the Vertex Gen AI Evaluation Service.
Attributes:
name: The name of the metric.
metric_function: The user-defined evaluation function to compute a metric
score. Must use the dataset row dictionary as the metric function
input and return per-instance metric result as a dictionary output.
The metric score must mapped to the name of the CustomMetric as key.
"""
def __init__(
self,
name: str,
metric_function: Callable[
[Dict[str, Any]],
Dict[str, Any],
],
):
"""Initializes the evaluation metric."""
super().__init__(name)
self.name = name
self.metric_function = metric_function
class _AutomaticMetric(_Metric):
"""An automatic metric that computes deterministic score based on reference.
An lexicon-based evaluation metric that evaluate a generative model's
response on the given evaluation task with reference ground truth answers.
It is a type of pointwise evaluation metric.
For more details on when to use automatic metrics, see
[Evaluation methods and
metrics](https://cloud.google.com/vertex-ai/generative-ai/docs/models/determine-eval).
"""
def __init__(
self,
metric: Literal[constants.Metric.ROUGE],
):
"""Initializes the automatic evaluation metric.
Args:
metric: The automatic evaluation metric name.
"""
super().__init__(metric=metric)
class RubricGenerationConfig:
"""The rubric generation config."""
def __init__(
self,
prompt_template: str,
model: Optional[_ModelType] = None,
parsing_fn: Optional[Callable[[str], List[str]]] = None,
):
"""Initializes the rubric generation config.
Args:
prompt_template: The prompt template for rubric generation.
model: The model to use for rubric generation.
parsing_fn: The function to parse the rubric generation response.
"""
self.prompt_template = prompt_template
self.model = model
self.parsing_fn = parsing_fn

View File

@@ -0,0 +1,802 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Library for metrics computation with Gen AI Evaluation Service."""
import json
from typing import Any, Dict, List, Union
from google import api_core
from google.cloud.aiplatform import base
from google.cloud.aiplatform import initializer
from google.cloud.aiplatform_v1beta1.services import (
evaluation_service as gapic_evaluation_services,
)
from google.cloud.aiplatform_v1beta1.types import (
evaluation_service as gapic_eval_service_types,
)
from vertexai.preview.evaluation import _base as eval_base
from vertexai.preview.evaluation import constants
from vertexai.preview.evaluation import multimodal_utils
from vertexai.preview.evaluation import (
prompt_template as prompt_template_base,
)
from vertexai.preview.evaluation import utils
from vertexai.preview.evaluation.metrics import (
_base as metrics_base,
)
from vertexai.preview.evaluation.metrics import (
_default_templates,
)
from vertexai.preview.evaluation.metrics import _rouge
from vertexai.preview.evaluation.metrics import (
_trajectory_single_tool_use,
)
from vertexai.preview.evaluation.metrics import (
custom_output_config as custom_output_config_class,
)
from vertexai.preview.evaluation.metrics import pairwise_metric
from vertexai.preview.evaluation.metrics import pointwise_metric
from google.protobuf import json_format
_LOGGER = base.Logger(__name__)
_METRIC_NAME_TO_METRIC_SPEC = {
# Automatic Metrics.
constants.Metric.EXACT_MATCH: (gapic_eval_service_types.ExactMatchSpec()),
constants.Metric.BLEU: gapic_eval_service_types.BleuSpec(),
constants.Metric.ROUGE: gapic_eval_service_types.RougeSpec(),
constants.Metric.ROUGE_1: gapic_eval_service_types.RougeSpec(rouge_type="rouge1"),
constants.Metric.ROUGE_2: gapic_eval_service_types.RougeSpec(rouge_type="rouge2"),
constants.Metric.ROUGE_L: gapic_eval_service_types.RougeSpec(rouge_type="rougeL"),
constants.Metric.ROUGE_L_SUM: gapic_eval_service_types.RougeSpec(
rouge_type="rougeLsum"
),
constants.Metric.TOOL_CALL_VALID: (gapic_eval_service_types.ToolCallValidSpec()),
constants.Metric.TOOL_NAME_MATCH: (gapic_eval_service_types.ToolNameMatchSpec()),
constants.Metric.TOOL_PARAMETER_KV_MATCH: (
gapic_eval_service_types.ToolParameterKVMatchSpec()
),
constants.Metric.TOOL_PARAMETER_KEY_MATCH: (
gapic_eval_service_types.ToolParameterKeyMatchSpec()
),
# Pointwise Metrics.
constants.Metric.POINTWISE_METRIC: (gapic_eval_service_types.PointwiseMetricSpec()),
# Pairwise Metrics.
constants.Metric.PAIRWISE_METRIC: (gapic_eval_service_types.PairwiseMetricSpec()),
constants.Metric.RUBRIC_BASED_INSTRUCTION_FOLLOWING: (
gapic_eval_service_types.RubricBasedInstructionFollowingSpec()
),
constants.Metric.TRAJECTORY_EXACT_MATCH: (
gapic_eval_service_types.TrajectoryExactMatchSpec()
),
constants.Metric.TRAJECTORY_IN_ORDER_MATCH: (
gapic_eval_service_types.TrajectoryInOrderMatchSpec()
),
constants.Metric.TRAJECTORY_ANY_ORDER_MATCH: (
gapic_eval_service_types.TrajectoryAnyOrderMatchSpec()
),
constants.Metric.TRAJECTORY_PRECISION: (
gapic_eval_service_types.TrajectoryPrecisionSpec()
),
constants.Metric.TRAJECTORY_RECALL: (
gapic_eval_service_types.TrajectoryRecallSpec()
),
constants.Metric.TRAJECTORY_SINGLE_TOOL_USE: (
gapic_eval_service_types.TrajectorySingleToolUseSpec()
),
}
_QUESTION_TEMPLATE = """<question>{question}"""
def _format_rubrics(questions: List[str]) -> str:
"""Formats the list of rubrics into a question block."""
question_block = "\n".join(
_QUESTION_TEMPLATE.format(question=q.strip()) for q in questions
)
return question_block
def build_custom_output_format_config(
custom_output_config: custom_output_config_class.CustomOutputConfig,
) -> Union[gapic_eval_service_types.CustomOutputFormatConfig, None]:
"""Builds a CustomOutputFormatConfig from user input."""
custom_output_cfg = gapic_eval_service_types.CustomOutputFormatConfig()
if custom_output_config.return_raw_output:
custom_output_cfg.return_raw_output = True
return custom_output_cfg
else:
return None
def build_trajectory(
trajectory: Union[str, List[Dict[str, Any]]],
) -> gapic_eval_service_types.Trajectory:
"""Builds a trajectory from user input."""
if not trajectory:
return
if isinstance(trajectory, str):
trajectory = json.loads(trajectory)
if isinstance(trajectory, List):
try:
tool_calls = []
for tool_call_dict in trajectory:
tool_input_str = json.dumps(tool_call_dict["tool_input"])
tool_calls.append(
gapic_eval_service_types.ToolCall(
tool_name=tool_call_dict["tool_name"], tool_input=tool_input_str
)
)
return gapic_eval_service_types.Trajectory(tool_calls=tool_calls)
except KeyError as e:
_LOGGER.error(f"Failed to parse trajectory: {e}")
else:
_LOGGER.error(
f"Unsupported trajectory type: {type(trajectory)}, expected list or"
" a JSON array."
)
def build_request(
metric: Union[str, metrics_base._Metric],
row_dict: Dict[str, Any],
evaluation_run_config: eval_base.EvaluationRunConfig,
) -> gapic_eval_service_types.EvaluateInstancesRequest:
"""Builds a metric instance and form the request for the evaluation service.
Args:
metric: The name of the metric to evaluate.
row_dict: An evaluation dataset instance as a dictionary.
evaluation_run_config: Evaluation run configurations.
Returns:
A single EvaluateInstancesRequest.
Raises:
ValueError: If required request fields are not provided.
"""
project = initializer.global_config.project
location = initializer.global_config.location
if not project or not location:
raise ValueError(
"No project or location specified. Please run `vertexai.init()` to"
" provide these parameters."
)
location_path = (
gapic_evaluation_services.EvaluationServiceClient.common_location_path(
project, location
)
)
if isinstance(metric, pointwise_metric.PointwiseMetric):
metric_name = constants.Metric.POINTWISE_METRIC
elif isinstance(metric, pairwise_metric.PairwiseMetric):
metric_name = constants.Metric.PAIRWISE_METRIC
else:
metric_name = str(metric)
try:
metric_spec = _METRIC_NAME_TO_METRIC_SPEC[metric_name]
except KeyError as e:
raise ValueError(f"Metric name: {metric_name} is not supported.") from e
model_based_metric_instance_input = {}
metric_column_mapping = evaluation_run_config.metric_column_mapping
if isinstance(
metric, metrics_base._ModelBasedMetric # pylint: disable=protected-access
):
metric_spec.metric_prompt_template = metric.metric_prompt_template
metric_spec.system_instruction = metric.system_instruction
if metric.custom_output_config:
metric_spec.custom_output_format_config = build_custom_output_format_config(
metric.custom_output_config
)
for variable in prompt_template_base.PromptTemplate(
metric.metric_prompt_template
).variables:
model_based_metric_instance_input[variable] = row_dict.get(
metric_column_mapping.get(variable),
"",
)
if isinstance(metric, pairwise_metric.PairwiseMetric):
metric_column_mapping = evaluation_run_config.metric_column_mapping
metric_spec.candidate_response_field_name = metric_column_mapping.get(
constants.Dataset.MODEL_RESPONSE_COLUMN,
constants.Dataset.MODEL_RESPONSE_COLUMN,
)
metric_spec.baseline_response_field_name = metric_column_mapping.get(
constants.Dataset.BASELINE_MODEL_RESPONSE_COLUMN,
constants.Dataset.BASELINE_MODEL_RESPONSE_COLUMN,
)
elif isinstance(metric, _rouge.Rouge):
metric_spec.rouge_type = metric.rouge_type
metric_spec.use_stemmer = metric.use_stemmer
metric_spec.split_summaries = metric.split_summaries
elif isinstance(metric, _trajectory_single_tool_use.TrajectorySingleToolUse):
metric_spec.tool_name = metric.tool_name
response = row_dict.get(
metric_column_mapping.get(constants.Dataset.MODEL_RESPONSE_COLUMN), ""
)
reference = row_dict.get(
metric_column_mapping.get(constants.Dataset.REFERENCE_COLUMN), ""
)
predicted_trajectory = build_trajectory(
row_dict.get(
metric_column_mapping.get(constants.Dataset.PREDICTED_TRAJECTORY_COLUMN),
"",
)
)
reference_trajectory = build_trajectory(
row_dict.get(
metric_column_mapping.get(constants.Dataset.REFERENCE_TRAJECTORY_COLUMN),
"",
)
)
if isinstance(metric, metrics_base._ModelBasedMetric):
if metric_spec.metric_prompt_template in (
_default_templates.INSTRUCTION_FOLLOWING_RUBRIC_CRITIQUE_TEMPLATE,
_default_templates.MULTIMODAL_UNDERSTANDING_RUBRIC_CRITIQUE_TEMPLATE,
_default_templates.TEXT_QUALITY_RUBRIC_CRITIQUE_TEMPLATE,
_default_templates.PAIRWISE_INSTRUCTION_FOLLOWING_RUBRIC_CRITIQUE_TEMPLATE,
_default_templates.PAIRWISE_MULTIMODAL_UNDERSTANDING_RUBRIC_CRITIQUE_TEMPLATE,
_default_templates.PAIRWISE_TEXT_QUALITY_RUBRIC_CRITIQUE_TEMPLATE,
):
model_based_metric_instance_input[
constants.Dataset.RUBRICS_COLUMN
] = _format_rubrics(
model_based_metric_instance_input[constants.Dataset.RUBRICS_COLUMN]
)
if (
constants.Dataset.RUBRICS_COLUMN in model_based_metric_instance_input
and isinstance(
model_based_metric_instance_input[constants.Dataset.RUBRICS_COLUMN],
List,
)
):
model_based_metric_instance_input[
constants.Dataset.RUBRICS_COLUMN
] = "\n".join(
model_based_metric_instance_input[constants.Dataset.RUBRICS_COLUMN]
)
if metric_name == constants.Metric.EXACT_MATCH:
instance = gapic_eval_service_types.ExactMatchInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.ExactMatchInstance(
prediction=response,
reference=reference,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
exact_match_input=instance,
)
elif metric_name == constants.Metric.BLEU:
instance = gapic_eval_service_types.BleuInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.BleuInstance(
prediction=response,
reference=reference,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
bleu_input=instance,
)
elif metric_name in (
constants.Metric.ROUGE,
constants.Metric.ROUGE_1,
constants.Metric.ROUGE_2,
constants.Metric.ROUGE_L,
constants.Metric.ROUGE_L_SUM,
):
instance = gapic_eval_service_types.RougeInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.RougeInstance(
prediction=response,
reference=reference,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
rouge_input=instance,
)
elif metric_name == constants.Metric.TOOL_CALL_VALID:
instance = gapic_eval_service_types.ToolCallValidInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.ToolCallValidInstance(
prediction=response,
reference=reference,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
tool_call_valid_input=instance,
)
elif metric_name == constants.Metric.TOOL_NAME_MATCH:
instance = gapic_eval_service_types.ToolNameMatchInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.ToolNameMatchInstance(
prediction=response,
reference=reference,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
tool_name_match_input=instance,
)
elif metric_name == constants.Metric.TOOL_PARAMETER_KEY_MATCH:
instance = gapic_eval_service_types.ToolParameterKeyMatchInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.ToolParameterKeyMatchInstance(
prediction=response,
reference=reference,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
tool_parameter_key_match_input=instance,
)
elif metric_name == constants.Metric.TOOL_PARAMETER_KV_MATCH:
instance = gapic_eval_service_types.ToolParameterKVMatchInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.ToolParameterKVMatchInstance(
prediction=response,
reference=reference,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
tool_parameter_kv_match_input=instance,
)
elif metric_name == constants.Metric.POINTWISE_METRIC:
if multimodal_utils.is_multimodal_instance(model_based_metric_instance_input):
instance = gapic_eval_service_types.PointwiseMetricInput(
metric_spec=metric_spec,
instance=gapic_eval_service_types.PointwiseMetricInstance(
content_map_instance=multimodal_utils.convert_multimodal_response_to_content_map(
model_based_metric_instance_input
),
),
)
else:
instance = gapic_eval_service_types.PointwiseMetricInput(
metric_spec=metric_spec,
instance=gapic_eval_service_types.PointwiseMetricInstance(
json_instance=json.dumps(model_based_metric_instance_input),
),
)
autorater_config = evaluation_run_config.autorater_config
if (
isinstance(metric, metrics_base._ModelBasedMetric)
and metric.autorater_config
):
autorater_config = metric.autorater_config
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
pointwise_metric_input=instance,
autorater_config=autorater_config,
)
elif metric_name == constants.Metric.PAIRWISE_METRIC:
if multimodal_utils.is_multimodal_instance(model_based_metric_instance_input):
instance = gapic_eval_service_types.PairwiseMetricInput(
metric_spec=metric_spec,
instance=gapic_eval_service_types.PairwiseMetricInstance(
content_map_instance=multimodal_utils.convert_multimodal_response_to_content_map(
model_based_metric_instance_input
),
),
)
else:
instance = gapic_eval_service_types.PairwiseMetricInput(
metric_spec=metric_spec,
instance=gapic_eval_service_types.PairwiseMetricInstance(
json_instance=json.dumps(model_based_metric_instance_input),
),
)
autorater_config = evaluation_run_config.autorater_config
if (
isinstance(metric, metrics_base._ModelBasedMetric)
and metric.autorater_config
):
autorater_config = metric.autorater_config
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
pairwise_metric_input=instance,
autorater_config=autorater_config,
)
elif metric_name == constants.Metric.RUBRIC_BASED_INSTRUCTION_FOLLOWING:
required_rbif_fields = [
constants.Dataset.MODEL_RESPONSE_COLUMN,
constants.Dataset.PROMPT_COLUMN,
]
for field in required_rbif_fields:
column_name = metric_column_mapping.get(field)
value = row_dict.get(column_name)
if value is None and field in required_rbif_fields:
raise ValueError(
f"Missing required field: `{field}` for "
f"{constants.Metric.RUBRIC_BASED_INSTRUCTION_FOLLOWING}."
)
else:
model_based_metric_instance_input[field] = value
instance = gapic_eval_service_types.RubricBasedInstructionFollowingInput(
metric_spec=metric_spec,
instance=gapic_eval_service_types.RubricBasedInstructionFollowingInstance(
json_instance=json.dumps(model_based_metric_instance_input),
),
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
rubric_based_instruction_following_input=instance,
)
elif metric_name == constants.Metric.TRAJECTORY_EXACT_MATCH:
instance = gapic_eval_service_types.TrajectoryExactMatchInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.TrajectoryExactMatchInstance(
predicted_trajectory=predicted_trajectory,
reference_trajectory=reference_trajectory,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
trajectory_exact_match_input=instance,
)
elif metric_name == constants.Metric.TRAJECTORY_IN_ORDER_MATCH:
instance = gapic_eval_service_types.TrajectoryInOrderMatchInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.TrajectoryInOrderMatchInstance(
predicted_trajectory=predicted_trajectory,
reference_trajectory=reference_trajectory,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
trajectory_in_order_match_input=instance,
)
elif metric_name == constants.Metric.TRAJECTORY_ANY_ORDER_MATCH:
instance = gapic_eval_service_types.TrajectoryAnyOrderMatchInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.TrajectoryAnyOrderMatchInstance(
predicted_trajectory=predicted_trajectory,
reference_trajectory=reference_trajectory,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
trajectory_any_order_match_input=instance,
)
elif metric_name == constants.Metric.TRAJECTORY_PRECISION:
instance = gapic_eval_service_types.TrajectoryPrecisionInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.TrajectoryPrecisionInstance(
predicted_trajectory=predicted_trajectory,
reference_trajectory=reference_trajectory,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
trajectory_precision_input=instance,
)
elif metric_name == constants.Metric.TRAJECTORY_RECALL:
instance = gapic_eval_service_types.TrajectoryRecallInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.TrajectoryRecallInstance(
predicted_trajectory=predicted_trajectory,
reference_trajectory=reference_trajectory,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
trajectory_recall_input=instance,
)
elif metric_name == constants.Metric.TRAJECTORY_SINGLE_TOOL_USE:
instance = gapic_eval_service_types.TrajectorySingleToolUseInput(
metric_spec=metric_spec,
instances=[
gapic_eval_service_types.TrajectorySingleToolUseInstance(
predicted_trajectory=predicted_trajectory,
)
],
)
return gapic_eval_service_types.EvaluateInstancesRequest(
location=location_path,
trajectory_single_tool_use_input=instance,
)
else:
raise ValueError(f"Unknown metric type: {metric_name}")
def _parse_autometric_results(
metric_result_dict: Dict[str, Any],
) -> Dict[str, Any]:
"""Parses the automatic metric results from the evaluation results.
Args:
metric_result_dict: The metric results dictionary.
Returns:
A dictionary containing metric score of the metric.
"""
for value in metric_result_dict.values():
return {
constants.MetricResult.SCORE_KEY: value[0].get(
constants.MetricResult.SCORE_KEY
)
}
def _parse_pointwise_results(
metric_result_dict: Dict[str, Any],
metric: Union[str, metrics_base._Metric],
) -> Dict[str, Any]:
"""Parses the model-based pointwise metric results from the evaluation results.
Args:
metric_result_dict: The metric results dictionary.
metric: The metric to evaluate.
Returns:
One of the following:
1. A dictionary containing raw outputs from the judge model if
return_raw_output is set to True in custom_output_config.
2. A dictionary containing metric score and explanation of the
metric if custom_output_config is not set.
"""
if (
isinstance(metric, pointwise_metric.PointwiseMetric)
and getattr(metric, "custom_output_config", None)
and getattr(metric.custom_output_config, "return_raw_output", False)
):
raw_outputs = (
metric_result_dict.get(constants.MetricResult.CUSTOM_OUTPUT_KEY)
.get(constants.MetricResult.RAW_OUTPUTS_KEY)
.get(constants.MetricResult.RAW_OUTPUT_KEY)
)
if (
isinstance(metric, pointwise_metric.PointwiseMetric)
and getattr(metric, "custom_output_config", None)
and getattr(metric.custom_output_config, "parsing_fn", None)
):
parsing_fn = metric.custom_output_config.parsing_fn
return parsing_fn(raw_outputs)
return {constants.MetricResult.RAW_OUTPUT_KEY: raw_outputs}
else:
return {
constants.MetricResult.SCORE_KEY: metric_result_dict.get(
constants.MetricResult.SCORE_KEY
),
constants.MetricResult.EXPLANATION_KEY: metric_result_dict.get(
constants.MetricResult.EXPLANATION_KEY
),
}
def _parse_pairwise_results(
metric_result_dict: Dict[str, Any],
metric: Union[str, metrics_base._Metric],
) -> Dict[str, Any]:
"""Parses the pairwise metric results from the evaluation results.
Args:
metric_result_dict: The metric results dictionary.
metric: The metric to evaluate.
Returns:
One of the following:
1. A dictionary containing raw outputs from the judge model if
return_raw_output is set to True in custom_output_config.
2. A dictionary containing metric score and explanation of the
metric if custom_output_config is not set.
"""
if (
isinstance(metric, pairwise_metric.PairwiseMetric)
and getattr(metric, "custom_output_config", None)
and getattr(metric.custom_output_config, "return_raw_output", False)
):
raw_outputs = (
metric_result_dict.get(constants.MetricResult.CUSTOM_OUTPUT_KEY)
.get(constants.MetricResult.RAW_OUTPUTS_KEY)
.get(constants.MetricResult.RAW_OUTPUT_KEY)
)
if (
isinstance(metric, pairwise_metric.PairwiseMetric)
and getattr(metric, "custom_output_config", None)
and getattr(metric.custom_output_config, "parsing_fn", None)
):
parsing_fn = metric.custom_output_config.parsing_fn
return parsing_fn(raw_outputs)
return {constants.MetricResult.RAW_OUTPUT_KEY: raw_outputs}
else:
return {
constants.MetricResult.PAIRWISE_CHOICE_KEY: metric_result_dict.get(
constants.MetricResult.PAIRWISE_CHOICE_KEY,
),
constants.MetricResult.EXPLANATION_KEY: metric_result_dict.get(
constants.MetricResult.EXPLANATION_KEY
),
}
def _parse_rubric_based_instruction_following_results(
metric_result_dict: Dict[str, Any],
) -> Dict[str, Any]:
"""Parses the rubric-based instruction following metric results from the evaluation results.
Args:
metric_result_dict: The metric results dictionary.
Returns:
A dictionary containing a list of rubrics and corresponding verdicts and
an overall instruction following score.
"""
rubric_critique_results = []
for rc_result in metric_result_dict["rubric_critique_results"]:
if "verdict" not in rc_result:
rc_result["verdict"] = False # proto3 shows False bool as unset
rubric_critique_results.append(
{
"rubric": rc_result["rubric"],
"verdict": rc_result["verdict"],
}
)
return {
constants.MetricResult.RUBRIC_LEVEL_INSTRUCTION_FOLLOWING_KEY: (
rubric_critique_results
),
constants.MetricResult.SCORE_KEY: (
metric_result_dict.get(constants.MetricResult.SCORE_KEY)
),
}
def handle_response(
response: Union[str, gapic_eval_service_types.EvaluateInstancesResponse],
metric: Union[str, metrics_base._Metric],
) -> Union[str, Dict[str, Any]]:
"""Handles the response from the evaluation service.
Args:
response: The response from the evaluation service.
metric: The metric to evaluate to check the output type.
Returns:
A parsed metric result dictionary, or an error message string.
"""
if isinstance(response, str):
return response
metric_type = response._pb.WhichOneof( # pylint: disable=protected-access
"evaluation_results"
)
if metric_type == constants.MetricResult.EXACT_MATCH_RESULTS:
metric_result = response.exact_match_results
elif metric_type == constants.MetricResult.BLEU_RESULTS:
metric_result = response.bleu_results
elif metric_type == constants.MetricResult.ROUGE_RESULTS:
metric_result = response.rouge_results
elif metric_type == constants.MetricResult.TOOL_CALL_VALID_RESULTS:
metric_result = response.tool_call_valid_results
elif metric_type == constants.MetricResult.TOOL_NAME_MATCH_RESULTS:
metric_result = response.tool_name_match_results
elif metric_type == constants.MetricResult.TOOL_PARAMETER_KEY_MATCH_RESULTS:
metric_result = response.tool_parameter_key_match_results
elif metric_type == constants.MetricResult.TOOL_PARAMETER_KV_MATCH_RESULTS:
metric_result = response.tool_parameter_kv_match_results
elif metric_type == constants.MetricResult.POINTWISE_METRIC_RESULT:
metric_result = response.pointwise_metric_result
elif metric_type == constants.MetricResult.PAIRWISE_METRIC_RESULT:
metric_result = response.pairwise_metric_result
elif metric_type == constants.MetricResult.TRAJECTORY_EXACT_MATCH_RESULTS:
metric_result = response.trajectory_exact_match_results
elif metric_type == constants.MetricResult.TRAJECTORY_IN_ORDER_MATCH_RESULTS:
metric_result = response.trajectory_in_order_match_results
elif metric_type == constants.MetricResult.TRAJECTORY_ANY_ORDER_MATCH_RESULTS:
metric_result = response.trajectory_any_order_match_results
elif metric_type == constants.MetricResult.TRAJECTORY_PRECISION_RESULTS:
metric_result = response.trajectory_precision_results
elif metric_type == constants.MetricResult.TRAJECTORY_RECALL_RESULTS:
metric_result = response.trajectory_recall_results
elif metric_type == constants.MetricResult.TRAJECTORY_SINGLE_TOOL_USE_RESULTS:
metric_result = response.trajectory_single_tool_use_results
elif (
metric_type == constants.MetricResult.RUBRIC_BASED_INSTRUCTION_FOLLOWING_RESULT
):
metric_result = response.rubric_based_instruction_following_result
else:
raise ValueError(f"Unknown metric type: {metric_type}")
metric_result_dict = json_format.MessageToDict(
metric_result._pb, # pylint: disable=protected-access
preserving_proto_field_name=True,
)
if metric_type in (constants.MetricResult.AUTOMATIC_METRIC_RESULTS_LIST):
result = _parse_autometric_results(metric_result_dict)
elif metric_type == constants.MetricResult.POINTWISE_METRIC_RESULT:
result = _parse_pointwise_results(metric_result_dict, metric)
elif metric_type == constants.MetricResult.PAIRWISE_METRIC_RESULT:
result = _parse_pairwise_results(metric_result_dict, metric)
elif (
metric_type == constants.MetricResult.RUBRIC_BASED_INSTRUCTION_FOLLOWING_RESULT
):
result = _parse_rubric_based_instruction_following_results(metric_result_dict)
else:
raise ValueError(f"Unknown metric type: {metric_type}")
return result
def evaluate_instances(
client: gapic_evaluation_services.EvaluationServiceClient,
request: gapic_eval_service_types.EvaluateInstancesRequest,
rate_limiter: utils.RateLimiter,
retry_timeout: float,
) -> gapic_eval_service_types.EvaluateInstancesResponse:
"""Evaluates an instance using Vertex Gen AI Evaluation Service.
Args:
client: The Vertex Gen AI evaluation service client for evaluation.
request: An EvaluateInstancesRequest.
rate_limiter: The rate limiter for evaluation service requests.
retry_timeout: How long to keep retrying the evaluation requests, in seconds.
Returns:
An EvaluateInstancesResponse from Vertex Gen AI Evaluation Service.
"""
rate_limiter.sleep_and_advance()
return client.evaluate_instances(
request=request,
retry=api_core.retry.Retry(
initial=0.250,
maximum=90.0,
multiplier=1.45,
timeout=retry_timeout,
predicate=api_core.retry.if_exception_type(
api_core.exceptions.Aborted,
api_core.exceptions.DeadlineExceeded,
api_core.exceptions.ResourceExhausted,
api_core.exceptions.ServiceUnavailable,
api_core.exceptions.Cancelled,
),
),
)

View File

@@ -0,0 +1,79 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""ROUGE Metric."""
from typing import Literal
from vertexai.preview.evaluation import constants
from vertexai.preview.evaluation.metrics import _base
class Rouge(_base._AutomaticMetric): # pylint: disable=protected-access
"""The ROUGE Metric.
Calculates the recall of n-grams in prediction as compared to reference and
returns a score ranging between 0 and 1. Supported rouge types are
rougen[1-9], rougeL, and rougeLsum.
"""
_metric_name = constants.Metric.ROUGE
def __init__(
self,
*,
rouge_type: Literal[
"rouge1",
"rouge2",
"rouge3",
"rouge4",
"rouge5",
"rouge6",
"rouge7",
"rouge8",
"rouge9",
"rougeL",
"rougeLsum",
],
use_stemmer: bool = False,
split_summaries: bool = False
):
"""Initializes the ROUGE metric.
Args:
rouge_type: Supported rouge types are rougen[1-9], rougeL, and rougeLsum.
use_stemmer: Whether to use stemmer to compute rouge score.
split_summaries: Whether to split summaries while using 'rougeLsum' to
compute rouge score.
"""
self._rouge_type = rouge_type
self._use_stemmer = use_stemmer
self._split_summaries = split_summaries
super().__init__(
metric=Rouge._metric_name,
)
@property
def rouge_type(self) -> str:
return self._rouge_type
@property
def use_stemmer(self) -> bool:
return self._use_stemmer
@property
def split_summaries(self) -> bool:
return self._split_summaries

View File

@@ -0,0 +1,148 @@
# -*- coding: utf-8 -*-
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Schema for autorater metric configuration."""
AUTORATER_METRIC_SCHEMA = """
$schema: https://json-schema.org/draft/2020-12/schema
title: AutoRater Metric Configuration
description: A metric definition for model-based evaluation.
type: object
properties:
metadata:
description: Useful information about the metric.
type: object
properties:
name:
description: Name of the metric.
type: string
description:
description: Description of the metric.
type: string
author:
description: Author of the metric.
type: string
contact:
description: PoC for the metric.
type: string
version:
description: Version of the metric.
type: string
classification:
description: Classification of the metric.
type: string
enum:
- experimental
- benchmarked
- deprecated
required_inputs:
description: Input fields used in the metric prompt template.
type: array
items:
type: string
minItems: 1
uniqueItems: true
benchmarks:
description: List of benchmarks used for the metric.
type: array
items:
type: object
properties:
dataset:
description: Dataset used for benchmarking.
type: string
results:
description: Results from benchmarking.
type: string
required:
- results
minItems: 1
uniqueItems: true
usage:
description: Links to documentation or notebooks with example usage.
type: array
items:
type: string
minItems: 1
uniqueItems: true
required:
- name
- version
- required_inputs
steps:
description: List of steps used for the autorater workflow.
type: array
items:
type: object
properties:
type:
description: Type of the step.
type: string
enum:
- pointwise_metric
- pairwise_metric
- rubric
prompt:
description: Prompt template for the step.
type: object
properties:
system_instruction:
description: System instruction for the model.
type: string
template:
description: Template to populate with inputs from the dataset.
type: string
required:
- template
model:
description: Configuration of the model for the step.
type: object
properties:
model_name_or_endpoint:
description: Name or endpoint of the model.
type: string
required:
- model_name_or_endpoint
options:
description: Options for the step.
type: object
properties:
sample_count:
description: Number of samples for each instance in the dataset.
type: integer
flip_enabled:
description: Whether to flip candidate and baseline responses.
type: boolean
output:
description: Output of the step.
type: object
properties:
type:
description: Type of the output.
type: string
enum:
- raw
required:
- type
required:
- type
- prompt
minItems: 1
uniqueItems: true
required:
- metadata
- steps
"""

View File

@@ -0,0 +1,49 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from vertexai.preview.evaluation import constants
from vertexai.preview.evaluation.metrics import _base
class TrajectorySingleToolUse(
_base._AutomaticMetric
): # pylint: disable=protected-access
"""The TrajectorySingleToolUse Metric.
Evaluates if a tool is present in the trajectory or not.
"""
_metric_name = constants.Metric.TRAJECTORY_SINGLE_TOOL_USE
def __init__(
self,
tool_name: str,
):
"""Initializes the TrajectorySingleToolUse metric.
Args:
tool_name: name of the tool to check.
"""
self._tool_name = tool_name
super().__init__(
metric=TrajectorySingleToolUse._metric_name,
)
@property
def tool_name(self) -> str:
return self._tool_name

View File

@@ -0,0 +1,39 @@
# -*- coding: utf-8 -*-
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Custom output config for model-based metrics."""
from typing import Any, Callable, Dict, Optional
class CustomOutputConfig:
"""Custom output config for model-based metrics.
Attributes:
return_raw_output: Whether to return the raw output of the metric
function.
parsing_fn: Function to parse the raw output of the metric.
"""
def __init__(
self,
return_raw_output: bool = False,
parsing_fn: Optional[Callable[[str], Dict[str, Any]]] = None,
):
"""Initializes CustomOutputConfig."""
self.return_raw_output = return_raw_output
self.parsing_fn = parsing_fn

View File

@@ -0,0 +1,395 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Metric prompt template classes for model-based metrics evaluation."""
from typing import Dict, List, Optional
from google.cloud.aiplatform import base
from vertexai.preview.evaluation import (
prompt_template,
)
_LOGGER = base.Logger(__name__)
_NEWLINE = "\n"
def serialize_dict_in_order(elements: Optional[Dict[str, str]]):
"""Serializes dictionary to ordered string value without brackets."""
if elements is None:
return ""
return _NEWLINE.join(f"{key}: {value}" for key, value in sorted(elements.items()))
class _MetricPromptTemplate(prompt_template.PromptTemplate):
"""Metric prompt template for generic model-based metrics evaluation."""
def __init__(
self,
*,
criteria: Dict[str, str],
rating_rubric: Dict[str, str],
input_variables: List[str],
instruction: Optional[str] = None,
evaluation_steps: Optional[Dict[str, str]] = None,
metric_definition: Optional[str] = None,
few_shot_examples: Optional[List[str]] = None,
):
"""Initializes a metric prompt template."""
self._input_variables = input_variables
self._instruction = instruction
self._metric_definition = metric_definition
self._criteria = criteria
self._rating_rubric = rating_rubric
self._evaluation_steps = evaluation_steps
self._few_shot_examples = few_shot_examples
self.template = self.__str__()
@property
def prompt_data(self) -> str:
return self.template
class PointwiseMetricPromptTemplate(_MetricPromptTemplate):
"""Pointwise metric prompt template for pointwise model-based metrics."""
def __init__(
self,
*,
criteria: Dict[str, str],
rating_rubric: Dict[str, str],
input_variables: Optional[List[str]] = None,
instruction: Optional[str] = None,
metric_definition: Optional[str] = None,
evaluation_steps: Optional[Dict[str, str]] = None,
few_shot_examples: Optional[List[str]] = None,
):
"""Initializes a pointwise metric prompt template.
Args:
criteria: The standards and measures used to evaluate the model
responses. It is a dictionary of criterion names and criterion
definitions.
rating_rubric: A dictionary mapping of rating name and rating
definition, used to assign ratings or scores based on specific
criteria.
input_variables: An optional list of input fields to use in the metric
prompt template for generating model-based evaluation results. Model
"response" column is included by default. If metric_column_mapping is
provided, the mapping values of the input fields will be used to
retrieve data from the evaluation dataset.
instruction: The general instruction to the model that performs the
evaluation. If not provided, a default pointwise metric instruction
will be used.
metric_definition: The optional metric definition. It is a string
describing the metric to be evaluated at a high level. If not
provided, this field will not be included in the prompt template.
evaluation_steps: The optional gudelines of evaluation steps. A
dictionary of evaluation step name and evaluation step definition. If
not provided, a default pointwise metric evaluation steps will be
used.
few_shot_examples: The optional list of few-shot examples to be used in
the prompt, to provide the model with demonstrations of how to perform
the evaluation, and improve the evaluation accuracy. If not provided,
this field will not be included in the prompt template.
"""
if not input_variables:
input_variables = []
_LOGGER.info(
"The `input_variables` parameter is empty. Only the `response`"
" column is used for computing this model-based metric."
)
input_variables = list(set(input_variables + ["response"]))
instruction = instruction or self.get_default_pointwise_instruction()
evaluation_steps = (
evaluation_steps or self.get_default_pointwise_evaluation_steps()
)
super().__init__(
input_variables=input_variables,
criteria=criteria,
rating_rubric=rating_rubric,
instruction=instruction,
metric_definition=metric_definition,
evaluation_steps=evaluation_steps,
few_shot_examples=few_shot_examples,
)
def get_default_pointwise_instruction(self) -> str:
"""Returns the default instruction for the metric prompt template."""
return (
"You are an expert evaluator. Your task is to evaluate the quality of"
" the responses generated by AI models. We will provide you with the"
" user prompt and an AI-generated responses.\nYou should first read"
" the user input carefully for analyzing the task, and then evaluate"
" the quality of the responses based on the Criteria provided in the"
" Evaluation section below.\nYou will assign the response a rating"
" following the Rating Rubric and Evaluation Steps. Give step by step"
" explanations for your rating, and only choose ratings from the Rating"
" Rubric."
)
def get_default_pointwise_evaluation_steps(self) -> Dict[str, str]:
"""Returns the default evaluation steps for the metric prompt template."""
return {
"Step 1": (
"Assess the response in aspects of all criteria provided. Provide"
" assessment according to each criterion."
),
"Step 2": (
"Score based on the rating rubric. Give a brief rationale to"
" explain your evaluation considering each individual criterion."
),
}
def __str__(self):
"""Serializes the pointwise metric prompt template to a string."""
metric_prompt_template_str = [
"# Instruction",
f"{self._instruction}",
_NEWLINE,
"# Evaluation",
]
if self._metric_definition:
metric_prompt_template_str.extend(
[
"## Metric Definition",
f"{self._metric_definition}\n",
]
)
metric_prompt_template_str.extend(
[
"## Criteria",
f"{serialize_dict_in_order(self._criteria)}\n",
"## Rating Rubric",
f"{serialize_dict_in_order(self._rating_rubric)}\n",
]
)
if self._evaluation_steps:
metric_prompt_template_str.extend(
[
"## Evaluation Steps",
f"{serialize_dict_in_order(self._evaluation_steps)}\n",
]
)
if self._few_shot_examples:
metric_prompt_template_str.extend(
[
"## Evaluation Examples",
f"{_NEWLINE.join(self._few_shot_examples)}\n",
]
)
metric_prompt_template_str.extend(
["\n# User Inputs and AI-generated Response", "## User Inputs"]
)
for input_variable in self._input_variables:
if input_variable == "response":
continue
metric_prompt_template_str.extend(
[
f"### {input_variable}",
f"{{{input_variable}}}\n",
]
)
metric_prompt_template_str.extend(
[
_NEWLINE,
"\n## AI-generated Response",
"{response}",
]
)
return _NEWLINE.join(metric_prompt_template_str)
def __repr__(self):
return (
f"PointwiseMetricPromptTemplate(prompt_data={self.prompt_data},"
f" variables={self.variables})"
)
class PairwiseMetricPromptTemplate(_MetricPromptTemplate):
"""Pairwise metric prompt template for pairwise model-based metrics."""
def __init__(
self,
*,
criteria: Dict[str, str],
rating_rubric: Dict[str, str],
input_variables: Optional[List[str]] = None,
instruction: Optional[str] = None,
metric_definition: Optional[str] = None,
evaluation_steps: Optional[Dict[str, str]] = None,
few_shot_examples: Optional[List[str]] = None,
):
"""Initializes a pairwise metric prompt template.
Args:
criteria: The standards and measures used to evaluate the model
responses. It is a dictionary of criterion names and criterion
definitions.
rating_rubric: A dictionary mapping of rating name and rating
definition, used to assign ratings or scores based on specific
criteria.
input_variables: An optional list of input fields to use in the metric
prompt template for generating model-based evaluation results.
Candidate model "response" column and "baseline_model_response" column
are included by default. If metric_column_mapping is provided, the
mapping values of the input fields will be used to retrieve data from
the evaluation dataset.
instruction: The general instruction to the model that performs the
evaluation. If not provided, a default pairwise metric instruction
will be used.
metric_definition: The optional metric definition. It is a string
describing the metric to be evaluated at a high level. If not
provided, this field will not be included in the prompt template.
evaluation_steps: The optional gudelines of evaluation steps. A
dictionary of evaluation step name and evaluation step definition. If
not provided, a default pairwise metric evaluation steps will be used.
few_shot_examples: The optional list of few-shot examples to be used in
the prompt, to provide the model with demonstrations of how to perform
the evaluation, and improve the evaluation accuracy. If not provided,
this field will not be included in the prompt template.
"""
if not input_variables:
input_variables = []
_LOGGER.info(
"The `input_variables` parameter is empty. Only the `response`"
" column and `baseline_model_response` columns are used for"
" computing this model-based metric."
)
input_variables = list(
set(input_variables + ["response", "baseline_model_response"])
)
instruction = instruction or self.get_default_pairwise_instruction()
evaluation_steps = (
evaluation_steps or self.get_default_pairwise_evaluation_steps()
)
super().__init__(
input_variables=input_variables,
criteria=criteria,
rating_rubric=rating_rubric,
instruction=instruction,
metric_definition=metric_definition,
evaluation_steps=evaluation_steps,
few_shot_examples=few_shot_examples,
)
def get_default_pairwise_instruction(self) -> str:
"""Returns the default instruction for the metric prompt template."""
return (
"You are an expert evaluator. Your task is to evaluate the quality of"
" the responses generated by two AI models. We will provide you with"
" the user input and a pair of AI-generated responses (Response A and"
" Response B).\nYou should first read the user input carefully for"
" analyzing the task, and then evaluate the quality of the responses"
" based on based on the Criteria provided in the Evaluation section"
" below.\nYou will first judge responses individually, following the"
" Rating Rubric and Evaluation Steps. Then you will give step by step"
" explanations for your judgement, compare results to declare the"
" winner based on the Rating Rubric and Evaluation Steps."
)
def get_default_pairwise_evaluation_steps(self) -> Dict[str, str]:
"""Returns the default evaluation steps for the metric prompt template."""
return {
"Step 1": "Analyze Response A based on all the Criteria.",
"Step 2": "Analyze Response B based on all the Criteria.",
"Step 3": (
"Compare the overall performance of Response A and Response B based"
" on your analyses and assessment."
),
"Step 4": (
'Output your preference of "A", "SAME" or "B" to the'
" pairwise_choice field according to the Rating Rubrics."
),
"Step 5": "Output your assessment reasoning in the explanation field",
}
def __str__(self):
"""Serializes the pairwise metric prompt template to a string."""
metric_prompt_template_str = [
"# Instruction",
f"{self._instruction}",
_NEWLINE,
"# Evaluation",
]
if self._metric_definition:
metric_prompt_template_str.extend(
[
"## Metric Definition",
f"{self._metric_definition}\n",
]
)
metric_prompt_template_str.extend(
[
"## Criteria",
f"{serialize_dict_in_order(self._criteria)}\n",
"## Rating Rubric",
f"{serialize_dict_in_order(self._rating_rubric)}\n",
]
)
if self._evaluation_steps:
metric_prompt_template_str.extend(
[
"## Evaluation Steps",
f"{serialize_dict_in_order(self._evaluation_steps)}\n",
]
)
if self._few_shot_examples:
metric_prompt_template_str.extend(
[
"## Evaluation Examples",
f"{_NEWLINE.join(self._few_shot_examples)}\n",
]
)
metric_prompt_template_str.extend(
["\n# User Inputs and AI-generated Responses", "## User Inputs"]
)
for input_variable in self._input_variables:
if input_variable in ["response", "baseline_model_response"]:
continue
metric_prompt_template_str.extend(
[
f"### {input_variable}",
f"{{{input_variable}}}\n",
]
)
metric_prompt_template_str.extend(
[
"\n## AI-generated Responses",
"### Response A",
"{baseline_model_response}\n",
"### Response B",
"{response}",
]
)
return _NEWLINE.join(metric_prompt_template_str)
def __repr__(self):
return (
f"PairwiseMetricPromptTemplate(prompt_data={self.prompt_data},"
f" variables={self.variables})"
)

View File

@@ -0,0 +1,197 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Example metric prompt templates for model-based evaluation."""
from typing import List
from vertexai.preview.evaluation import constants
from vertexai.preview.evaluation.metrics import (
_default_templates,
)
from vertexai.preview.evaluation.metrics import pairwise_metric
from vertexai.preview.evaluation.metrics import pointwise_metric
class MetricPromptTemplateExamples:
"""Examples of metric prompt templates for model-based evaluation."""
_PROMPT_TEMPLATE_MAP = {
constants.Metric.COHERENCE: _default_templates.COHERENCE_PROMPT_TEMPLATE,
constants.Metric.FLUENCY: _default_templates.FLUENCY_PROMPT_TEMPLATE,
constants.Metric.SAFETY: _default_templates.SAFETY_PROMPT_TEMPLATE,
constants.Metric.GROUNDEDNESS: (
_default_templates.GROUNDEDNESS_PROMPT_TEMPLATE
),
constants.Metric.INSTRUCTION_FOLLOWING: (
_default_templates.INSTRUCTION_FOLLOWING_PROMPT_TEMPLATE
),
constants.Metric.VERBOSITY: _default_templates.VERBOSITY_PROMPT_TEMPLATE,
constants.Metric.TEXT_QUALITY: (
_default_templates.TEXT_QUALITY_PROMPT_TEMPLATE
),
constants.Metric.SUMMARIZATION_QUALITY: (
_default_templates.SUMMARIZATION_QUALITY_PROMPT_TEMPLATE
),
constants.Metric.QUESTION_ANSWERING_QUALITY: (
_default_templates.QUESTION_ANSWERING_QUALITY_PROMPT_TEMPLATE
),
constants.Metric.MULTI_TURN_CHAT_QUALITY: (
_default_templates.MULTI_TURN_CHAT_QUALITY_PROMPT_TEMPLATE
),
constants.Metric.MULTI_TURN_SAFETY: (
_default_templates.MULTI_TURN_SAFETY_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_COHERENCE: (
_default_templates.PAIRWISE_COHERENCE_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_FLUENCY: (
_default_templates.PAIRWISE_FLUENCY_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_SAFETY: (
_default_templates.PAIRWISE_SAFETY_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_GROUNDEDNESS: (
_default_templates.PAIRWISE_GROUNDEDNESS_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_INSTRUCTION_FOLLOWING: (
_default_templates.PAIRWISE_INSTRUCTION_FOLLOWING_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_VERBOSITY: (
_default_templates.PAIRWISE_VERBOSITY_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_TEXT_QUALITY: (
_default_templates.PAIRWISE_TEXT_QUALITY_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_SUMMARIZATION_QUALITY: (
_default_templates.PAIRWISE_SUMMARIZATION_QUALITY_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_QUESTION_ANSWERING_QUALITY: (
_default_templates.PAIRWISE_QUESTION_ANSWERING_QUALITY_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_MULTI_TURN_CHAT_QUALITY: (
_default_templates.PAIRWISE_MULTI_TURN_CHAT_QUALITY_PROMPT_TEMPLATE
),
constants.Metric.PAIRWISE_MULTI_TURN_SAFETY: (
_default_templates.PAIRWISE_MULTI_TURN_SAFETY_PROMPT_TEMPLATE
),
}
@classmethod
def get_prompt_template(cls, metric_name: str) -> str:
"""Returns the prompt template for the given metric name."""
return cls._PROMPT_TEMPLATE_MAP[metric_name]
@classmethod
def list_example_metric_names(cls) -> List[str]:
"""Returns a list of all metric prompt templates."""
return list(cls._PROMPT_TEMPLATE_MAP.keys())
class Pointwise:
"""Example PointwiseMetric instances."""
FLUENCY = pointwise_metric.PointwiseMetric(
metric=constants.Metric.FLUENCY,
metric_prompt_template=_default_templates.FLUENCY_PROMPT_TEMPLATE,
)
COHERENCE = pointwise_metric.PointwiseMetric(
metric=constants.Metric.COHERENCE,
metric_prompt_template=_default_templates.COHERENCE_PROMPT_TEMPLATE,
)
SAFETY = pointwise_metric.PointwiseMetric(
metric=constants.Metric.SAFETY,
metric_prompt_template=_default_templates.SAFETY_PROMPT_TEMPLATE,
)
GROUNDEDNESS = pointwise_metric.PointwiseMetric(
metric=constants.Metric.GROUNDEDNESS,
metric_prompt_template=_default_templates.GROUNDEDNESS_PROMPT_TEMPLATE,
)
INSTRUCTION_FOLLOWING = pointwise_metric.PointwiseMetric(
metric=constants.Metric.INSTRUCTION_FOLLOWING,
metric_prompt_template=_default_templates.INSTRUCTION_FOLLOWING_PROMPT_TEMPLATE,
)
VERBOSITY = pointwise_metric.PointwiseMetric(
metric=constants.Metric.VERBOSITY,
metric_prompt_template=_default_templates.VERBOSITY_PROMPT_TEMPLATE,
)
TEXT_QUALITY = pointwise_metric.PointwiseMetric(
metric=constants.Metric.TEXT_QUALITY,
metric_prompt_template=_default_templates.TEXT_QUALITY_PROMPT_TEMPLATE,
)
SUMMARIZATION_QUALITY = pointwise_metric.PointwiseMetric(
metric=constants.Metric.SUMMARIZATION_QUALITY,
metric_prompt_template=_default_templates.SUMMARIZATION_QUALITY_PROMPT_TEMPLATE,
)
QUESTION_ANSWERING_QUALITY = pointwise_metric.PointwiseMetric(
metric=constants.Metric.QUESTION_ANSWERING_QUALITY,
metric_prompt_template=_default_templates.QUESTION_ANSWERING_QUALITY_PROMPT_TEMPLATE,
)
MULTI_TURN_CHAT_QUALITY = pointwise_metric.PointwiseMetric(
metric=constants.Metric.MULTI_TURN_CHAT_QUALITY,
metric_prompt_template=_default_templates.MULTI_TURN_CHAT_QUALITY_PROMPT_TEMPLATE,
)
MULTI_TURN_SAFETY_QUALITY = pointwise_metric.PointwiseMetric(
metric=constants.Metric.MULTI_TURN_SAFETY,
metric_prompt_template=_default_templates.MULTI_TURN_SAFETY_PROMPT_TEMPLATE,
)
class Pairwise:
"""Example PairwiseMetric instances."""
FLUENCY = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_FLUENCY,
metric_prompt_template=_default_templates.PAIRWISE_FLUENCY_PROMPT_TEMPLATE,
)
COHERENCE = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_COHERENCE,
metric_prompt_template=_default_templates.PAIRWISE_COHERENCE_PROMPT_TEMPLATE,
)
SAFETY = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_SAFETY,
metric_prompt_template=_default_templates.PAIRWISE_SAFETY_PROMPT_TEMPLATE,
)
GROUNDEDNESS = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_GROUNDEDNESS,
metric_prompt_template=_default_templates.PAIRWISE_GROUNDEDNESS_PROMPT_TEMPLATE,
)
INSTRUCTION_FOLLOWING = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_INSTRUCTION_FOLLOWING,
metric_prompt_template=_default_templates.PAIRWISE_INSTRUCTION_FOLLOWING_PROMPT_TEMPLATE,
)
VERBOSITY = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_VERBOSITY,
metric_prompt_template=_default_templates.PAIRWISE_VERBOSITY_PROMPT_TEMPLATE,
)
TEXT_QUALITY = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_TEXT_QUALITY,
metric_prompt_template=_default_templates.PAIRWISE_TEXT_QUALITY_PROMPT_TEMPLATE,
)
SUMMARIZATION_QUALITY = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_SUMMARIZATION_QUALITY,
metric_prompt_template=_default_templates.PAIRWISE_SUMMARIZATION_QUALITY_PROMPT_TEMPLATE,
)
QUESTION_ANSWERING_QUALITY = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_QUESTION_ANSWERING_QUALITY,
metric_prompt_template=_default_templates.PAIRWISE_QUESTION_ANSWERING_QUALITY_PROMPT_TEMPLATE,
)
MULTI_TURN_CHAT_QUALITY = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_MULTI_TURN_CHAT_QUALITY,
metric_prompt_template=_default_templates.PAIRWISE_MULTI_TURN_CHAT_QUALITY_PROMPT_TEMPLATE,
)
MULTI_TURN_SAFETY_QUALITY = pairwise_metric.PairwiseMetric(
metric=constants.Metric.PAIRWISE_MULTI_TURN_SAFETY,
metric_prompt_template=_default_templates.PAIRWISE_MULTI_TURN_SAFETY_PROMPT_TEMPLATE,
)

View File

@@ -0,0 +1,133 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Model-based Pairwise Metric."""
from typing import Callable, Optional, Union
from google.cloud.aiplatform_v1beta1.types import (
evaluation_service as gapic_eval_service_types,
)
from vertexai.preview import generative_models
from vertexai.preview.evaluation.metrics import _base
from vertexai.preview.evaluation.metrics import (
custom_output_config as custom_output_config_class,
)
from vertexai.preview.evaluation.metrics import (
metric_prompt_template as metric_prompt_template_base,
)
class PairwiseMetric(_base._ModelBasedMetric): # pylint: disable=protected-access
"""A Model-based Pairwise Metric.
A model-based evaluation metric that compares two generative models' responses
side-by-side, and allows users to A/B test their generative models to
determine which model is performing better.
For more details on when to use pairwise metrics, see
[Evaluation methods and
metrics](https://cloud.google.com/vertex-ai/generative-ai/docs/models/determine-eval#pointwise_versus_pairwise).
Result Details:
* In `EvalResult.summary_metrics`, win rates for both the baseline and
candidate model are computed. The win rate is computed as proportion of
wins of one model's responses to total attempts as a decimal value
between 0 and 1.
* In `EvalResult.metrics_table`, a pairwise metric produces two
evaluation results per dataset row:
* `pairwise_choice`: The choice shows whether the candidate model or
the baseline model performs better, or if they are equally good.
* `explanation`: The rationale behind each verdict using
chain-of-thought reasoning. The explanation helps users scrutinize
the judgment and builds appropriate trust in the decisions.
See [documentation
page](https://cloud.google.com/vertex-ai/generative-ai/docs/models/determine-eval#understand-results)
for more details on understanding the metric results.
Usage Examples:
```
baseline_model = GenerativeModel("gemini-1.0-pro")
candidate_model = GenerativeModel("gemini-1.5-pro")
pairwise_groundedness = PairwiseMetric(
metric_prompt_template=MetricPromptTemplateExamples.get_prompt_template(
"pairwise_groundedness"
),
baseline_model=baseline_model,
)
eval_dataset = pd.DataFrame({
"prompt" : [...],
})
pairwise_task = EvalTask(
dataset=eval_dataset,
metrics=[pairwise_groundedness],
experiment="my-pairwise-experiment",
)
pairwise_result = pairwise_task.evaluate(
model=candidate_model,
experiment_run_name="gemini-pairwise-eval-run",
)
```
"""
def __init__(
self,
*,
metric: str,
metric_prompt_template: Union[
metric_prompt_template_base.PairwiseMetricPromptTemplate, str
],
baseline_model: Optional[
Union[generative_models.GenerativeModel, Callable[[str], str]]
] = None,
system_instruction: Optional[str] = None,
autorater_config: Optional[gapic_eval_service_types.AutoraterConfig] = None,
custom_output_config: Optional[
custom_output_config_class.CustomOutputConfig
] = None,
):
"""Initializes a pairwise evaluation metric.
Args:
metric: The pairwise evaluation metric name.
metric_prompt_template: Pairwise metric prompt template for performing
the pairwise model-based evaluation. A freeform string is also accepted.
baseline_model: The baseline model for side-by-side comparison. If not
specified, `baseline_model_response` column is required in the dataset
to perform bring-your-own-response(BYOR) evaluation.
system_instruction: The system instruction for the evaluation.
autorater_config: The config for judge model.
custom_output_config: Config for custom output from the judge model.
"""
super().__init__(
metric_prompt_template=metric_prompt_template,
metric=metric,
system_instruction=system_instruction,
autorater_config=autorater_config,
custom_output_config=custom_output_config,
)
self._baseline_model = baseline_model
@property
def baseline_model(
self,
) -> Union[generative_models.GenerativeModel, Callable[[str], str]]:
return self._baseline_model

View File

@@ -0,0 +1,95 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Model-based Pointwise Metric."""
from typing import Optional, Union
from google.cloud.aiplatform_v1beta1.types import (
evaluation_service as gapic_eval_service_types,
)
from vertexai.preview.evaluation.metrics import _base
from vertexai.preview.evaluation.metrics import (
custom_output_config as custom_output_config_class,
)
from vertexai.preview.evaluation.metrics import (
metric_prompt_template as metric_prompt_template_base,
)
class PointwiseMetric(_base._ModelBasedMetric): # pylint: disable=protected-access
"""A Model-based Pointwise Metric.
A model-based evaluation metric that evaluate a single generative model's
response.
For more details on when to use model-based pointwise metrics, see
[Evaluation methods and metrics](https://cloud.google.com/vertex-ai/generative-ai/docs/models/determine-eval).
Usage Examples:
```
candidate_model = GenerativeModel("gemini-1.5-pro")
eval_dataset = pd.DataFrame({
"prompt" : [...],
})
fluency_metric = PointwiseMetric(
metric="fluency",
metric_prompt_template=MetricPromptTemplateExamples.get_prompt_template('fluency'),
)
pointwise_eval_task = EvalTask(
dataset=eval_dataset,
metrics=[
fluency_metric,
MetricPromptTemplateExamples.Pointwise.GROUNDEDNESS,
],
)
pointwise_result = pointwise_eval_task.evaluate(
model=candidate_model,
)
```
"""
def __init__(
self,
*,
metric: str,
metric_prompt_template: Union[
metric_prompt_template_base.PointwiseMetricPromptTemplate, str
],
system_instruction: Optional[str] = None,
autorater_config: Optional[gapic_eval_service_types.AutoraterConfig] = None,
custom_output_config: Optional[
custom_output_config_class.CustomOutputConfig
] = None,
):
"""Initializes a pointwise evaluation metric.
Args:
metric: The pointwise evaluation metric name.
metric_prompt_template: Pointwise metric prompt template for performing
the model-based evaluation. A freeform string is also accepted.
system_instruction: The system instruction for the evaluation.
autorater_config: The config for judge model.
custom_output_config: Config for custom output from the judge model.
"""
super().__init__(
metric_prompt_template=metric_prompt_template,
metric=metric,
system_instruction=system_instruction,
autorater_config=autorater_config,
custom_output_config=custom_output_config,
)

View File

@@ -0,0 +1,126 @@
# -*- coding: utf-8 -*-
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from google.cloud.aiplatform_v1beta1.types import (
evaluation_service as gapic_eval_service_types,
)
from vertexai.preview.evaluation import utils
from vertexai.preview.evaluation.metrics import (
_base as metrics_base,
)
from vertexai.preview.evaluation.metrics import (
_default_templates,
)
from vertexai.preview.evaluation.metrics import (
custom_output_config,
)
from vertexai.preview.evaluation.metrics import pairwise_metric
from vertexai.preview.evaluation.metrics import pointwise_metric
from vertexai.preview.evaluation.metrics import (
rubric_based_metric,
)
AutoraterConfig = gapic_eval_service_types.AutoraterConfig
_POINTWISE_OUTPUT_CONFIG = custom_output_config.CustomOutputConfig(
return_raw_output=True,
parsing_fn=utils.parse_pointwise_rubric_result,
)
_PAIRWISE_OUTPUT_CONFIG = custom_output_config.CustomOutputConfig(
return_raw_output=True,
parsing_fn=utils.parse_pairwise_rubric_result,
)
_PAIRWISE_AUTORATER_CONFIG = AutoraterConfig(
sampling_count=1,
)
class PredefinedRubricMetrics:
"""Predefined rubric-based metrics."""
class Pointwise:
"""Pointwise rubric-based metrics."""
INSTRUCTION_FOLLOWING = rubric_based_metric.RubricBasedMetric(
generation_config=metrics_base.RubricGenerationConfig(
prompt_template=_default_templates.INSTRUCTION_FOLLOWING_RUBRIC_GENERATION_PROMPT_TEMPLATE,
),
critique_metric=pointwise_metric.PointwiseMetric(
metric="rb_instruction_following",
metric_prompt_template=_default_templates.INSTRUCTION_FOLLOWING_RUBRIC_CRITIQUE_TEMPLATE,
custom_output_config=_POINTWISE_OUTPUT_CONFIG,
),
)
MULTIMODAL_UNDERSTANDING = rubric_based_metric.RubricBasedMetric(
generation_config=metrics_base.RubricGenerationConfig(
prompt_template=_default_templates.MULTIMODAL_UNDERSTANDING_RUBRIC_GENERATION_PROMPT_TEMPLATE
),
critique_metric=pointwise_metric.PointwiseMetric(
metric="rb_multimodal_understanding",
metric_prompt_template=_default_templates.MULTIMODAL_UNDERSTANDING_RUBRIC_CRITIQUE_TEMPLATE,
custom_output_config=_POINTWISE_OUTPUT_CONFIG,
),
)
TEXT_QUALITY = rubric_based_metric.RubricBasedMetric(
generation_config=metrics_base.RubricGenerationConfig(
prompt_template=_default_templates.TEXT_QUALITY_RUBRIC_GENERATION_PROMPT_TEMPLATE
),
critique_metric=pointwise_metric.PointwiseMetric(
metric="rb_text_quality",
metric_prompt_template=_default_templates.TEXT_QUALITY_RUBRIC_CRITIQUE_TEMPLATE,
custom_output_config=_POINTWISE_OUTPUT_CONFIG,
),
)
class Pairwise:
"""Pairwise rubric-based metrics."""
INSTRUCTION_FOLLOWING = rubric_based_metric.RubricBasedMetric(
generation_config=metrics_base.RubricGenerationConfig(
prompt_template=_default_templates.INSTRUCTION_FOLLOWING_RUBRIC_GENERATION_PROMPT_TEMPLATE,
),
critique_metric=pairwise_metric.PairwiseMetric(
metric="pairwise_rb_instruction_following",
metric_prompt_template=_default_templates.PAIRWISE_INSTRUCTION_FOLLOWING_RUBRIC_CRITIQUE_TEMPLATE,
custom_output_config=_PAIRWISE_OUTPUT_CONFIG,
autorater_config=_PAIRWISE_AUTORATER_CONFIG,
),
)
MULTIMODAL_UNDERSTANDING = rubric_based_metric.RubricBasedMetric(
generation_config=metrics_base.RubricGenerationConfig(
prompt_template=_default_templates.MULTIMODAL_UNDERSTANDING_RUBRIC_GENERATION_PROMPT_TEMPLATE
),
critique_metric=pairwise_metric.PairwiseMetric(
metric="pairwise_rb_multimodal_understanding",
metric_prompt_template=_default_templates.PAIRWISE_MULTIMODAL_UNDERSTANDING_RUBRIC_CRITIQUE_TEMPLATE,
custom_output_config=_PAIRWISE_OUTPUT_CONFIG,
autorater_config=_PAIRWISE_AUTORATER_CONFIG,
),
)
TEXT_QUALITY = rubric_based_metric.RubricBasedMetric(
generation_config=metrics_base.RubricGenerationConfig(
prompt_template=_default_templates.TEXT_QUALITY_RUBRIC_GENERATION_PROMPT_TEMPLATE
),
critique_metric=pairwise_metric.PairwiseMetric(
metric="pairwise_rb_text_quality",
metric_prompt_template=_default_templates.PAIRWISE_TEXT_QUALITY_RUBRIC_CRITIQUE_TEMPLATE,
custom_output_config=_PAIRWISE_OUTPUT_CONFIG,
autorater_config=_PAIRWISE_AUTORATER_CONFIG,
),
)

View File

@@ -0,0 +1,104 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import collections
from typing import Union, TYPE_CHECKING
from google.cloud.aiplatform import base
from vertexai import generative_models
from vertexai.preview.evaluation import _pre_eval_utils
from vertexai.preview.evaluation import constants
from vertexai.preview.evaluation import utils
from vertexai.preview.evaluation.metrics import (
_base as metrics_base,
)
from vertexai.preview.evaluation.metrics import pairwise_metric
from vertexai.preview.evaluation.metrics import pointwise_metric
if TYPE_CHECKING:
import pandas as pd
_DEFAULT_MODEL_NAME = "gemini-2.0-flash-001"
_LOGGER = base.Logger(__name__)
class RubricBasedMetric(metrics_base._Metric):
"""Config for Rubric-Based Eval."""
def __init__(
self,
*,
generation_config: metrics_base.RubricGenerationConfig,
critique_metric: Union[
pointwise_metric.PointwiseMetric, pairwise_metric.PairwiseMetric
]
):
"""Initializes RubricBasedMetric.
Args:
generation_config: Config for rubric generation.
critique_metric: Pointwise/pairwise metric for rubric critique.
"""
super().__init__(metric=critique_metric._metric)
self.generation_config = generation_config
self.critique_metric = critique_metric
def generate_rubrics(
self,
eval_dataset: "pd.Dataframe",
) -> "pd.DataFrame":
"""Generates rubrics for given eval dataset."""
if not self.generation_config.model:
model = generative_models.GenerativeModel(model_name=_DEFAULT_MODEL_NAME)
else:
model = self.generation_config.model
if constants.Dataset.RUBRICS_COLUMN in eval_dataset.columns:
_LOGGER.warning(
"Rubrics column already exists in the dataset. Skipping rubric"
" generation."
)
return eval_dataset
responses = _pre_eval_utils._generate_responses_from_gemini_model(
model,
eval_dataset,
self.generation_config.prompt_template,
)
if self.generation_config.parsing_fn:
parsing_fn = self.generation_config.parsing_fn
else:
parsing_fn = utils.parse_rubrics
dataset_with_rubrics = eval_dataset.copy()
aggregated = collections.defaultdict(list)
for idx, response in enumerate(responses):
result = parsing_fn(response)
if isinstance(result, dict):
questions = result.pop("questions", None)
if questions is not None:
aggregated[constants.Dataset.RUBRICS_COLUMN].append(
(idx, questions)
)
for key, value in result.items():
aggregated[key].append((idx, value))
else:
aggregated[constants.Dataset.RUBRICS_COLUMN].append((idx, result))
for key, values in aggregated.items():
dataset_with_rubrics[key] = None
dataset_with_rubrics[key] = dataset_with_rubrics[key].astype(object)
for idx, value in values:
dataset_with_rubrics.at[idx, key] = value
return dataset_with_rubrics

View File

@@ -0,0 +1,146 @@
"""Utility functions for multimodal evaluation."""
import logging
import re
from typing import Any, Dict, Union, List, Set
from google.cloud.aiplatform import base
from google.cloud.aiplatform_v1beta1.types import content
from google.cloud.aiplatform_v1beta1.types import (
evaluation_service as gapic_eval_service_types,
)
from vertexai import generative_models
from vertexai.preview.evaluation import (
prompt_template as prompt_template_base,
)
from google.protobuf import json_format
ContentMap = gapic_eval_service_types.ContentMap
Content = content.Content
Part = content.Part
_CONTENTS_DETECTOR = "contents {"
_PARTS_DETECTOR = "parts {"
_LOGGER = base.Logger(__name__)
def _string_to_content_list(input_str: str) -> ContentMap.Contents:
"""Converts a string to a list if possible, otherwise returns None."""
try:
return json_format.Parse(
input_str,
ContentMap.Contents.pb(ContentMap.Contents()),
)
except json_format.ParseError as e:
if _CONTENTS_DETECTOR in input_str and _PARTS_DETECTOR in input_str:
logging.warning(
"Failed to parse %s to ContentMap.Contents: %s", input_str, e
)
return None
def _is_multimodal_response(response: str) -> bool:
"""Checks if the model response contains multimodal input."""
content_list = _string_to_content_list(response)
if content_list is None:
if _CONTENTS_DETECTOR in response and _PARTS_DETECTOR in response:
logging.warning(
"Response contains multimodal input: %s. Please check whether"
" the response format conforms to ContentMap type.",
response,
)
return False
else:
return True
def is_multimodal_instance(
model_based_metric_instance_input: Dict[str, str],
) -> bool:
"""Checks if the evaluation instance contains multimodal input."""
for placeholder in model_based_metric_instance_input:
if _is_multimodal_response(model_based_metric_instance_input[placeholder]):
return True
return False
def convert_multimodal_response_to_content_map(
model_based_metric_instance_input: Dict[str, str],
) -> ContentMap:
"""Converts a multimodal model response to a ContentMap."""
content_map = ContentMap()
for placeholder in model_based_metric_instance_input.keys():
content_list = _string_to_content_list(
model_based_metric_instance_input[placeholder]
)
if content_list is None:
content_map.values[placeholder] = ContentMap.Contents(
contents=[
Content(
parts=[
Part(text=model_based_metric_instance_input[placeholder])
]
)
]
)
else:
content_map.values[placeholder] = content_list
return content_map
def _split_metric_prompt_template(
metric_prompt_template: str,
placeholders: Set[str],
) -> List[str]:
"""Splits the metric prompt template into a list of strings by placeholders."""
placeholders_with_brackets = [
re.escape("{" + placeholder + "}") for placeholder in placeholders
]
pattern = "|".join(f"({placeholder})" for placeholder in placeholders_with_brackets)
split_metric_prompt_template = re.split(pattern, metric_prompt_template)
return [element for element in split_metric_prompt_template if element]
def _assemble_multi_modal_prompt(
metric_prompt_template: Union[prompt_template_base.PromptTemplate, str],
data_row: Dict[str, Any],
row_index: int,
placeholders: Set[str],
) -> List[Union[str, generative_models.Part]]:
"""Fills in the split metric prompt template elements with multimodal data to be sent to the model."""
split_template_elements = _split_metric_prompt_template(
str(metric_prompt_template), placeholders
)
part_inputs = []
for element in split_template_elements:
placeholder = element.replace("{", "").replace("}", "")
if placeholder in data_row.keys():
content_list = _string_to_content_list(data_row[placeholder])
if content_list is None:
part_inputs.append(data_row[placeholder])
else:
for content_inp in content_list.contents:
for part in content_inp.parts:
if part.HasField("text"):
part_inputs.append(part.text)
elif part.HasField("file_data"):
part_inputs.append(
generative_models.Part.from_uri(
part.file_data.file_uri,
mime_type=part.file_data.mime_type,
)
)
else:
_LOGGER.warning(
"The multimodal input you provided "
f"at row {row_index} "
"contains part types that are not "
"yet supported. Currently supported"
"part types are text and file_data"
)
else:
part_inputs.append(element)
return part_inputs

View File

@@ -0,0 +1,251 @@
# -*- coding: utf-8 -*-
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Python functions which run only within a Jupyter or Colab notebook."""
import random
import string
import sys
from typing import List, Optional, Tuple
from vertexai.preview.evaluation import _base as eval_base
from vertexai.preview.evaluation import constants
# pylint: disable=g-import-not-at-top
try:
import pandas as pd
except ImportError:
pandas = None
_MARKDOWN_H2 = "##"
_MARKDOWN_H3 = "###"
_DEFAULT_COLUMNS_TO_DISPLAY = [
constants.Dataset.MODEL_RESPONSE_COLUMN,
constants.Dataset.BASELINE_MODEL_RESPONSE_COLUMN,
constants.Dataset.PROMPT_COLUMN,
constants.MetricResult.ROW_COUNT_KEY,
]
_DEFAULT_RADAR_RANGE = (0, 5)
def _get_ipython_shell_name() -> str:
if "IPython" in sys.modules:
# pylint: disable=g-import-not-at-top, g-importing-member
from IPython import get_ipython
return get_ipython().__class__.__name__
return ""
def is_ipython_available() -> bool:
return _get_ipython_shell_name()
def _filter_df(
df: pd.DataFrame, substrings: Optional[List[str]] = None
) -> pd.DataFrame:
"""Filters a DataFrame to include only columns containing the given substrings."""
if substrings is None:
return df
return df.copy().filter(
[
column_name
for column_name in df.columns
if any(substring in column_name for substring in substrings)
]
)
def display_eval_result(
eval_result: "eval_base.EvalResult",
title: Optional[str] = None,
metrics: Optional[List[str]] = None,
) -> None:
"""Displays evaluation results in a notebook using IPython.display.
Args:
eval_result: An object containing evaluation results with
`summary_metrics` and `metrics_table` attributes.
title: A string title to display above the results.
metrics: A list of metric name substrings to filter displayed columns. If
provided, only metrics whose names contain any of these strings will be
displayed.
"""
if not is_ipython_available():
return
# pylint: disable=g-import-not-at-top, g-importing-member
from IPython.display import display
from IPython.display import Markdown
summary_metrics, metrics_table = (
eval_result.summary_metrics,
eval_result.metrics_table,
)
summary_metrics_df = pd.DataFrame.from_dict(summary_metrics, orient="index").T
if metrics:
columns_to_keep = metrics + _DEFAULT_COLUMNS_TO_DISPLAY
summary_metrics_df = _filter_df(summary_metrics_df, columns_to_keep)
metrics_table = _filter_df(metrics_table, columns_to_keep)
# Display the title in Markdown.
if title:
display(Markdown(f"{_MARKDOWN_H2} {title}"))
# Display the summary metrics.
display(Markdown(f"{_MARKDOWN_H3} Summary Metrics"))
display(summary_metrics_df)
# Display the metrics table.
display(Markdown(f"{_MARKDOWN_H3} Row-based Metrics"))
display(metrics_table)
def display_explanations(
eval_result: "eval_base.EvalResult",
num: int = 1,
metrics: Optional[List[str]] = None,
) -> None:
"""Displays the explanations in a notebook using IPython.display.
Args:
eval_result: An object containing evaluation results. It is expected to
have attributes `summary_metrics` and `metrics_table`.
num: The number of row samples to display. Defaults to 1. If the number of
rows is less than `num`, all rows will be displayed.
metrics: A list of metric name substrings to filter displayed columns. If
provided, only metrics whose names contain any of these strings will be
displayed.
"""
if not is_ipython_available():
return
# pylint: disable=g-import-not-at-top, g-importing-member
from IPython.display import display
from IPython.display import HTML
style = "white-space: pre-wrap; width: 1500px; overflow-x: auto;"
metrics_table = eval_result.metrics_table
if num < 1:
raise ValueError("Num must be greater than 0.")
num = min(num, len(metrics_table))
df = metrics_table.sample(n=num)
if metrics:
columns_to_keep = metrics + _DEFAULT_COLUMNS_TO_DISPLAY
df = _filter_df(df, columns_to_keep)
for _, row in df.iterrows():
for col in df.columns:
display(HTML(f"<div style='{style}'><h4>{col}:</h4>{row[col]}</div>"))
display(HTML("<hr>"))
def display_radar_plot(
eval_results_with_title: List[Tuple[str, "eval_base.EvalResult"]],
metrics: List[str],
radar_range: Tuple[float, float] = _DEFAULT_RADAR_RANGE,
) -> None:
"""Plots a radar plot comparing evaluation results.
Args:
eval_results_with_title: List of (title, eval_result) tuples.
metrics: A list of metrics whose mean values will be plotted.
radar_range: Range of the radar plot axes.
"""
# pylint: disable=g-import-not-at-top
try:
import plotly.graph_objects as go
except ImportError as exc:
raise ImportError(
'`plotly` is not installed. Please install using "!pip install plotly"'
) from exc
fig = go.Figure()
for title, eval_result in eval_results_with_title:
summary_metrics = eval_result.summary_metrics
if metrics:
summary_metrics = {
key.replace("/mean", ""): summary_metrics[key]
for key in summary_metrics
if any(selected_metric + "/mean" in key for selected_metric in metrics)
}
fig.add_trace(
go.Scatterpolar(
r=list(summary_metrics.values()),
theta=list(summary_metrics.keys()),
fill="toself",
name=title,
)
)
fig.update_layout(
polar=dict(radialaxis=dict(visible=True, range=radar_range)),
showlegend=True,
)
fig.show()
def display_bar_plot(
eval_results_with_title: List[Tuple[str, "eval_base.EvalResult"]],
metrics: List[str],
) -> None:
"""Plots a bar plot comparing evaluation results.
Args:
eval_results_with_title: List of (title, eval_result) tuples.
metrics: A list of metrics whose mean values will be plotted.
"""
# pylint: disable=g-import-not-at-top
try:
import plotly.graph_objects as go
except ImportError as exc:
raise ImportError(
'`plotly` is not installed. Please install using "!pip install plotly"'
) from exc
data = []
for title, eval_result in eval_results_with_title:
summary_metrics = eval_result.summary_metrics
mean_summary_metrics = [f"{metric}/mean" for metric in metrics]
updated_summary_metrics = []
if metrics:
for k, v in summary_metrics.items():
if k in mean_summary_metrics:
updated_summary_metrics.append((k, v))
summary_metrics = dict(updated_summary_metrics)
data.append(
go.Bar(
x=list(summary_metrics.keys()),
y=list(summary_metrics.values()),
name=title,
)
)
fig = go.Figure(data=data)
fig.update_layout(barmode="group", showlegend=True)
fig.show()
def generate_uuid(length: int = 8) -> str:
"""Generates a uuid of a specified length (default=8)."""
return "".join(random.choices(string.ascii_lowercase + string.digits, k=length))

View File

@@ -0,0 +1,86 @@
# -*- coding: utf-8 -*-
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Prompt template for creating prompts with variables."""
import re
from typing import Set
_VARIABLE_NAME_REGEX = r"\{([_a-zA-Z][_a-zA-Z0-9]*)\}"
class PromptTemplate:
"""A prompt template for creating prompts with variables.
The `PromptTemplate` class allows users to define a template string with
variables represented in curly braces `{variable}`. The variable
names cannot contain spaces and must start with a letter or underscore,
followed by letters, digits, or underscore. These variables can be
replaced with specific values using the `assemble` method, providing
flexibility in generating dynamic prompts.
Usage:
```
template_str = "Hello, {name}! Today is {day}. How are you?"
prompt_template = PromptTemplate(template_str)
completed_prompt = prompt_template.assemble(name="John", day="Monday")
print(completed_prompt)
```
"""
def __init__(self, template: str):
"""Initializes the PromptTemplate with a given template.
Args:
template: The template string with variables. Variables should be
represented in curly braces `{variable}`.
"""
self.template = str(template)
self.variables = self._get_variables()
def _get_variables(self) -> Set[str]:
"""Extracts and return a set of variable names from the template."""
return set(re.findall(_VARIABLE_NAME_REGEX, self.template))
def assemble(self, **kwargs) -> "PromptTemplate":
"""Replaces only the provided variables in the template with specific values.
Args:
**kwargs: Keyword arguments where keys are placeholder names and values
are the replacements.
Returns:
A new PromptTemplate instance with the updated template string.
"""
assembled_string = self.template
for variable_name, value in kwargs.items():
if variable_name not in self.variables:
raise ValueError(
f"Invalid variable name '{variable_name}'. "
f"Valid variables are: {self.variables}"
)
placeholder = "{" + variable_name + "}"
assembled_string = assembled_string.replace(placeholder, str(value))
return PromptTemplate(assembled_string)
def __str__(self) -> str:
"""Returns the template string."""
return self.template
def __repr__(self) -> str:
"""Returns a string representation of the PromptTemplate."""
return f"PromptTemplate('{self.template}')"

View File

@@ -0,0 +1,640 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Utility functions for evaluation."""
import functools
import io
import json
import os
import re
import sys
import tempfile
import threading
import time
from typing import (
Any,
Callable,
Dict,
List,
Optional,
Pattern,
Tuple,
TYPE_CHECKING,
Union,
)
from google.cloud import bigquery
from google.cloud import storage
from google.cloud.aiplatform import base
from google.cloud.aiplatform import compat
from google.cloud.aiplatform import initializer
from google.cloud.aiplatform import utils
from google.cloud.aiplatform.utils import _ipython_utils
from google.cloud.aiplatform_v1beta1.services import (
evaluation_service as gapic_evaluation_services,
)
from vertexai.evaluation import _base as eval_base
from vertexai.evaluation.metrics import _base as metrics_base
from vertexai.evaluation.metrics import (
metric_prompt_template as metric_prompt_template_base,
)
if TYPE_CHECKING:
import pandas as pd
_BQ_PREFIX = "bq://"
_GCS_PREFIX = "gs://"
_LOGGER = base.Logger(__name__)
_QUESTION_REGEX = re.compile(r"Question:(.*?)Verdict:", re.DOTALL)
_VERDICT_REGEX = re.compile("Verdict:(.*)")
_QUESTION_BLOCK_REGEX = re.compile("<question>(.*?)</question>", re.DOTALL)
_RESPONSE_A_REGEX = re.compile(
r"\[\[Response A Answers:\]\](.*?)\[\[Rubric Score:", re.DOTALL
)
_RESPONSE_B_REGEX = re.compile(
r"\[\[Response B Answers:\]\](.*?)\[\[Rubric Score:", re.DOTALL
)
_SXS_RATING_REGEX = re.compile(r"\[\[(SxSRating:[AB<>=]+)\]\]", re.DOTALL)
RATING_TO_VERDICT = {
"B>>A": "Candidate response is better than the baseline response.",
"A<<B": "Candiate response is better than the baseline response.",
"B>A": "Candidate response is slightly better than the baseline response.",
"A<B": "Candidate response is slightly better than the baseline response.",
"A=B": "Both responses are equally good.",
"B=A": "Both responses are equally good.",
"A>B": "Baseline response is slightly better than the candidate response.",
"B<A": "Baseline response is slightly better than the candidate response.",
"B<<A": "Baseline response is better than the candidate response.",
"A>>B": "Baseline response is better than the candidate response.",
}
_RATING_TO_SCORE = {
"B>>A": 1,
"A<<B": 1,
"B>A": 0.5,
"A<B": 0.5,
"A=B": 0,
"B=A": 0,
"A>B": -0.5,
"B<A": -0.5,
"B<<A": -1,
"A>>B": -1,
}
class _EvaluationServiceClientWithOverride(utils.ClientWithOverride):
_is_temporary = False
_default_version = compat.V1
_version_map = (
(
compat.V1,
gapic_evaluation_services.EvaluationServiceClient,
),
)
class RateLimiter:
"""Helper class for rate-limiting requests to Vertex AI to improve QoS.
Attributes:
seconds_per_event: The time interval (in seconds) between events to
maintain the desired rate.
last: The timestamp of the last event.
_lock: A lock to ensure thread safety.
"""
def __init__(self, rate: Optional[float] = None):
"""Initializes the rate limiter.
A simple rate limiter for controlling the frequency of API calls. This class
implements a token bucket algorithm to limit the rate at which events
can occur. It's designed for cases where the batch size (number of events
per call) is always 1 for traffic shaping and rate limiting.
Args:
rate: The number of queries allowed per second.
Raises:
ValueError: If the rate is not positive.
"""
if not rate or rate <= 0:
raise ValueError("Rate must be a positive number")
self.seconds_per_event = 1.0 / rate
self.last = time.time() - self.seconds_per_event
self._lock = threading.Lock()
def _admit(self) -> float:
"""Checks if an event can be admitted or calculates the remaining delay."""
now = time.time()
time_since_last = now - self.last
if time_since_last >= self.seconds_per_event:
self.last = now
return 0
else:
return self.seconds_per_event - time_since_last
def sleep_and_advance(self):
"""Blocks the current thread until the next event can be admitted."""
with self._lock:
delay = self._admit()
if delay > 0:
time.sleep(delay)
self.last = time.time()
def rate_limit(rate: Optional[float] = None) -> Callable[[Any], Any]:
"""Decorator version of rate limiter."""
def _rate_limit(method):
limiter = RateLimiter(rate)
@functools.wraps(method)
def wrapper(*args, **kwargs):
limiter.sleep_and_advance()
return method(*args, **kwargs)
return wrapper
return _rate_limit
def create_evaluation_service_client(
api_base_path_override: Optional[str] = None,
) -> _EvaluationServiceClientWithOverride:
"""Creates a client for the evaluation service.
Args:
api_base_path_override: Optional. Override default api base path.
Returns:
Instantiated Vertex AI EvaluationServiceClient with optional
overrides.
"""
return initializer.global_config.create_client(
client_class=_EvaluationServiceClientWithOverride,
location_override=initializer.global_config.location,
api_base_path_override=api_base_path_override,
)
def load_dataset(
source: Union[str, "pd.DataFrame", Dict[str, Any]],
) -> "pd.DataFrame":
"""Loads dataset from various sources into a DataFrame.
Args:
source: The dataset source. Supports the following dataset formats:
* pandas.DataFrame: Used directly for evaluation.
* Dict: Converted to a pandas DataFrame before evaluation.
* str: Interpreted as a file path or URI. Supported formats include:
* Local JSONL or CSV files: Loaded from the local filesystem.
* GCS JSONL or CSV files: Loaded from Google Cloud Storage (e.g.,
'gs://bucket/data.csv').
* BigQuery table URI: Loaded from Google Cloud
BigQuery (e.g., 'bq://project-id.dataset.table_name').
Returns:
The dataset in pandas DataFrame format.
"""
try:
import pandas as pd
except ImportError:
raise ImportError(
'Pandas is not installed. Please install the SDK using "pip install'
' google-cloud-aiplatform[evaluation]"'
)
if "google.colab" in sys.modules:
from google.colab import sheets
if isinstance(source, sheets.InteractiveSheet):
return source.as_df().copy()
if isinstance(source, pd.DataFrame):
return source.copy()
elif isinstance(source, dict):
return pd.DataFrame(source)
elif isinstance(source, str):
if source.startswith(_BQ_PREFIX):
return _load_bigquery(source[len(_BQ_PREFIX) :])
_, extension = os.path.splitext(source)
file_type = extension.lower()[1:]
if file_type == "jsonl":
return _load_jsonl(source)
elif file_type == "csv":
return _load_csv(source)
else:
raise ValueError(
f"Unsupported file type: {file_type} from {source}. Please"
" provide a valid GCS path with `jsonl` or `csv` suffix or a valid"
" BigQuery table URI."
)
else:
raise TypeError(
"Unsupported dataset type. Must be a `pd.DataFrame`, Python dictionary,"
" valid GCS path with `jsonl` or `csv` suffix or a valid BigQuery"
" table URI."
)
def _load_jsonl(filepath: str) -> "pd.DataFrame":
"""Loads data from a JSONL file into a DataFrame."""
try:
import pandas as pd
except ImportError:
raise ImportError(
'Pandas is not installed. Please install the SDK using "pip install'
' google-cloud-aiplatform[evaluation]"'
)
if filepath.startswith(_GCS_PREFIX):
file_contents = _read_gcs_file_contents(filepath)
return pd.read_json(file_contents, lines=True)
else:
with open(filepath, "r") as f:
return pd.read_json(f, lines=True)
def _load_csv(filepath: str) -> "pd.DataFrame":
"""Loads data from a CSV file into a DataFrame."""
try:
import pandas as pd
except ImportError:
raise ImportError(
'Pandas is not installed. Please install the SDK using "pip install'
' google-cloud-aiplatform[evaluation]"'
)
if filepath.startswith(_GCS_PREFIX):
file_contents = _read_gcs_file_contents(filepath)
return pd.read_csv(io.StringIO(file_contents), encoding="utf-8")
else:
return pd.read_csv(filepath, encoding="utf-8")
def _load_bigquery(table_id: str) -> "pd.DataFrame":
"""Loads data from a BigQuery table into a DataFrame."""
bigquery_client = bigquery.Client(project=initializer.global_config.project)
table = bigquery_client.get_table(table_id)
return bigquery_client.list_rows(table).to_dataframe()
def _read_gcs_file_contents(filepath: str) -> str:
"""Reads the contents of a file from Google Cloud Storage.
Args:
filepath: The GCS file path (e.g., 'gs://bucket_name/file.csv')
Returns:
str: The contents of the file.
"""
storage_client = storage.Client(
project=initializer.global_config.project,
credentials=initializer.global_config.credentials,
)
bucket_name, blob_path = filepath[len(_GCS_PREFIX) :].split("/", 1)
bucket = storage_client.get_bucket(bucket_name)
blob = bucket.blob(blob_path)
return blob.download_as_string().decode("utf-8")
def _upload_file_to_gcs(upload_gcs_path: str, filename: str) -> None:
storage_client = storage.Client(
project=initializer.global_config.project,
credentials=initializer.global_config.credentials,
)
storage.Blob.from_string(
uri=upload_gcs_path, client=storage_client
).upload_from_filename(filename)
def _upload_string_to_gcs(upload_gcs_path: str, contents: str) -> None:
"""Uploads the provided string to a GCS bucket."""
storage_client = storage.Client(
project=initializer.global_config.project,
credentials=initializer.global_config.credentials,
)
storage.Blob.from_string(
uri=upload_gcs_path, client=storage_client
).upload_from_string(contents)
def _upload_pandas_df_to_gcs(
df: "pd.DataFrame", upload_gcs_path: str, file_type: str
) -> None:
"""Uploads the provided Pandas DataFrame to a GCS bucket.
Args:
df: The Pandas DataFrame to upload.
upload_gcs_path: The GCS path to upload the data file.
file_type: The file type of the data file.
"""
with tempfile.TemporaryDirectory() as temp_dir:
if file_type == "csv":
local_dataset_path = os.path.join(temp_dir, "metrics_table.csv")
df.to_csv(path_or_buf=local_dataset_path)
elif file_type == "jsonl":
local_dataset_path = os.path.join(temp_dir, "metrics_table.jsonl")
df.to_json(path_or_buf=local_dataset_path, orient="records", lines=True)
else:
raise ValueError(
f"Unsupported file type: {file_type} from {upload_gcs_path}."
" Please provide a valid GCS path with `jsonl` or `csv` suffix."
)
storage_client = storage.Client(
project=initializer.global_config.project,
credentials=initializer.global_config.credentials,
)
storage.Blob.from_string(
uri=upload_gcs_path, client=storage_client
).upload_from_filename(filename=local_dataset_path)
def _upload_evaluation_summary_to_gcs(
summary_metrics: Dict[str, float],
upload_gcs_path: str,
candidate_model_name: Optional[str] = None,
baseline_model_name: Optional[str] = None,
dataset_uri: Optional[str] = None,
metrics: Optional[List[Union[str, metrics_base._Metric]]] = None,
) -> None:
"""Uploads the evaluation summary to a GCS bucket."""
summary = {
"summary_metrics": summary_metrics,
}
if candidate_model_name:
summary["candidate_model_name"] = candidate_model_name
if baseline_model_name:
summary["baseline_model_name"] = baseline_model_name
if dataset_uri:
summary["dataset_uri"] = dataset_uri
if metrics:
metric_descriptions = {}
for metric in metrics:
if isinstance(metric, metrics_base._ModelBasedMetric) and isinstance(
metric._raw_metric_prompt_template,
metric_prompt_template_base._MetricPromptTemplate,
):
metric_descriptions[metric.metric_name] = {
"criteria": metric._raw_metric_prompt_template._criteria,
"rating_rubric": metric._raw_metric_prompt_template._rating_rubric,
}
summary["metric_descriptions"] = metric_descriptions
with tempfile.TemporaryDirectory() as temp_dir:
local_summary_path = os.path.join(temp_dir, "summary_metrics.json")
json.dump(summary, open(local_summary_path, "w"))
_upload_file_to_gcs(upload_gcs_path, local_summary_path)
def upload_evaluation_results(
eval_result: eval_base.EvalResult,
destination_uri_prefix: str,
file_name: Optional[str] = None,
candidate_model_name: Optional[str] = None,
baseline_model_name: Optional[str] = None,
dataset_uri: Optional[str] = None,
metrics: Optional[List[Union[str, metrics_base._Metric]]] = None,
) -> None:
"""Uploads eval results to GCS destination.
Args:
eval_result: Eval results to upload.
destination_uri_prefix: GCS folder to store the data.
file_name: Optional. File name to store the metrics table.
candidate_model_name: Optional. Candidate model name.
baseline_model_name: Optional. Baseline model name.
dataset_uri: Optional. URI pointing to the dataset.
metrics: Optional. List of metrics used for evaluation.
"""
if not destination_uri_prefix:
_ipython_utils.display_gen_ai_evaluation_results_button()
return
if eval_result.metrics_table is None:
return
if destination_uri_prefix.startswith(_GCS_PREFIX):
if file_name:
base_name, extension = os.path.splitext(file_name)
file_type = extension.lower()[1:]
output_folder = destination_uri_prefix + "/" + base_name
metrics_table_path = output_folder + "/" + file_name
_upload_pandas_df_to_gcs(
eval_result.metrics_table, metrics_table_path, file_type
)
_upload_evaluation_summary_to_gcs(
eval_result.summary_metrics,
output_folder + "/summary_metrics.json",
candidate_model_name,
baseline_model_name,
dataset_uri,
metrics,
)
_ipython_utils.display_gen_ai_evaluation_results_button(
metrics_table_path.split(_GCS_PREFIX)[1]
)
else:
raise ValueError(
f"Unsupported destination URI: {destination_uri_prefix}."
f" Please provide a valid GCS bucket URI prefix starting with"
f" {_GCS_PREFIX}."
)
def initialize_metric_column_mapping(
metric_column_mapping: Optional[Dict[str, str]], dataset: "pd.DataFrame"
):
"""Initializes metric column mapping with dataset columns."""
initialized_metric_column_mapping = {}
for column in dataset.columns:
initialized_metric_column_mapping[column] = column
if metric_column_mapping:
for key, value in metric_column_mapping.items():
if key in initialized_metric_column_mapping:
_LOGGER.warning(
f"Cannot override `{key}` column with `{key}:{value}` mapping"
f" because `{key}` column is present in the evaluation"
" dataset. `metric_column_mapping` cannot override keys"
" that are already in evaluation dataset columns."
)
else:
initialized_metric_column_mapping[key] = value
return initialized_metric_column_mapping
def parse_intermediate_steps(intermediate_steps: List[Dict[str, Any]]):
"""Parses intermediate steps from the response to create trajectory."""
trajectory = []
try:
for step in intermediate_steps:
step_input, _ = step[0], step[1]
tool_name = step_input["kwargs"]["tool"]
tool_input = step_input["kwargs"]["tool_input"]
trajectory.append(
{
"tool_name": tool_name,
"tool_input": tool_input,
}
)
except Exception as e: # pylint: disable=broad-exception-caught
_LOGGER.error(
f"Failed to parse intermediate steps: {e}. The runnable you are using"
" is likely not compatible with the evaluation service. Please ensure"
" that the runnable you are using is compatible with the evaluation"
" service, if not, consider building a custom runnable function."
)
return trajectory
def parse_rubrics(rubric_generation_response: str) -> Dict[str, Any]:
"""Parses the rubric generation responses."""
try:
_, response = rubric_generation_response.split("```json")
except ValueError:
_LOGGER.warning(
"Failed to parse rubric generation response. Does not contain ```json"
)
return {"questions": ""}
try:
result = json.loads(response.strip("\n` "))
except json.JSONDecodeError:
_LOGGER.warning(
"Failed to parse rubric generation response. Does not contain valid"
" JSON."
)
return {"questions": ""}
return result
def parse_pairwise_rubric_verdict_pairs(prediction: str, regex: Pattern[str]) -> str:
"""Parses the pairwise rubric critique responses."""
response = "Unable to parse rubric verdict pairs from response."
response_matches = regex.findall(prediction)
if response_matches:
response_pairs = parse_question_blocks(response_matches[0])
response = "\n".join(f"{q}: {v}" for q, v in response_pairs)
return response
def parse_pairwise_rubric_result(
predictions: List[str],
) -> Dict[str, Any]:
"""Parses the pairwise rubric critique responses."""
prediction = predictions[0] # currently only supports one sample
rating_str = "Unable to parse verdict."
response_a = parse_pairwise_rubric_verdict_pairs(prediction, _RESPONSE_A_REGEX)
response_b = parse_pairwise_rubric_verdict_pairs(prediction, _RESPONSE_B_REGEX)
sxs_rating_matches = _SXS_RATING_REGEX.findall(prediction.replace(" ", ""))
if sxs_rating_matches:
rating_str = sxs_rating_matches[0].strip("[]")
rating_str = rating_str[rating_str.find(":") + 1 :]
return {
"pairwise_choice": (
RATING_TO_VERDICT[rating_str]
if rating_str in RATING_TO_VERDICT
else rating_str
),
"score": (
_RATING_TO_SCORE[rating_str] if rating_str in _RATING_TO_SCORE else None
),
"baseline_rubric_verdict_pairs": response_a,
"candidate_rubric_verdict_pairs": response_b,
"raw_outputs": predictions,
}
def parse_verdict(txt: str):
"""Parses the verdict from the rubric critique response."""
if not isinstance(txt, str) or not txt:
return None
try:
if verdict := _VERDICT_REGEX.findall(txt):
verdict = verdict[0]
if "yes" in verdict.lower():
return True
elif "no" in verdict.lower():
return False
except Exception: # pylint: disable=broad-exception-caught
return None
def parse_question(txt: str):
"""Parses the question from the rubric critique response."""
if not isinstance(txt, str) or not txt:
return None
try:
txt = txt.split("Verdict:")[0]
if "Question:" in txt:
return txt.split("Question:")[-1].strip()
if not (question := _QUESTION_REGEX.findall(txt)):
return txt.strip().split("\n")[0].removeprefix("STEP 1:").strip()
return question[0].strip()
except Exception: # pylint: disable=broad-exception-caught
return None
def parse_question_blocks(txt: str) -> List[Tuple[str, bool]]:
"""Parses the question blocks from the rubric critique response."""
if not txt.startswith("<question>\n"):
txt = "<question>\n" + txt
responses = []
question_blocks = _QUESTION_BLOCK_REGEX.findall(txt)
if not question_blocks:
question_blocks = [txt]
for block in question_blocks:
q = parse_question(block)
v = parse_verdict(block)
if q is not None and v is not None:
responses.append((q, v))
return responses
def parse_pointwise_rubric_result(results: List[str]) -> Dict[str, Any]:
"""Parses the pointwise rubric critique responses."""
self_consistency_results = {}
for sample_result in results:
rubric_verdict_pairs = parse_question_blocks(sample_result)
for rubric, verdict in rubric_verdict_pairs:
if rubric not in self_consistency_results:
self_consistency_results[rubric] = 0
self_consistency_results[rubric] += 1 if verdict else -1
rubric_results = {}
for rubric, verdict_counts in self_consistency_results.items():
rubric_results[rubric] = verdict_counts > 0
rubric_results_str = "\n".join(f"{q}: {v}" for q, v in rubric_results.items())
row_results = {
"score": (
sum(rubric_results.values()) / len(rubric_results) if rubric_results else 0
)
}
row_results["rubric_verdict_pairs"] = rubric_results_str
row_results["raw_outputs"] = results
return row_results

View File

@@ -0,0 +1,47 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Classes for working with example stores."""
# We just want to re-export certain classes
# pylint: disable=g-multiple-import,g-importing-member
from google.cloud.aiplatform_v1beta1 import types
from vertexai.example_stores._example_stores import (
ContentsExample,
ContentSearchKey,
Example,
ExampleStore,
ExamplesArrayFilter,
ExpectedContent,
StoredContentsExample,
StoredContentsExampleFilter,
StoredContentsExampleParameters,
)
ArrayOperator = types.ExamplesArrayFilter.ArrayOperator
ExampleStoreConfig = types.ExampleStoreConfig
__all__ = (
"ArrayOperator",
"ContentsExample",
"ContentSearchKey",
"Example",
"ExampleStore",
"ExampleStoreConfig",
"ExamplesArrayFilter",
"ExpectedContent",
"StoredContentsExample",
"StoredContentsExampleFilter",
"StoredContentsExampleParameters",
)

View File

@@ -0,0 +1,23 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Classes for working with extensions."""
# We just want to re-export certain classes
# pylint: disable=g-multiple-import,g-importing-member
from vertexai.extensions._extensions import (
Extension,
)
__all__ = ("Extension",)

View File

@@ -0,0 +1,74 @@
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Classes for working with the Gemini models."""
# We just want to re-export certain classes
# pylint: disable=g-multiple-import,g-importing-member
from vertexai.generative_models._generative_models import (
preview_grounding as grounding,
_PreviewGenerativeModel,
_PreviewChatSession,
GenerationConfig,
GenerationResponse,
AutomaticFunctionCallingResponder,
CallableFunctionDeclaration,
Candidate,
Content,
FinishReason,
FunctionCall,
FunctionDeclaration,
HarmCategory,
HarmBlockThreshold,
Image,
Part,
ResponseBlockedError,
ResponseValidationError,
SafetySetting,
Tool,
ToolConfig,
)
class GenerativeModel(_PreviewGenerativeModel):
__doc__ = _PreviewGenerativeModel.__doc__
class ChatSession(_PreviewChatSession):
__doc__ = _PreviewChatSession.__doc__
__all__ = [
"grounding",
"GenerationConfig",
"GenerativeModel",
"GenerationResponse",
"AutomaticFunctionCallingResponder",
"CallableFunctionDeclaration",
"Candidate",
"ChatSession",
"Content",
"FinishReason",
"FunctionCall",
"FunctionDeclaration",
"HarmCategory",
"HarmBlockThreshold",
"Image",
"Part",
"ResponseBlockedError",
"ResponseValidationError",
"SafetySetting",
"Tool",
"ToolConfig",
]

View File

@@ -0,0 +1,73 @@
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Classes for working with language models."""
from vertexai.language_models._language_models import (
_PreviewChatModel,
_PreviewChatSession,
_PreviewCodeChatModel,
_PreviewCodeChatSession,
_PreviewCodeGenerationModel,
_PreviewTextEmbeddingModel,
_PreviewTextGenerationModel,
ChatMessage,
CountTokensResponse,
InputOutputTextPair,
TextEmbedding,
TextEmbeddingInput,
TextGenerationResponse,
TuningEvaluationSpec,
)
from vertexai.language_models._evaluatable_language_models import (
EvaluationTextGenerationSpec,
EvaluationTextSummarizationSpec,
EvaluationQuestionAnsweringSpec,
EvaluationTextClassificationSpec,
EvaluationClassificationMetric,
EvaluationMetric,
)
ChatModel = _PreviewChatModel
ChatSession = _PreviewChatSession
CodeChatModel = _PreviewCodeChatModel
CodeChatSession = _PreviewCodeChatSession
CodeGenerationModel = _PreviewCodeGenerationModel
TextGenerationModel = _PreviewTextGenerationModel
TextEmbeddingModel = _PreviewTextEmbeddingModel
__all__ = [
"ChatMessage",
"ChatModel",
"ChatSession",
"CodeChatModel",
"CodeChatSession",
"CodeGenerationModel",
"CountTokensResponse",
"EvaluationClassificationMetric",
"EvaluationMetric",
"EvaluationTextGenerationSpec",
"EvaluationTextSummarizationSpec",
"EvaluationQuestionAnsweringSpec",
"EvaluationTextClassificationSpec",
"InputOutputTextPair",
"TextEmbedding",
"TextEmbeddingInput",
"TextEmbeddingModel",
"TextGenerationModel",
"TextGenerationResponse",
"TuningEvaluationSpec",
]

View File

@@ -0,0 +1,25 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Classes and functions for working with Model Garden."""
# We just want to re-export certain classes
# pylint: disable=g-multiple-import,g-importing-member
from vertexai.model_garden._model_garden import (
OpenModel,
list_deployable_models,
)
__all__ = ("OpenModel", "list_deployable_models")

View File

@@ -0,0 +1,36 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from vertexai.prompts._prompts import (
Prompt,
)
from vertexai.prompts._prompt_management import (
create_version,
delete,
get,
list_prompts as list,
list_versions,
restore_version,
)
__all__ = [
"Prompt",
"delete",
"create_version",
"get",
"list",
"list_versions",
"restore_version",
]

View File

@@ -0,0 +1,124 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from vertexai.preview.rag.rag_data import (
create_corpus,
delete_corpus,
delete_file,
get_corpus,
get_file,
get_rag_engine_config,
import_files,
import_files_async,
list_corpora,
list_files,
update_corpus,
update_rag_engine_config,
upload_file,
)
from vertexai.preview.rag.rag_retrieval import (
retrieval_query,
)
from vertexai.preview.rag.rag_store import (
Retrieval,
VertexRagStore,
)
from vertexai.preview.rag.utils.resources import (
ChunkingConfig,
Basic,
Enterprise,
EmbeddingModelConfig,
Filter,
HybridSearch,
JiraQuery,
JiraSource,
LayoutParserConfig,
LlmParserConfig,
LlmRanker,
Pinecone,
RagCorpus,
RagEmbeddingModelConfig,
RagEngineConfig,
RagFile,
RagManagedDb,
RagManagedDbConfig,
RagResource,
RagRetrievalConfig,
RagVectorDbConfig,
RankService,
Ranking,
SharePointSource,
SharePointSources,
SlackChannel,
SlackChannelsSource,
TransformationConfig,
VertexAiSearchConfig,
VertexFeatureStore,
VertexPredictionEndpoint,
VertexVectorSearch,
Weaviate,
)
__all__ = (
"ChunkingConfig",
"Basic",
"Enterprise",
"EmbeddingModelConfig",
"Filter",
"HybridSearch",
"JiraQuery",
"JiraSource",
"LayoutParserConfig",
"LlmParserConfig",
"LlmRanker",
"Pinecone",
"RagEngineConfig",
"RagCorpus",
"RagFile",
"RagManagedDb",
"RagManagedDbConfig",
"RagResource",
"RagRetrievalConfig",
"Ranking",
"RankService",
"Retrieval",
"SharePointSource",
"SharePointSources",
"SlackChannel",
"SlackChannelsSource",
"TransformationConfig",
"VertexAiSearchConfig",
"VertexFeatureStore",
"VertexRagStore",
"VertexVectorSearch",
"Weaviate",
"RagEmbeddingModelConfig",
"VertexPredictionEndpoint",
"RagVectorDbConfig",
"create_corpus",
"delete_corpus",
"delete_file",
"get_corpus",
"get_file",
"import_files",
"import_files_async",
"list_corpora",
"list_files",
"retrieval_query",
"upload_file",
"update_corpus",
"update_rag_engine_config",
"get_rag_engine_config",
)

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,274 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Retrieval query to get relevant contexts."""
import re
from typing import List, Optional
import warnings
from google.cloud import aiplatform_v1beta1
from google.cloud.aiplatform import initializer
from vertexai.preview.rag.utils import _gapic_utils
from vertexai.preview.rag.utils import resources
def retrieval_query(
text: str,
rag_resources: Optional[List[resources.RagResource]] = None,
rag_corpora: Optional[List[str]] = None,
similarity_top_k: Optional[int] = None,
vector_distance_threshold: Optional[float] = None,
vector_search_alpha: Optional[float] = None,
rag_retrieval_config: Optional[resources.RagRetrievalConfig] = None,
) -> aiplatform_v1beta1.RetrieveContextsResponse:
"""Retrieve top k relevant docs/chunks.
Example usage:
```
import vertexai
vertexai.init(project="my-project")
# Using deprecated parameters
results = vertexai.preview.rag.retrieval_query(
text="Why is the sky blue?",
rag_resources=[vertexai.preview.rag.RagResource(
rag_corpus="projects/my-project/locations/us-central1/ragCorpora/rag-corpus-1",
rag_file_ids=["rag-file-1", "rag-file-2", ...],
)],
similarity_top_k=2,
vector_distance_threshold=0.5,
vector_search_alpha=0.5,
)
# Using RagRetrievalConfig. Equivalent to the above example.
config = vertexai.preview.rag.RagRetrievalConfig(
top_k=2,
filter=vertexai.preview.rag.Filter(
vector_distance_threshold=0.5
),
hybrid_search=vertexai.preview.rag.rag_retrieval_config.hybrid_search(
alpha=0.5
),
ranking=vertex.preview.rag.Ranking(
llm_ranker=vertexai.preview.rag.LlmRanker(
model_name="gemini-1.5-flash-002"
)
)
)
results = vertexai.preview.rag.retrieval_query(
text="Why is the sky blue?",
rag_resources=[vertexai.preview.rag.RagResource(
rag_corpus="projects/my-project/locations/us-central1/ragCorpora/rag-corpus-1",
rag_file_ids=["rag-file-1", "rag-file-2", ...],
)],
rag_retrieval_config=config,
)
```
Args:
text: The query in text format to get relevant contexts.
rag_resources: A list of RagResource. It can be used to specify corpus
only or ragfiles. Currently only support one corpus or multiple files
from one corpus. In the future we may open up multiple corpora support.
rag_corpora: If rag_resources is not specified, use rag_corpora as a list
of rag corpora names. Deprecated. Use rag_resources instead.
similarity_top_k: The number of contexts to retrieve. Deprecated. Use
rag_retrieval_config.top_k instead.
vector_distance_threshold: Optional. Only return contexts with vector
distance smaller than the threshold. Deprecated. Use
rag_retrieval_config.filter.vector_distance_threshold instead.
vector_search_alpha: Optional. Controls the weight between dense and
sparse vector search results. The range is [0, 1], where 0 means
sparse vector search only and 1 means dense vector search only.
The default value is 0.5. Deprecated. Use
rag_retrieval_config.hybrid_search.alpha instead.
rag_retrieval_config: Optional. The config containing the retrieval
parameters, including top_k, vector_distance_threshold,
and alpha.
Returns:
RetrieveContextsResonse.
"""
parent = initializer.global_config.common_location_path()
client = _gapic_utils.create_rag_service_client()
if rag_resources:
if len(rag_resources) > 1:
raise ValueError("Currently only support 1 RagResource.")
name = rag_resources[0].rag_corpus
elif rag_corpora:
if len(rag_corpora) > 1:
raise ValueError("Currently only support 1 RagCorpus.")
name = rag_corpora[0]
warnings.warn(
f"rag_corpora is deprecated. Please use rag_resources instead."
f" After {resources.DEPRECATION_DATE} using"
" rag_corpora will raise error",
DeprecationWarning,
)
else:
raise ValueError("rag_resources or rag_corpora must be specified.")
data_client = _gapic_utils.create_rag_data_service_client()
if data_client.parse_rag_corpus_path(name):
rag_corpus_name = name
elif re.match("^{}$".format(_gapic_utils._VALID_RESOURCE_NAME_REGEX), name):
rag_corpus_name = parent + "/ragCorpora/" + name
else:
raise ValueError(
f"Invalid RagCorpus name: {rag_corpora}. Proper format should be:"
" projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}"
)
if rag_resources:
gapic_rag_resource = (
aiplatform_v1beta1.RetrieveContextsRequest.VertexRagStore.RagResource(
rag_corpus=rag_corpus_name,
rag_file_ids=rag_resources[0].rag_file_ids,
)
)
vertex_rag_store = aiplatform_v1beta1.RetrieveContextsRequest.VertexRagStore(
rag_resources=[gapic_rag_resource],
)
else:
vertex_rag_store = aiplatform_v1beta1.RetrieveContextsRequest.VertexRagStore(
rag_corpora=[rag_corpus_name],
)
# Check for deprecated parameters and raise warnings.
if similarity_top_k:
# If similarity_top_k is specified, throw deprecation warning.
warnings.warn(
"similarity_top_k is deprecated. Please use"
" rag_retrieval_config.top_k instead."
f" After {resources.DEPRECATION_DATE} using"
" similarity_top_k will raise error",
DeprecationWarning,
)
if vector_search_alpha:
# If vector_search_alpha is specified, throw deprecation warning.
warnings.warn(
"vector_search_alpha is deprecated. Please use"
" rag_retrieval_config.alpha instead."
f" After {resources.DEPRECATION_DATE} using"
" vector_search_alpha will raise error",
DeprecationWarning,
)
if vector_distance_threshold:
# If vector_distance_threshold is specified, throw deprecation warning.
warnings.warn(
"vector_distance_threshold is deprecated. Please use"
" rag_retrieval_config.filter.vector_distance_threshold instead."
f" After {resources.DEPRECATION_DATE} using"
" vector_distance_threshold will raise error",
DeprecationWarning,
)
# If rag_retrieval_config is not specified, set it to default values.
if not rag_retrieval_config:
api_retrival_config = aiplatform_v1beta1.RagRetrievalConfig(
top_k=similarity_top_k,
hybrid_search=aiplatform_v1beta1.RagRetrievalConfig.HybridSearch(
alpha=vector_search_alpha,
),
filter=aiplatform_v1beta1.RagRetrievalConfig.Filter(
vector_distance_threshold=vector_distance_threshold
),
)
else:
# If rag_retrieval_config is specified, check for missing parameters.
api_retrival_config = aiplatform_v1beta1.RagRetrievalConfig()
# Set top_k to config value if specified
if rag_retrieval_config.top_k:
api_retrival_config.top_k = rag_retrieval_config.top_k
else:
api_retrival_config.top_k = similarity_top_k
# Set alpha to config value if specified
if (
rag_retrieval_config.hybrid_search
and rag_retrieval_config.hybrid_search.alpha
):
api_retrival_config.hybrid_search.alpha = (
rag_retrieval_config.hybrid_search.alpha
)
else:
api_retrival_config.hybrid_search.alpha = vector_search_alpha
# Check if both vector_distance_threshold and vector_similarity_threshold
# are specified.
if (
rag_retrieval_config.filter
and rag_retrieval_config.filter.vector_distance_threshold
and rag_retrieval_config.filter.vector_similarity_threshold
):
raise ValueError(
"Only one of vector_distance_threshold or"
" vector_similarity_threshold can be specified at a time"
" in rag_retrieval_config."
)
# Set vector_distance_threshold to config value if specified
if (
rag_retrieval_config.filter
and rag_retrieval_config.filter.vector_distance_threshold
):
api_retrival_config.filter.vector_distance_threshold = (
rag_retrieval_config.filter.vector_distance_threshold
)
else:
api_retrival_config.filter.vector_distance_threshold = (
vector_distance_threshold
)
# Set vector_similarity_threshold to config value if specified
if (
rag_retrieval_config.filter
and rag_retrieval_config.filter.vector_similarity_threshold
):
api_retrival_config.filter.vector_similarity_threshold = (
rag_retrieval_config.filter.vector_similarity_threshold
)
if (
rag_retrieval_config.ranking
and rag_retrieval_config.ranking.rank_service
and rag_retrieval_config.ranking.llm_ranker
):
raise ValueError("Only one of rank_service and llm_ranker can be set.")
if rag_retrieval_config.ranking and rag_retrieval_config.ranking.rank_service:
api_retrival_config.ranking.rank_service.model_name = (
rag_retrieval_config.ranking.rank_service.model_name
)
elif rag_retrieval_config.ranking and rag_retrieval_config.ranking.llm_ranker:
api_retrival_config.ranking.llm_ranker.model_name = (
rag_retrieval_config.ranking.llm_ranker.model_name
)
query = aiplatform_v1beta1.RagQuery(
text=text,
rag_retrieval_config=api_retrival_config,
)
request = aiplatform_v1beta1.RetrieveContextsRequest(
vertex_rag_store=vertex_rag_store,
parent=parent,
query=query,
)
try:
response = client.retrieve_contexts(request=request)
except Exception as e:
raise RuntimeError("Failed in retrieving contexts due to: ", e) from e
return response

View File

@@ -0,0 +1,246 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""RAG retrieval tool for content generation."""
import re
from typing import List, Optional, Union
import warnings
from google.cloud import aiplatform_v1beta1
from google.cloud.aiplatform import initializer
from google.cloud.aiplatform_v1beta1.types import tool as gapic_tool_types
from vertexai.preview import generative_models
from vertexai.preview.rag.utils import _gapic_utils
from vertexai.preview.rag.utils import resources
class Retrieval(generative_models.grounding.Retrieval):
"""Defines a retrieval tool that a model can call to access external knowledge."""
def __init__(
self,
source: Union["VertexRagStore"],
disable_attribution: Optional[bool] = False,
):
self._raw_retrieval = gapic_tool_types.Retrieval(
vertex_rag_store=source._raw_vertex_rag_store,
disable_attribution=disable_attribution,
)
class VertexRagStore:
"""Retrieve from Vertex RAG Store."""
def __init__(
self,
rag_resources: Optional[List[resources.RagResource]] = None,
rag_corpora: Optional[List[str]] = None,
similarity_top_k: Optional[int] = None,
vector_distance_threshold: Optional[float] = None,
rag_retrieval_config: Optional[resources.RagRetrievalConfig] = None,
):
"""Initializes a Vertex RAG store tool.
Example usage:
```
import vertexai
vertexai.init(project="my-project")
# Using deprecated parameters
tool = Tool.from_retrieval(
retrieval=vertexai.preview.rag.Retrieval(
source=vertexai.preview.rag.VertexRagStore(
rag_corpora=["projects/my-project/locations/us-central1/ragCorpora/rag-corpus-1"],
similarity_top_k=3,
vector_distance_threshold=0.4,
),
)
)
# Using RagRetrievalConfig. Equivalent to the above example.
config = vertexai.preview.rag.RagRetrievalConfig(
top_k=2,
filter=vertexai.preview.rag.RagRetrievalConfig.Filter(
vector_distance_threshold=0.5
),
)
tool = Tool.from_retrieval(
retrieval=vertexai.preview.rag.Retrieval(
source=vertexai.preview.rag.VertexRagStore(
rag_corpora=["projects/my-project/locations/us-central1/ragCorpora/rag-corpus-1"],
rag_retrieval_config=config,
),
)
)
```
Args:
rag_resources: List of RagResource to retrieve from. It can be used
to specify corpus only or ragfiles. Currently only support one
corpus or multiple files from one corpus. In the future we
may open up multiple corpora support.
rag_corpora: If rag_resources is not specified, use rag_corpora as a
list of rag corpora names. Deprecated. Use rag_resources instead.
similarity_top_k: Number of top k results to return from the selected
corpora. Deprecated. Use rag_retrieval_config.top_k instead.
vector_distance_threshold (float):
Optional. Only return results with vector distance smaller
than the threshold. Deprecated. Use
rag_retrieval_config.filter.vector_distance_threshold instead.
rag_retrieval_config: Optional. The config containing the retrieval
parameters, including top_k and vector_distance_threshold.
"""
if rag_resources:
if len(rag_resources) > 1:
raise ValueError("Currently only support 1 RagResource.")
name = rag_resources[0].rag_corpus
elif rag_corpora:
if len(rag_corpora) > 1:
raise ValueError("Currently only support 1 RagCorpus.")
warnings.warn(
"rag_corpora is deprecated. Please use rag_resources instead."
f" After {resources.DEPRECATION_DATE} using"
" rag_corpora will raise error",
DeprecationWarning,
)
name = rag_corpora[0]
else:
raise ValueError("rag_resources or rag_corpora must be specified.")
data_client = _gapic_utils.create_rag_data_service_client()
if data_client.parse_rag_corpus_path(name):
rag_corpus_name = name
elif re.match("^{}$".format(_gapic_utils._VALID_RESOURCE_NAME_REGEX), name):
parent = initializer.global_config.common_location_path()
rag_corpus_name = parent + "/ragCorpora/" + name
else:
raise ValueError(
f"Invalid RagCorpus name: {rag_corpora}. Proper format should"
+ " be: projects/{{project}}/locations/{{location}}/ragCorpora/{{rag_corpus_id}}"
)
# Check for deprecated parameters and raise warnings.
if similarity_top_k:
# If similarity_top_k is specified, throw deprecation warning.
warnings.warn(
"similarity_top_k is deprecated. Please use"
" rag_retrieval_config.top_k instead."
f" After {resources.DEPRECATION_DATE} using"
" similarity_top_k will raise error",
DeprecationWarning,
)
if vector_distance_threshold:
# If vector_distance_threshold is specified, throw deprecation warning.
warnings.warn(
"vector_distance_threshold is deprecated. Please use"
" rag_retrieval_config.filter.vector_distance_threshold instead."
f" After {resources.DEPRECATION_DATE} using"
" vector_distance_threshold will raise error",
DeprecationWarning,
)
# If rag_retrieval_config is not specified, set it to default values.
if not rag_retrieval_config:
api_retrival_config = aiplatform_v1beta1.RagRetrievalConfig(
top_k=similarity_top_k,
filter=aiplatform_v1beta1.RagRetrievalConfig.Filter(
vector_distance_threshold=vector_distance_threshold
),
)
else:
# If rag_retrieval_config is specified, check for missing parameters.
api_retrival_config = aiplatform_v1beta1.RagRetrievalConfig()
# Set top_k to config value if specified
if rag_retrieval_config.top_k:
api_retrival_config.top_k = rag_retrieval_config.top_k
else:
api_retrival_config.top_k = similarity_top_k
# Check if both vector_distance_threshold and vector_similarity_threshold
# are specified.
if (
rag_retrieval_config.filter
and rag_retrieval_config.filter.vector_distance_threshold
and rag_retrieval_config.filter.vector_similarity_threshold
):
raise ValueError(
"Only one of vector_distance_threshold or"
" vector_similarity_threshold can be specified at a time"
" in rag_retrieval_config."
)
# Set vector_distance_threshold to config value if specified
if (
rag_retrieval_config.filter
and rag_retrieval_config.filter.vector_distance_threshold
):
api_retrival_config.filter.vector_distance_threshold = (
rag_retrieval_config.filter.vector_distance_threshold
)
else:
api_retrival_config.filter.vector_distance_threshold = (
vector_distance_threshold
)
# Set vector_similarity_threshold to config value if specified
if (
rag_retrieval_config.filter
and rag_retrieval_config.filter.vector_similarity_threshold
):
api_retrival_config.filter.vector_similarity_threshold = (
rag_retrieval_config.filter.vector_similarity_threshold
)
# Check if both rank_service and llm_ranker are specified.
if (
rag_retrieval_config.ranking
and rag_retrieval_config.ranking.rank_service
and rag_retrieval_config.ranking.rank_service.model_name
and rag_retrieval_config.ranking.llm_ranker
and rag_retrieval_config.ranking.llm_ranker.model_name
):
raise ValueError(
"Only one of rank_service or llm_ranker can be specified"
" at a time in rag_retrieval_config."
)
# Set rank_service to config value if specified
if (
rag_retrieval_config.ranking
and rag_retrieval_config.ranking.rank_service
):
api_retrival_config.ranking.rank_service.model_name = (
rag_retrieval_config.ranking.rank_service.model_name
)
# Set llm_ranker to config value if specified
if rag_retrieval_config.ranking and rag_retrieval_config.ranking.llm_ranker:
api_retrival_config.ranking.llm_ranker.model_name = (
rag_retrieval_config.ranking.llm_ranker.model_name
)
if rag_resources:
gapic_rag_resource = gapic_tool_types.VertexRagStore.RagResource(
rag_corpus=rag_corpus_name,
rag_file_ids=rag_resources[0].rag_file_ids,
)
self._raw_vertex_rag_store = gapic_tool_types.VertexRagStore(
rag_resources=[gapic_rag_resource],
rag_retrieval_config=api_retrival_config,
)
else:
self._raw_vertex_rag_store = gapic_tool_types.VertexRagStore(
rag_corpora=[rag_corpus_name],
rag_retrieval_config=api_retrival_config,
)

View File

@@ -0,0 +1,849 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
from typing import Any, Dict, Optional, Sequence, Union
from google.cloud.aiplatform import initializer
from google.cloud.aiplatform.utils import (
VertexRagClientWithOverride,
VertexRagDataAsyncClientWithOverride,
VertexRagDataClientWithOverride,
)
from google.cloud.aiplatform_v1beta1 import (
GoogleDriveSource,
ImportRagFilesConfig,
ImportRagFilesRequest,
JiraSource as GapicJiraSource,
RagCorpus as GapicRagCorpus,
RagEmbeddingModelConfig as GapicRagEmbeddingModelConfig,
RagEngineConfig as GapicRagEngineConfig,
RagFileChunkingConfig,
RagFileParsingConfig,
RagFileTransformationConfig,
RagFile as GapicRagFile,
RagManagedDbConfig as GapicRagManagedDbConfig,
RagVectorDbConfig as GapicRagVectorDbConfig,
SharePointSources as GapicSharePointSources,
SlackSource as GapicSlackSource,
VertexAiSearchConfig as GapicVertexAiSearchConfig,
)
from google.cloud.aiplatform_v1beta1.types import api_auth
from vertexai.preview.rag.utils.resources import (
EmbeddingModelConfig,
JiraSource,
LayoutParserConfig,
LlmParserConfig,
Pinecone,
RagCorpus,
RagEmbeddingModelConfig,
RagEngineConfig,
RagFile,
RagManagedDb,
RagManagedDbConfig,
RagVectorDbConfig,
Basic,
Enterprise,
SharePointSources,
SlackChannelsSource,
TransformationConfig,
VertexAiSearchConfig,
VertexFeatureStore,
VertexPredictionEndpoint,
VertexVectorSearch,
Weaviate,
)
_VALID_RESOURCE_NAME_REGEX = "[a-z][a-zA-Z0-9._-]{0,127}"
_VALID_DOCUMENT_AI_PROCESSOR_NAME_REGEX = (
r"projects/[^/]+/locations/[^/]+/processors/[^/]+(?:/processorVersions/[^/]+)?"
)
def create_rag_data_service_client():
return initializer.global_config.create_client(
client_class=VertexRagDataClientWithOverride,
).select_version("v1beta1")
def create_rag_data_service_async_client():
return initializer.global_config.create_client(
client_class=VertexRagDataAsyncClientWithOverride,
).select_version("v1beta1")
def create_rag_service_client():
return initializer.global_config.create_client(
client_class=VertexRagClientWithOverride,
).select_version("v1beta1")
def convert_gapic_to_embedding_model_config(
gapic_embedding_model_config: GapicRagEmbeddingModelConfig,
) -> EmbeddingModelConfig:
"""Convert GapicRagEmbeddingModelConfig to EmbeddingModelConfig."""
embedding_model_config = EmbeddingModelConfig()
path = gapic_embedding_model_config.vertex_prediction_endpoint.endpoint
publisher_model = re.match(
r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/publishers/google/models/(?P<model_id>.+?)$",
path,
)
endpoint = re.match(
r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/endpoints/(?P<endpoint>.+?)$",
path,
)
if publisher_model:
embedding_model_config.publisher_model = path
if endpoint:
embedding_model_config.endpoint = path
embedding_model_config.model = (
gapic_embedding_model_config.vertex_prediction_endpoint.model
)
embedding_model_config.model_version_id = (
gapic_embedding_model_config.vertex_prediction_endpoint.model_version_id
)
return embedding_model_config
def _check_weaviate(gapic_vector_db: GapicRagVectorDbConfig) -> bool:
try:
return gapic_vector_db.__contains__("weaviate")
except AttributeError:
return gapic_vector_db.weaviate.ByteSize() > 0
def _check_rag_managed_db(gapic_vector_db: GapicRagVectorDbConfig) -> bool:
try:
return gapic_vector_db.__contains__("rag_managed_db")
except AttributeError:
return gapic_vector_db.rag_managed_db.ByteSize() > 0
def _check_vertex_feature_store(gapic_vector_db: GapicRagVectorDbConfig) -> bool:
try:
return gapic_vector_db.__contains__("vertex_feature_store")
except AttributeError:
return gapic_vector_db.vertex_feature_store.ByteSize() > 0
def _check_pinecone(gapic_vector_db: GapicRagVectorDbConfig) -> bool:
try:
return gapic_vector_db.__contains__("pinecone")
except AttributeError:
return gapic_vector_db.pinecone.ByteSize() > 0
def _check_vertex_vector_search(gapic_vector_db: GapicRagVectorDbConfig) -> bool:
try:
return gapic_vector_db.__contains__("vertex_vector_search")
except AttributeError:
return gapic_vector_db.vertex_vector_search.ByteSize() > 0
def _check_rag_embedding_model_config(
gapic_vector_db: GapicRagVectorDbConfig,
) -> bool:
try:
return gapic_vector_db.__contains__("rag_embedding_model_config")
except AttributeError:
return gapic_vector_db.rag_embedding_model_config.ByteSize() > 0
def convert_gapic_to_vector_db(
gapic_vector_db: GapicRagVectorDbConfig,
) -> Union[Weaviate, VertexFeatureStore, VertexVectorSearch, Pinecone, RagManagedDb]:
"""Convert Gapic GapicRagVectorDbConfig to Weaviate, VertexFeatureStore, VertexVectorSearch, RagManagedDb, or Pinecone."""
if _check_weaviate(gapic_vector_db):
return Weaviate(
weaviate_http_endpoint=gapic_vector_db.weaviate.http_endpoint,
collection_name=gapic_vector_db.weaviate.collection_name,
api_key=gapic_vector_db.api_auth.api_key_config.api_key_secret_version,
)
elif _check_vertex_feature_store(gapic_vector_db):
return VertexFeatureStore(
resource_name=gapic_vector_db.vertex_feature_store.feature_view_resource_name,
)
elif _check_pinecone(gapic_vector_db):
return Pinecone(
index_name=gapic_vector_db.pinecone.index_name,
api_key=gapic_vector_db.api_auth.api_key_config.api_key_secret_version,
)
elif _check_vertex_vector_search(gapic_vector_db):
return VertexVectorSearch(
index_endpoint=gapic_vector_db.vertex_vector_search.index_endpoint,
index=gapic_vector_db.vertex_vector_search.index,
)
elif _check_rag_managed_db(gapic_vector_db):
return RagManagedDb()
else:
return None
def convert_gapic_to_vertex_ai_search_config(
gapic_vertex_ai_search_config: VertexAiSearchConfig,
) -> VertexAiSearchConfig:
"""Convert Gapic VertexAiSearchConfig to VertexAiSearchConfig."""
if gapic_vertex_ai_search_config.serving_config:
return VertexAiSearchConfig(
serving_config=gapic_vertex_ai_search_config.serving_config,
)
return None
def convert_gapic_to_rag_embedding_model_config(
gapic_embedding_model_config: GapicRagEmbeddingModelConfig,
) -> RagEmbeddingModelConfig:
"""Convert GapicRagEmbeddingModelConfig to RagEmbeddingModelConfig."""
embedding_model_config = RagEmbeddingModelConfig()
path = gapic_embedding_model_config.vertex_prediction_endpoint.endpoint
publisher_model = re.match(
r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/publishers/google/models/(?P<model_id>.+?)$",
path,
)
endpoint = re.match(
r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/endpoints/(?P<endpoint>.+?)$",
path,
)
if publisher_model:
embedding_model_config.vertex_prediction_endpoint = VertexPredictionEndpoint(
publisher_model=path
)
if endpoint:
embedding_model_config.vertex_prediction_endpoint = VertexPredictionEndpoint(
endpoint=path,
model=gapic_embedding_model_config.vertex_prediction_endpoint.model,
model_version_id=gapic_embedding_model_config.vertex_prediction_endpoint.model_version_id,
)
return embedding_model_config
def convert_gapic_to_backend_config(
gapic_vector_db: GapicRagVectorDbConfig,
) -> RagVectorDbConfig:
"""Convert Gapic RagVectorDbConfig to VertexVectorSearch, Pinecone, or RagManagedDb."""
vector_config = RagVectorDbConfig()
if _check_pinecone(gapic_vector_db):
vector_config.vector_db = Pinecone(
index_name=gapic_vector_db.pinecone.index_name,
api_key=gapic_vector_db.api_auth.api_key_config.api_key_secret_version,
)
elif _check_vertex_vector_search(gapic_vector_db):
vector_config.vector_db = VertexVectorSearch(
index_endpoint=gapic_vector_db.vertex_vector_search.index_endpoint,
index=gapic_vector_db.vertex_vector_search.index,
)
elif _check_rag_managed_db(gapic_vector_db):
vector_config.vector_db = RagManagedDb()
if _check_rag_embedding_model_config(gapic_vector_db):
vector_config.rag_embedding_model_config = (
convert_gapic_to_rag_embedding_model_config(
gapic_vector_db.rag_embedding_model_config
)
)
return vector_config
def convert_gapic_to_rag_corpus(gapic_rag_corpus: GapicRagCorpus) -> RagCorpus:
"""Convert GapicRagCorpus to RagCorpus."""
rag_corpus = RagCorpus(
name=gapic_rag_corpus.name,
display_name=gapic_rag_corpus.display_name,
description=gapic_rag_corpus.description,
embedding_model_config=convert_gapic_to_embedding_model_config(
gapic_rag_corpus.rag_embedding_model_config
),
vector_db=convert_gapic_to_vector_db(gapic_rag_corpus.rag_vector_db_config),
vertex_ai_search_config=convert_gapic_to_vertex_ai_search_config(
gapic_rag_corpus.vertex_ai_search_config
),
backend_config=convert_gapic_to_backend_config(
gapic_rag_corpus.rag_vector_db_config
),
)
return rag_corpus
def convert_gapic_to_rag_corpus_no_embedding_model_config(
gapic_rag_corpus: GapicRagCorpus,
) -> RagCorpus:
"""Convert GapicRagCorpus without embedding model config (for UpdateRagCorpus) to RagCorpus."""
rag_vector_db_config_no_embedding_model_config = gapic_rag_corpus.vector_db_config
rag_vector_db_config_no_embedding_model_config.rag_embedding_model_config = None
rag_corpus = RagCorpus(
name=gapic_rag_corpus.name,
display_name=gapic_rag_corpus.display_name,
description=gapic_rag_corpus.description,
vector_db=convert_gapic_to_vector_db(gapic_rag_corpus.rag_vector_db_config),
vertex_ai_search_config=convert_gapic_to_vertex_ai_search_config(
gapic_rag_corpus.vertex_ai_search_config
),
backend_config=convert_gapic_to_backend_config(
rag_vector_db_config_no_embedding_model_config
),
)
return rag_corpus
def convert_gapic_to_rag_file(gapic_rag_file: GapicRagFile) -> RagFile:
"""Convert GapicRagFile to RagFile."""
rag_file = RagFile(
name=gapic_rag_file.name,
display_name=gapic_rag_file.display_name,
description=gapic_rag_file.description,
)
return rag_file
def convert_json_to_rag_file(upload_rag_file_response: Dict[str, Any]) -> RagFile:
"""Converts a JSON response to a RagFile."""
rag_file = RagFile(
name=upload_rag_file_response.get("ragFile").get("name"),
display_name=upload_rag_file_response.get("ragFile").get("displayName"),
description=upload_rag_file_response.get("ragFile").get("description"),
)
return rag_file
def convert_path_to_resource_id(
path: str,
) -> Union[str, GoogleDriveSource.ResourceId]:
"""Converts a path to a Google Cloud storage uri or GoogleDriveSource.ResourceId."""
if path.startswith("gs://"):
# Google Cloud Storage source
return path
elif path.startswith("https://drive.google.com/"):
# Google Drive source
path_list = path.split("/")
if "file" in path_list:
index = path_list.index("file") + 2
resource_id = path_list[index].split("?")[0]
resource_type = GoogleDriveSource.ResourceId.ResourceType.RESOURCE_TYPE_FILE
elif "folders" in path_list:
index = path_list.index("folders") + 1
resource_id = path_list[index].split("?")[0]
resource_type = (
GoogleDriveSource.ResourceId.ResourceType.RESOURCE_TYPE_FOLDER
)
else:
raise ValueError("path %s is not a valid Google Drive url.", path)
return GoogleDriveSource.ResourceId(
resource_id=resource_id,
resource_type=resource_type,
)
else:
raise ValueError(
"path must be a Google Cloud Storage uri or a Google Drive url."
)
def convert_source_for_rag_import(
source: Union[SlackChannelsSource, JiraSource, SharePointSources]
) -> Union[GapicSlackSource, GapicJiraSource]:
"""Converts a SlackChannelsSource or JiraSource to a GapicSlackSource or GapicJiraSource."""
if isinstance(source, SlackChannelsSource):
result_source_channels = []
for channel in source.channels:
api_key = channel.api_key
cid = channel.channel_id
start_time = channel.start_time
end_time = channel.end_time
result_channels = GapicSlackSource.SlackChannels(
channels=[
GapicSlackSource.SlackChannels.SlackChannel(
channel_id=cid,
start_time=start_time,
end_time=end_time,
)
],
api_key_config=api_auth.ApiAuth.ApiKeyConfig(
api_key_secret_version=api_key
),
)
result_source_channels.append(result_channels)
return GapicSlackSource(
channels=result_source_channels,
)
elif isinstance(source, JiraSource):
result_source_queries = []
for query in source.queries:
api_key = query.api_key
custom_queries = query.custom_queries
projects = query.jira_projects
email = query.email
server_uri = query.server_uri
result_query = GapicJiraSource.JiraQueries(
custom_queries=custom_queries,
projects=projects,
email=email,
server_uri=server_uri,
api_key_config=api_auth.ApiAuth.ApiKeyConfig(
api_key_secret_version=api_key
),
)
result_source_queries.append(result_query)
return GapicJiraSource(
jira_queries=result_source_queries,
)
elif isinstance(source, SharePointSources):
result_source_share_point_sources = []
for share_point_source in source.share_point_sources:
sharepoint_folder_path = share_point_source.sharepoint_folder_path
sharepoint_folder_id = share_point_source.sharepoint_folder_id
drive_name = share_point_source.drive_name
drive_id = share_point_source.drive_id
client_id = share_point_source.client_id
client_secret = share_point_source.client_secret
tenant_id = share_point_source.tenant_id
sharepoint_site_name = share_point_source.sharepoint_site_name
result_share_point_source = GapicSharePointSources.SharePointSource(
client_id=client_id,
client_secret=api_auth.ApiAuth.ApiKeyConfig(
api_key_secret_version=client_secret
),
tenant_id=tenant_id,
sharepoint_site_name=sharepoint_site_name,
)
if sharepoint_folder_path is not None and sharepoint_folder_id is not None:
raise ValueError(
"sharepoint_folder_path and sharepoint_folder_id cannot both be set."
)
elif sharepoint_folder_path is not None:
result_share_point_source.sharepoint_folder_path = (
sharepoint_folder_path
)
elif sharepoint_folder_id is not None:
result_share_point_source.sharepoint_folder_id = sharepoint_folder_id
if drive_name is not None and drive_id is not None:
raise ValueError("drive_name and drive_id cannot both be set.")
elif drive_name is not None:
result_share_point_source.drive_name = drive_name
elif drive_id is not None:
result_share_point_source.drive_id = drive_id
else:
raise ValueError("Either drive_name and drive_id must be set.")
result_source_share_point_sources.append(result_share_point_source)
return GapicSharePointSources(
share_point_sources=result_source_share_point_sources,
)
else:
raise TypeError(
"source must be a SlackChannelsSource or JiraSource or SharePointSources."
)
def prepare_import_files_request(
corpus_name: str,
paths: Optional[Sequence[str]] = None,
source: Optional[Union[SlackChannelsSource, JiraSource, SharePointSources]] = None,
chunk_size: int = 1024,
chunk_overlap: int = 200,
transformation_config: Optional[TransformationConfig] = None,
max_embedding_requests_per_min: int = 1000,
use_advanced_pdf_parsing: bool = False,
partial_failures_sink: Optional[str] = None,
layout_parser: Optional[LayoutParserConfig] = None,
llm_parser: Optional[LlmParserConfig] = None,
) -> ImportRagFilesRequest:
if len(corpus_name.split("/")) != 6:
raise ValueError(
"corpus_name must be of the format `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`"
)
rag_file_parsing_config = RagFileParsingConfig(
advanced_parser=RagFileParsingConfig.AdvancedParser(
use_advanced_pdf_parsing=use_advanced_pdf_parsing,
),
)
if layout_parser is not None:
if (
re.fullmatch(
_VALID_DOCUMENT_AI_PROCESSOR_NAME_REGEX, layout_parser.processor_name
)
is None
):
raise ValueError(
"processor_name must be of the format "
"`projects/{project_id}/locations/{location}/processors/{processor_id}`"
"or "
"`projects/{project_id}/locations/{location}/processors/{processor_id}/processorVersions/{processor_version_id}`, "
f"got {layout_parser.processor_name!r}"
)
rag_file_parsing_config.layout_parser = RagFileParsingConfig.LayoutParser(
processor_name=layout_parser.processor_name,
max_parsing_requests_per_min=layout_parser.max_parsing_requests_per_min,
)
if llm_parser is not None:
rag_file_parsing_config.llm_parser = RagFileParsingConfig.LlmParser(
model_name=llm_parser.model_name
)
if llm_parser.max_parsing_requests_per_min is not None:
rag_file_parsing_config.llm_parser.max_parsing_requests_per_min = (
llm_parser.max_parsing_requests_per_min
)
if llm_parser.custom_parsing_prompt is not None:
rag_file_parsing_config.llm_parser.custom_parsing_prompt = (
llm_parser.custom_parsing_prompt
)
local_chunk_size = chunk_size
local_chunk_overlap = chunk_overlap
if transformation_config and transformation_config.chunking_config:
local_chunk_size = transformation_config.chunking_config.chunk_size
local_chunk_overlap = transformation_config.chunking_config.chunk_overlap
rag_file_transformation_config = RagFileTransformationConfig(
rag_file_chunking_config=RagFileChunkingConfig(
fixed_length_chunking=RagFileChunkingConfig.FixedLengthChunking(
chunk_size=local_chunk_size,
chunk_overlap=local_chunk_overlap,
),
),
)
import_rag_files_config = ImportRagFilesConfig(
rag_file_transformation_config=rag_file_transformation_config,
max_embedding_requests_per_min=max_embedding_requests_per_min,
rag_file_parsing_config=rag_file_parsing_config,
)
if source is not None:
gapic_source = convert_source_for_rag_import(source)
if isinstance(gapic_source, GapicSlackSource):
import_rag_files_config.slack_source = gapic_source
if isinstance(gapic_source, GapicJiraSource):
import_rag_files_config.jira_source = gapic_source
if isinstance(gapic_source, GapicSharePointSources):
import_rag_files_config.share_point_sources = gapic_source
else:
uris = []
resource_ids = []
for p in paths:
output = convert_path_to_resource_id(p)
if isinstance(output, str):
uris.append(p)
else:
resource_ids.append(output)
if uris:
import_rag_files_config.gcs_source.uris = uris
if resource_ids:
google_drive_source = GoogleDriveSource(
resource_ids=resource_ids,
)
import_rag_files_config.google_drive_source = google_drive_source
if partial_failures_sink is not None:
if partial_failures_sink.startswith("gs://"):
import_rag_files_config.partial_failure_gcs_sink.output_uri_prefix = (
partial_failures_sink
)
elif partial_failures_sink.startswith(
"bq://"
) or partial_failures_sink.startswith("bigquery://"):
import_rag_files_config.partial_failure_bigquery_sink.output_uri = (
partial_failures_sink
)
else:
raise ValueError(
"if provided, partial_failures_sink must be a GCS path or a BigQuery table."
)
request = ImportRagFilesRequest(
parent=corpus_name, import_rag_files_config=import_rag_files_config
)
return request
def get_corpus_name(
name: str,
) -> str:
if name:
client = create_rag_data_service_client()
if client.parse_rag_corpus_path(name):
return name
elif re.match("^{}$".format(_VALID_RESOURCE_NAME_REGEX), name):
return client.rag_corpus_path(
project=initializer.global_config.project,
location=initializer.global_config.location,
rag_corpus=name,
)
else:
raise ValueError(
"name must be of the format `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}` or `{rag_corpus}`"
)
return name
def get_file_name(
name: str,
corpus_name: str,
) -> str:
client = create_rag_data_service_client()
if client.parse_rag_file_path(name):
return name
elif re.match("^{}$".format(_VALID_RESOURCE_NAME_REGEX), name):
if not corpus_name:
raise ValueError(
"corpus_name must be provided if name is a `{rag_file}`, not a "
"full resource name (`projects/{project}/locations/{location}/ragCorpora/{rag_corpus}/ragFiles/{rag_file}`). "
)
return client.rag_file_path(
project=initializer.global_config.project,
location=initializer.global_config.location,
rag_corpus=get_corpus_name(corpus_name),
rag_file=name,
)
else:
raise ValueError(
"name must be of the format `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}/ragFiles/{rag_file}` or `{rag_file}`"
)
def set_embedding_model_config(
embedding_model_config: EmbeddingModelConfig,
rag_corpus: GapicRagCorpus,
) -> None:
if embedding_model_config.publisher_model and embedding_model_config.endpoint:
raise ValueError("publisher_model and endpoint cannot be set at the same time.")
if (
not embedding_model_config.publisher_model
and not embedding_model_config.endpoint
):
raise ValueError("At least one of publisher_model and endpoint must be set.")
parent = initializer.global_config.common_location_path(project=None, location=None)
if embedding_model_config.publisher_model:
publisher_model = embedding_model_config.publisher_model
full_resource_name = re.match(
r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/publishers/google/models/(?P<model_id>.+?)$",
publisher_model,
)
resource_name = re.match(
r"^publishers/google/models/(?P<model_id>.+?)$",
publisher_model,
)
if full_resource_name:
rag_corpus.rag_embedding_model_config.vertex_prediction_endpoint.endpoint = (
publisher_model
)
elif resource_name:
rag_corpus.rag_embedding_model_config.vertex_prediction_endpoint.endpoint = (
parent + "/" + publisher_model
)
else:
raise ValueError(
"publisher_model must be of the format `projects/{project}/locations/{location}/publishers/google/models/{model_id}` or `publishers/google/models/{model_id}`"
)
if embedding_model_config.endpoint:
endpoint = embedding_model_config.endpoint
full_resource_name = re.match(
r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/endpoints/(?P<endpoint>.+?)$",
endpoint,
)
resource_name = re.match(
r"^endpoints/(?P<endpoint>.+?)$",
endpoint,
)
if full_resource_name:
rag_corpus.rag_embedding_model_config.vertex_prediction_endpoint.endpoint = (
endpoint
)
elif resource_name:
rag_corpus.rag_embedding_model_config.vertex_prediction_endpoint.endpoint = (
parent + "/" + endpoint
)
else:
raise ValueError(
"endpoint must be of the format `projects/{project}/locations/{location}/endpoints/{endpoint}` or `endpoints/{endpoint}`"
)
def set_vector_db(
vector_db: Union[
Weaviate, VertexFeatureStore, VertexVectorSearch, Pinecone, RagManagedDb, None
],
rag_corpus: GapicRagCorpus,
) -> None:
"""Sets the vector db configuration for the rag corpus."""
if vector_db is None or isinstance(vector_db, RagManagedDb):
rag_corpus.rag_vector_db_config = GapicRagVectorDbConfig(
rag_managed_db=GapicRagVectorDbConfig.RagManagedDb(),
)
elif isinstance(vector_db, Weaviate):
http_endpoint = vector_db.weaviate_http_endpoint
collection_name = vector_db.collection_name
api_key = vector_db.api_key
rag_corpus.rag_vector_db_config = GapicRagVectorDbConfig(
weaviate=GapicRagVectorDbConfig.Weaviate(
http_endpoint=http_endpoint,
collection_name=collection_name,
),
api_auth=api_auth.ApiAuth(
api_key_config=api_auth.ApiAuth.ApiKeyConfig(
api_key_secret_version=api_key
),
),
)
elif isinstance(vector_db, VertexFeatureStore):
resource_name = vector_db.resource_name
rag_corpus.rag_vector_db_config = GapicRagVectorDbConfig(
vertex_feature_store=GapicRagVectorDbConfig.VertexFeatureStore(
feature_view_resource_name=resource_name,
),
)
elif isinstance(vector_db, VertexVectorSearch):
index_endpoint = vector_db.index_endpoint
index = vector_db.index
rag_corpus.rag_vector_db_config = GapicRagVectorDbConfig(
vertex_vector_search=GapicRagVectorDbConfig.VertexVectorSearch(
index_endpoint=index_endpoint,
index=index,
),
)
elif isinstance(vector_db, Pinecone):
index_name = vector_db.index_name
api_key = vector_db.api_key
rag_corpus.rag_vector_db_config = GapicRagVectorDbConfig(
pinecone=GapicRagVectorDbConfig.Pinecone(
index_name=index_name,
),
api_auth=api_auth.ApiAuth(
api_key_config=api_auth.ApiAuth.ApiKeyConfig(
api_key_secret_version=api_key
),
),
)
else:
raise TypeError(
"vector_db must be a Weaviate, VertexFeatureStore, VertexVectorSearch, RagManagedDb, or Pinecone."
)
def set_vertex_ai_search_config(
vertex_ai_search_config: VertexAiSearchConfig,
rag_corpus: GapicRagCorpus,
) -> None:
if not vertex_ai_search_config.serving_config:
raise ValueError("serving_config must be set.")
engine_resource_name = re.match(
r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/collections/(?P<collection>.+?)/engines/(?P<engine>.+?)/servingConfigs/(?P<serving_config>.+?)$",
vertex_ai_search_config.serving_config,
)
data_store_resource_name = re.match(
r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/collections/(?P<collection>.+?)/dataStores/(?P<data_store>.+?)/servingConfigs/(?P<serving_config>.+?)$",
vertex_ai_search_config.serving_config,
)
if engine_resource_name or data_store_resource_name:
rag_corpus.vertex_ai_search_config = GapicVertexAiSearchConfig(
serving_config=vertex_ai_search_config.serving_config,
)
else:
raise ValueError(
"serving_config must be of the format `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}/servingConfigs/{serving_config}` or `projects/{project}/locations/{location}/collections/{collection}/dataStores/{data_store}/servingConfigs/{serving_config}`"
)
def set_backend_config(
backend_config: Optional[
Union[
RagVectorDbConfig,
None,
]
],
rag_corpus: GapicRagCorpus,
) -> None:
"""Sets the vector db configuration for the rag corpus."""
if backend_config is None:
return
if backend_config.vector_db is not None:
vector_config = backend_config.vector_db
if vector_config is None or isinstance(vector_config, RagManagedDb):
rag_corpus.vector_db_config.rag_managed_db.CopyFrom(
GapicRagVectorDbConfig.RagManagedDb()
)
elif isinstance(vector_config, VertexVectorSearch):
index_endpoint = vector_config.index_endpoint
index = vector_config.index
rag_corpus.vector_db_config.vertex_vector_search.index_endpoint = (
index_endpoint
)
rag_corpus.vector_db_config.vertex_vector_search.index = index
elif isinstance(vector_config, Pinecone):
index_name = vector_config.index_name
api_key = vector_config.api_key
rag_corpus.vector_db_config.pinecone.index_name = index_name
rag_corpus.vector_db_config.api_auth.api_key_config.api_key_secret_version = (
api_key
)
else:
raise TypeError(
"backend_config must be a VertexFeatureStore,"
"RagManagedDb, or Pinecone."
)
if backend_config.rag_embedding_model_config:
set_embedding_model_config(
backend_config.rag_embedding_model_config, rag_corpus
)
def convert_gapic_to_rag_engine_config(
response: GapicRagEngineConfig,
) -> RagEngineConfig:
"""Converts a GapicRagEngineConfig to a RagEngineConfig."""
rag_managed_db_config = RagManagedDbConfig()
# If future fields are added with similar names, beware that __contains__
# may match them.
if response.rag_managed_db_config.__contains__("enterprise"):
rag_managed_db_config.tier = Enterprise()
elif response.rag_managed_db_config.__contains__("basic"):
rag_managed_db_config.tier = Basic()
else:
raise ValueError("At least one of rag_managed_db_config must be set.")
return RagEngineConfig(
name=response.name,
rag_managed_db_config=rag_managed_db_config,
)
def convert_rag_engine_config_to_gapic(
rag_engine_config: RagEngineConfig,
) -> GapicRagEngineConfig:
"""Converts a RagEngineConfig to a GapicRagEngineConfig."""
rag_managed_db_config = GapicRagManagedDbConfig()
if (
rag_engine_config.rag_managed_db_config is None
or rag_engine_config.rag_managed_db_config.tier is None
):
rag_managed_db_config = GapicRagManagedDbConfig(
enterprise=GapicRagManagedDbConfig.Enterprise()
)
else:
if isinstance(rag_engine_config.rag_managed_db_config.tier, Enterprise):
rag_managed_db_config.enterprise = GapicRagManagedDbConfig.Enterprise()
elif isinstance(rag_engine_config.rag_managed_db_config.tier, Basic):
rag_managed_db_config.basic = GapicRagManagedDbConfig.Basic()
return GapicRagEngineConfig(
name=rag_engine_config.name,
rag_managed_db_config=rag_managed_db_config,
)

View File

@@ -0,0 +1,576 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import dataclasses
from typing import List, Optional, Sequence, Union
from google.protobuf import timestamp_pb2
DEPRECATION_DATE = "June 2025"
@dataclasses.dataclass
class RagFile:
"""RAG file (output only).
Attributes:
name: Generated resource name. Format:
``projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}/ragFiles/{rag_file}``
display_name: Display name that was configured at client side.
description: The description of the RagFile.
"""
name: Optional[str] = None
display_name: Optional[str] = None
description: Optional[str] = None
@dataclasses.dataclass
class EmbeddingModelConfig:
"""EmbeddingModelConfig.
The representation of the embedding model config. Users input a 1P embedding
model as a Publisher model resource, or a 1P fine tuned embedding model
as an Endpoint resource.
Attributes:
publisher_model: 1P publisher model resource name. Format:
``publishers/google/models/{model}`` or
``projects/{project}/locations/{location}/publishers/google/models/{model}``
endpoint: 1P fine tuned embedding model resource name. Format:
``endpoints/{endpoint}`` or
``projects/{project}/locations/{location}/endpoints/{endpoint}``.
model:
Output only. The resource name of the model that is deployed
on the endpoint. Present only when the endpoint is not a
publisher model. Pattern:
``projects/{project}/locations/{location}/models/{model}``
model_version_id:
Output only. Version ID of the model that is
deployed on the endpoint. Present only when the
endpoint is not a publisher model.
"""
publisher_model: Optional[str] = None
endpoint: Optional[str] = None
model: Optional[str] = None
model_version_id: Optional[str] = None
@dataclasses.dataclass
class VertexPredictionEndpoint:
"""VertexPredictionEndpoint.
Attributes:
publisher_model: 1P publisher model resource name. Format:
``publishers/google/models/{model}`` or
``projects/{project}/locations/{location}/publishers/google/models/{model}``
endpoint: 1P fine tuned embedding model resource name. Format:
``endpoints/{endpoint}`` or
``projects/{project}/locations/{location}/endpoints/{endpoint}``.
model:
Output only. The resource name of the model that is deployed
on the endpoint. Present only when the endpoint is not a
publisher model. Pattern:
``projects/{project}/locations/{location}/models/{model}``
model_version_id:
Output only. Version ID of the model that is
deployed on the endpoint. Present only when the
endpoint is not a publisher model.
"""
endpoint: Optional[str] = None
publisher_model: Optional[str] = None
model: Optional[str] = None
model_version_id: Optional[str] = None
@dataclasses.dataclass
class RagEmbeddingModelConfig:
"""RagEmbeddingModelConfig.
Attributes:
vertex_prediction_endpoint: The Vertex AI Prediction Endpoint resource
name. Format:
``projects/{project}/locations/{location}/endpoints/{endpoint}``
"""
vertex_prediction_endpoint: Optional[VertexPredictionEndpoint] = None
@dataclasses.dataclass
class Weaviate:
"""Weaviate.
Attributes:
weaviate_http_endpoint: The Weaviate DB instance HTTP endpoint
collection_name: The corresponding Weaviate collection this corpus maps to
api_key: The SecretManager resource name for the Weaviate DB API token. Format:
``projects/{project}/secrets/{secret}/versions/{version}``
"""
weaviate_http_endpoint: Optional[str] = None
collection_name: Optional[str] = None
api_key: Optional[str] = None
@dataclasses.dataclass
class VertexFeatureStore:
"""VertexFeatureStore.
Attributes:
resource_name: The resource name of the FeatureView. Format:
``projects/{project}/locations/{location}/featureOnlineStores/
{feature_online_store}/featureViews/{feature_view}``
"""
resource_name: Optional[str] = None
@dataclasses.dataclass
class VertexVectorSearch:
"""VertexVectorSearch.
Attributes:
index_endpoint (str):
The resource name of the Index Endpoint. Format:
``projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}``
index (str):
The resource name of the Index. Format:
``projects/{project}/locations/{location}/indexes/{index}``
"""
index_endpoint: Optional[str] = None
index: Optional[str] = None
@dataclasses.dataclass
class RagManagedDb:
"""RagManagedDb."""
@dataclasses.dataclass
class Pinecone:
"""Pinecone.
Attributes:
index_name: The Pinecone index name.
api_key: The SecretManager resource name for the Pinecone DB API token. Format:
``projects/{project}/secrets/{secret}/versions/{version}``
"""
index_name: Optional[str] = None
api_key: Optional[str] = None
@dataclasses.dataclass
class VertexAiSearchConfig:
"""VertexAiSearchConfig.
Attributes:
serving_config: The resource name of the Vertex AI Search serving config.
Format:
``projects/{project}/locations/{location}/collections/{collection}/engines/{engine}/servingConfigs/{serving_config}``
or
``projects/{project}/locations/{location}/collections/{collection}/dataStores/{data_store}/servingConfigs/{serving_config}``
"""
serving_config: Optional[str] = None
@dataclasses.dataclass
class RagVectorDbConfig:
"""RagVectorDbConfig.
Attributes:
vector_db: Can be one of the following: Weaviate, VertexFeatureStore,
VertexVectorSearch, Pinecone, RagManagedDb.
rag_embedding_model_config: The embedding model config of the Vector DB.
"""
vector_db: Optional[
Union[Weaviate, VertexFeatureStore, VertexVectorSearch, Pinecone, RagManagedDb]
] = None
rag_embedding_model_config: Optional[RagEmbeddingModelConfig] = None
@dataclasses.dataclass
class RagCorpus:
"""RAG corpus(output only).
Attributes:
name: Generated resource name. Format:
``projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}``
display_name: Display name that was configured at client side.
description: The description of the RagCorpus.
embedding_model_config: The embedding model config of the RagCorpus.
Note: Deprecated. Use backend_config instead.
vector_db: The Vector DB of the RagCorpus.
Note: Deprecated. Use backend_config instead.
vertex_ai_search_config: The Vertex AI Search config of the RagCorpus.
backend_config: The backend config of the RagCorpus. It can specify a
Vector DB and/or the embedding model config.
"""
name: Optional[str] = None
display_name: Optional[str] = None
description: Optional[str] = None
embedding_model_config: Optional[EmbeddingModelConfig] = None
vector_db: Optional[
Union[Weaviate, VertexFeatureStore, VertexVectorSearch, Pinecone, RagManagedDb]
] = None
vertex_ai_search_config: Optional[VertexAiSearchConfig] = None
backend_config: Optional[RagVectorDbConfig] = None
@dataclasses.dataclass
class RagResource:
"""RagResource.
The representation of the rag source. It can be used to specify corpus only
or ragfiles. Currently only support one corpus or multiple files from one
corpus. In the future we may open up multiple corpora support.
Attributes:
rag_corpus: A Rag corpus resource name or corpus id. Format:
``projects/{project}/locations/{location}/ragCorpora/{rag_corpus_id}``
or ``{rag_corpus_id}``.
rag_files_id: List of Rag file resource name or file ids in the same corpus. Format:
``{rag_file}``.
"""
rag_corpus: Optional[str] = None
rag_file_ids: Optional[List[str]] = None
@dataclasses.dataclass
class SlackChannel:
"""SlackChannel.
Attributes:
channel_id: The Slack channel ID.
api_key: The SecretManager resource name for the Slack API token. Format:
``projects/{project}/secrets/{secret}/versions/{version}``
See: https://api.slack.com/tutorials/tracks/getting-a-token.
start_time: The starting timestamp for messages to import.
end_time: The ending timestamp for messages to import.
"""
channel_id: str
api_key: str
start_time: Optional[timestamp_pb2.Timestamp] = None
end_time: Optional[timestamp_pb2.Timestamp] = None
@dataclasses.dataclass
class SlackChannelsSource:
"""SlackChannelsSource.
Attributes:
channels: The Slack channels.
"""
channels: Sequence[SlackChannel]
@dataclasses.dataclass
class JiraQuery:
"""JiraQuery.
Attributes:
email: The Jira email address.
jira_projects: A list of Jira projects to import in their entirety.
custom_queries: A list of custom JQL Jira queries to import.
api_key: The SecretManager version resource name for Jira API access. Format:
``projects/{project}/secrets/{secret}/versions/{version}``
See: https://support.atlassian.com/atlassian-account/docs/manage-api-tokens-for-your-atlassian-account/
server_uri: The Jira server URI. Format:
``{server}.atlassian.net``
"""
email: str
jira_projects: Sequence[str]
custom_queries: Sequence[str]
api_key: str
server_uri: str
@dataclasses.dataclass
class JiraSource:
"""JiraSource.
Attributes:
queries: The Jira queries.
"""
queries: Sequence[JiraQuery]
@dataclasses.dataclass
class SharePointSource:
"""SharePointSource.
Attributes:
sharepoint_folder_path: The path of the SharePoint folder to download
from.
sharepoint_folder_id: The ID of the SharePoint folder to download
from.
drive_name: The name of the drive to download from.
drive_id: The ID of the drive to download from.
client_id: The Application ID for the app registered in
Microsoft Azure Portal. The application must
also be configured with MS Graph permissions
"Files.ReadAll", "Sites.ReadAll" and
BrowserSiteLists.Read.All.
client_secret: The application secret for the app registered
in Azure.
tenant_id: Unique identifier of the Azure Active
Directory Instance.
sharepoint_site_name: The name of the SharePoint site to download
from. This can be the site name or the site id.
"""
sharepoint_folder_path: Optional[str] = None
sharepoint_folder_id: Optional[str] = None
drive_name: Optional[str] = None
drive_id: Optional[str] = None
client_id: str = None
client_secret: str = None
tenant_id: str = None
sharepoint_site_name: str = None
@dataclasses.dataclass
class SharePointSources:
"""SharePointSources.
Attributes:
share_point_sources: The SharePoint sources.
"""
share_point_sources: Sequence[SharePointSource]
@dataclasses.dataclass
class Filter:
"""Filter.
Attributes:
vector_distance_threshold: Only returns contexts with vector
distance smaller than the threshold.
vector_similarity_threshold: Only returns contexts with vector
similarity larger than the threshold.
metadata_filter: String for metadata filtering.
"""
vector_distance_threshold: Optional[float] = None
vector_similarity_threshold: Optional[float] = None
metadata_filter: Optional[str] = None
@dataclasses.dataclass
class HybridSearch:
"""HybridSearch.
Attributes:
alpha: Alpha value controls the weight between dense and
sparse vector search results. The range is [0, 1], while 0
means sparse vector search only and 1 means dense vector
search only. The default value is 0.5 which balances sparse
and dense vector search equally.
"""
alpha: Optional[float] = None
@dataclasses.dataclass
class LlmRanker:
"""LlmRanker.
Attributes:
model_name: The model name used for ranking. Only Gemini models are
supported for now.
"""
model_name: Optional[str] = None
@dataclasses.dataclass
class RankService:
"""RankService.
Attributes:
model_name: The model name of the rank service. Format:
``semantic-ranker-512@latest``
"""
model_name: Optional[str] = None
@dataclasses.dataclass
class Ranking:
"""Ranking.
Attributes:
rank_service: (google.cloud.aiplatform_v1beta1.types.RagRetrievalConfig.Ranking.RankService)
Config for Rank Service.
llm_ranker (google.cloud.aiplatform_v1beta1.types.RagRetrievalConfig.Ranking.LlmRanker):
Config for LlmRanker.
"""
rank_service: Optional[RankService] = None
llm_ranker: Optional[LlmRanker] = None
@dataclasses.dataclass
class RagRetrievalConfig:
"""RagRetrievalConfig.
Attributes:
top_k: The number of contexts to retrieve.
filter: Config for filters.
hybrid_search (google.cloud.aiplatform_v1beta1.types.RagRetrievalConfig.HybridSearch):
Config for Hybrid Search.
ranking (google.cloud.aiplatform_v1beta1.types.RagRetrievalConfig.Ranking):
Config for ranking and reranking.
"""
top_k: Optional[int] = None
filter: Optional[Filter] = None
hybrid_search: Optional[HybridSearch] = None
ranking: Optional[Ranking] = None
@dataclasses.dataclass
class ChunkingConfig:
"""ChunkingConfig.
Attributes:
chunk_size: The size of each chunk.
chunk_overlap: The size of the overlap between chunks.
"""
chunk_size: int
chunk_overlap: int
@dataclasses.dataclass
class TransformationConfig:
"""TransformationConfig.
Attributes:
chunking_config: The chunking config.
"""
chunking_config: Optional[ChunkingConfig] = None
@dataclasses.dataclass
class LayoutParserConfig:
"""Configuration for the Document AI Layout Parser Processor.
Attributes:
processor_name (str):
The full resource name of a Document AI processor or processor
version. The processor must have type `LAYOUT_PARSER_PROCESSOR`.
Format:
- `projects/{project_id}/locations/{location}/processors/{processor_id}`
- `projects/{project_id}/locations/{location}/processors/{processor_id}/processorVersions/{processor_version_id}`
max_parsing_requests_per_min (int):
The maximum number of requests the job is allowed to make to the
Document AI processor per minute. Consult
https://cloud.google.com/document-ai/quotas and the Quota page for
your project to set an appropriate value here. If unspecified, a
default value of 120 QPM will be used.
"""
processor_name: str
max_parsing_requests_per_min: Optional[int] = None
@dataclasses.dataclass
class LlmParserConfig:
"""Configuration for the Document AI Layout Parser Processor.
Attributes:
model_name (str):
The full resource name of a Vertex AI model. Format:
- `projects/{project_id}/locations/{location}/publishers/google/models/{model_id}`
- `projects/{project_id}/locations/{location}/models/{model_id}`
max_parsing_requests_per_min (int):
The maximum number of requests the job is allowed to make to the
Vertex AI model per minute. Consult
https://cloud.google.com/vertex-ai/generative-ai/docs/quotas and
the Quota page for your project to set an appropriate value here.
If unspecified, a default value of 5000 QPM will be used.
custom_parsing_prompt (str):
A custom prompt to use for parsing.
"""
model_name: str
max_parsing_requests_per_min: Optional[int] = None
custom_parsing_prompt: Optional[str] = None
@dataclasses.dataclass
class Enterprise:
"""Enterprise tier offers production grade performance along with
autoscaling functionality. It is suitable for customers with large
amounts of data or performance sensitive workloads.
NOTE: This is the default tier if not explicitly chosen.
"""
@dataclasses.dataclass
class Basic:
"""Basic tier is a cost-effective and low compute tier suitable for the following cases:
* Experimenting with RagManagedDb.
* Small data size.
* Latency insensitive workload.
* Only using RAG Engine with external vector DBs.
"""
@dataclasses.dataclass
class RagManagedDbConfig:
"""RagManagedDbConfig.
The config of the RagManagedDb used by RagEngine.
Attributes:
tier: The tier of the RagManagedDb. The default tier is Enterprise.
"""
tier: Optional[Union[Enterprise, Basic]] = None
@dataclasses.dataclass
class RagEngineConfig:
"""RagEngineConfig.
Attributes:
name: Generated resource name for singleton resource. Format:
``projects/{project}/locations/{location}/ragEngineConfig``
rag_managed_db_config: The config of the RagManagedDb used by RagEngine.
The default tier is Enterprise.
"""
name: str
rag_managed_db_config: Optional[RagManagedDbConfig] = None

View File

@@ -0,0 +1,47 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Classes for working with reasoning engines."""
# We just want to re-export certain classes
# pylint: disable=g-multiple-import,g-importing-member
from vertexai.reasoning_engines._reasoning_engines import (
Queryable,
ReasoningEngine,
)
from vertexai.preview.reasoning_engines.templates.adk import (
AdkApp,
)
from vertexai.preview.reasoning_engines.templates.ag2 import (
AG2Agent,
)
from vertexai.preview.reasoning_engines.templates.langchain import (
LangchainAgent,
)
from vertexai.preview.reasoning_engines.templates.langgraph import (
LanggraphAgent,
)
from vertexai.preview.reasoning_engines.templates.llama_index import (
LlamaIndexQueryPipelineAgent,
)
__all__ = (
"AdkApp",
"AG2Agent",
"LangchainAgent",
"LanggraphAgent",
"LlamaIndexQueryPipelineAgent",
"Queryable",
"ReasoningEngine",
)

View File

@@ -0,0 +1,651 @@
# -*- coding: utf-8 -*-
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional
if TYPE_CHECKING:
try:
from google.adk.events.event import Event
Event = Event
except (ImportError, AttributeError):
Event = Any
try:
from google.adk.agents import BaseAgent
BaseAgent = BaseAgent
except (ImportError, AttributeError):
BaseAgent = Any
try:
from google.adk.sessions import BaseSessionService
BaseSessionService = BaseSessionService
except (ImportError, AttributeError):
BaseSessionService = Any
try:
from google.adk.artifacts import BaseArtifactService
BaseArtifactService = BaseArtifactService
except (ImportError, AttributeError):
BaseArtifactService = Any
try:
from opentelemetry.sdk import trace
TracerProvider = trace.TracerProvider
SpanProcessor = trace.SpanProcessor
SynchronousMultiSpanProcessor = trace.SynchronousMultiSpanProcessor
except ImportError:
TracerProvider = Any
SpanProcessor = Any
SynchronousMultiSpanProcessor = Any
_DEFAULT_APP_NAME = "default-app-name"
_DEFAULT_USER_ID = "default-user-id"
class _ArtifactVersion:
def __init__(self, **kwargs):
self.version: Optional[str] = kwargs.get("version")
self.data = kwargs.get("data")
def dump(self) -> Dict[str, Any]:
result = {}
if self.version:
result["version"] = self.version
if self.data:
result["data"] = self.data
return result
class _Artifact:
def __init__(self, **kwargs):
self.file_name: Optional[str] = kwargs.get("file_name")
self.versions: List[_ArtifactVersion] = kwargs.get("versions")
def dump(self) -> Dict[str, Any]:
result = {}
if self.file_name:
result["file_name"] = self.file_name
if self.versions:
result["versions"] = [version.dump() for version in self.versions]
return result
class _Authorization:
def __init__(self, **kwargs):
self.access_token: Optional[str] = kwargs.get("access_token") or kwargs.get(
"accessToken"
)
class _StreamRunRequest:
"""Request object for `streaming_agent_run_with_events` method."""
def __init__(self, **kwargs):
from google.adk.events.event import Event
from google.genai import types
self.message: Optional[types.Content] = kwargs.get("message")
# The new message to be processed by the agent.
self.events: Optional[List[Event]] = kwargs.get("events")
# List of preceding events happened in the same session.
self.artifacts: Optional[List[_Artifact]] = kwargs.get("artifacts")
# List of artifacts belonging to the session.
self.authorizations: Dict[str, _Authorization] = kwargs.get(
"authorizations", {}
)
# The authorizations of the user, keyed by authorization ID.
self.user_id: Optional[str] = kwargs.get("user_id", _DEFAULT_USER_ID)
# The user ID.
class _StreamingRunResponse:
"""Response object for `streaming_agent_run_with_events` method.
It contains the generated events together with the belonging artifacts.
"""
def __init__(self, **kwargs):
self.events: Optional[List["Event"]] = kwargs.get("events")
# List of generated events.
self.artifacts: Optional[List[_Artifact]] = kwargs.get("artifacts")
# List of artifacts belonging to the session.
def dump(self) -> Dict[str, Any]:
result = {}
if self.events:
result["events"] = []
for event in self.events:
event_dict = event.model_dump(exclude_none=True)
event_dict["invocation_id"] = event_dict.get("invocation_id", "")
result["events"].append(event_dict)
if self.artifacts:
result["artifacts"] = [artifact.dump() for artifact in self.artifacts]
return result
def _default_instrumentor_builder(project_id: str):
from vertexai.agent_engines import _utils
cloud_trace_exporter = _utils._import_cloud_trace_exporter_or_warn()
cloud_trace_v2 = _utils._import_cloud_trace_v2_or_warn()
opentelemetry = _utils._import_opentelemetry_or_warn()
opentelemetry_sdk_trace = _utils._import_opentelemetry_sdk_trace_or_warn()
if all(
(
cloud_trace_exporter,
cloud_trace_v2,
opentelemetry,
opentelemetry_sdk_trace,
)
):
import google.auth
credentials, _ = google.auth.default()
span_exporter = cloud_trace_exporter.CloudTraceSpanExporter(
project_id=project_id,
client=cloud_trace_v2.TraceServiceClient(
credentials=credentials.with_quota_project(project_id),
),
)
span_processor = opentelemetry_sdk_trace.export.BatchSpanProcessor(
span_exporter=span_exporter,
)
tracer_provider = opentelemetry.trace.get_tracer_provider()
# Get the appropriate tracer provider:
# 1. If _TRACER_PROVIDER is already set, use that.
# 2. Otherwise, if the OTEL_PYTHON_TRACER_PROVIDER environment
# variable is set, use that.
# 3. As a final fallback, use _PROXY_TRACER_PROVIDER.
# If none of the above is set, we log a warning, and
# create a tracer provider.
if not tracer_provider:
from google.cloud.aiplatform import base
_LOGGER = base.Logger(__name__)
_LOGGER.warning(
"No tracer provider. By default, "
"we should get one of the following providers: "
"OTEL_PYTHON_TRACER_PROVIDER, _TRACER_PROVIDER, "
"or _PROXY_TRACER_PROVIDER."
)
tracer_provider = opentelemetry_sdk_trace.TracerProvider()
opentelemetry.trace.set_tracer_provider(tracer_provider)
# Avoids AttributeError:
# 'ProxyTracerProvider' and 'NoOpTracerProvider' objects has no
# attribute 'add_span_processor'.
if _utils.is_noop_or_proxy_tracer_provider(tracer_provider):
tracer_provider = opentelemetry_sdk_trace.TracerProvider()
opentelemetry.trace.set_tracer_provider(tracer_provider)
# Avoids OpenTelemetry client already exists error.
_override_active_span_processor(
tracer_provider,
opentelemetry_sdk_trace.SynchronousMultiSpanProcessor(),
)
tracer_provider.add_span_processor(span_processor)
return None
else:
from google.cloud.aiplatform import base
_LOGGER = base.Logger(__name__)
_LOGGER.warning(
"enable_tracing=True but proceeding with tracing disabled "
"because not all packages (i.e. `google-cloud-trace`, `opentelemetry-sdk`, "
"`opentelemetry-exporter-gcp-trace`) for tracing have been installed"
)
return None
def _override_active_span_processor(
tracer_provider: "TracerProvider",
active_span_processor: "SynchronousMultiSpanProcessor",
):
"""Overrides the active span processor.
When working with multiple LangchainAgents in the same environment,
it's crucial to manage trace exports carefully.
Each agent needs its own span processor tied to a unique project ID.
While we add a new span processor for each agent, this can lead to
unexpected behavior.
For instance, with two agents linked to different projects, traces from the
second agent might be sent to both projects.
To prevent this and guarantee traces go to the correct project, we overwrite
the active span processor whenever a new LangchainAgent is created.
Args:
tracer_provider (TracerProvider):
The tracer provider to use for the project.
active_span_processor (SynchronousMultiSpanProcessor):
The active span processor overrides the tracer provider's
active span processor.
"""
if tracer_provider._active_span_processor:
tracer_provider._active_span_processor.shutdown()
tracer_provider._active_span_processor = active_span_processor
class AdkApp:
def __init__(
self,
*,
agent: "BaseAgent",
enable_tracing: bool = False,
session_service_builder: Optional[Callable[..., "BaseSessionService"]] = None,
artifact_service_builder: Optional[Callable[..., "BaseArtifactService"]] = None,
env_vars: Optional[Dict[str, str]] = None,
):
"""An ADK Application."""
from google.cloud.aiplatform import initializer
self._tmpl_attrs: Dict[str, Any] = {
"project": initializer.global_config.project,
"location": initializer.global_config.location,
"agent": agent,
"enable_tracing": enable_tracing,
"session_service_builder": session_service_builder,
"artifact_service_builder": artifact_service_builder,
"app_name": _DEFAULT_APP_NAME,
"env_vars": env_vars or {},
}
def _init_session(
self,
session_service: "BaseSessionService",
artifact_service: "BaseArtifactService",
request: _StreamRunRequest,
):
"""Initializes the session, and returns the session id."""
from google.adk.events.event import Event
import random
session_state = None
if request.authorizations:
session_state = {}
for auth_id, auth in request.authorizations.items():
auth = _Authorization(**auth)
session_state[f"temp:{auth_id}"] = auth.access_token
session_id = f"temp_session_{random.randbytes(8).hex()}"
session = session_service.create_session(
app_name=self._tmpl_attrs.get("app_name"),
user_id=request.user_id,
session_id=session_id,
state=session_state,
)
if not session:
raise RuntimeError("Create session failed.")
if request.events:
for event in request.events:
session_service.append_event(session, Event(**event))
if request.artifacts:
for artifact in request.artifacts:
artifact = _Artifact(**artifact)
for version_data in sorted(
artifact.versions, key=lambda x: x["version"]
):
version_data = _ArtifactVersion(**version_data)
saved_version = artifact_service.save_artifact(
app_name=self._tmpl_attrs.get("app_name"),
user_id=request.user_id,
session_id=session_id,
filename=artifact.file_name,
artifact=version_data.data,
)
if saved_version != version_data.version:
from google.cloud.aiplatform import base
_LOGGER = base.Logger(__name__)
_LOGGER.debug(
"Artifact '%s' saved at version %s instead of %s",
artifact.file_name,
saved_version,
version_data.version,
)
return session
def _convert_response_events(
self,
user_id: str,
session_id: str,
events: List["Event"],
artifact_service: Optional["BaseArtifactService"],
) -> _StreamingRunResponse:
"""Converts the events to the streaming run response object."""
import collections
result = _StreamingRunResponse(events=events, artifacts=[])
# Save the generated artifacts into the result object.
artifact_versions = collections.defaultdict(list)
for event in events:
if event.actions and event.actions.artifact_delta:
for key, version in event.actions.artifact_delta.items():
artifact_versions[key].append(version)
for key, versions in artifact_versions.items():
result.artifacts.append(
_Artifact(
file_name=key,
versions=[
_ArtifactVersion(
version=version,
data=artifact_service.load_artifact(
app_name=self._tmpl_attrs.get("app_name"),
user_id=user_id,
session_id=session_id,
filename=key,
version=version,
),
)
for version in versions
],
)
)
return result.dump()
def clone(self):
"""Returns a clone of the ADK application."""
import copy
return AdkApp(
agent=copy.deepcopy(self._tmpl_attrs.get("agent")),
enable_tracing=self._tmpl_attrs.get("enable_tracing"),
session_service_builder=self._tmpl_attrs.get("session_service_builder"),
artifact_service_builder=self._tmpl_attrs.get("artifact_service_builder"),
env_vars=self._tmpl_attrs.get("env_vars"),
)
def set_up(self):
"""Sets up the ADK application."""
import os
from google.adk.runners import Runner
from google.adk.sessions.in_memory_session_service import InMemorySessionService
from google.adk.artifacts.in_memory_artifact_service import (
InMemoryArtifactService,
)
os.environ["GOOGLE_GENAI_USE_VERTEXAI"] = "1"
project = self._tmpl_attrs.get("project")
os.environ["GOOGLE_CLOUD_PROJECT"] = project
location = self._tmpl_attrs.get("location")
os.environ["GOOGLE_CLOUD_LOCATION"] = location
if self._tmpl_attrs.get("enable_tracing"):
self._tmpl_attrs["instrumentor"] = _default_instrumentor_builder(
project_id=project
)
for key, value in self._tmpl_attrs.get("env_vars").items():
os.environ[key] = value
artifact_service_builder = self._tmpl_attrs.get("artifact_service_builder")
if artifact_service_builder:
self._tmpl_attrs["artifact_service"] = artifact_service_builder()
else:
self._tmpl_attrs["artifact_service"] = InMemoryArtifactService()
session_service_builder = self._tmpl_attrs.get("session_service_builder")
if session_service_builder:
self._tmpl_attrs["session_service"] = session_service_builder()
elif "GOOGLE_CLOUD_AGENT_ENGINE_ID" in os.environ:
from google.adk.sessions.vertex_ai_session_service import (
VertexAiSessionService,
)
self._tmpl_attrs["session_service"] = VertexAiSessionService(
project=project,
location=location,
)
self._tmpl_attrs["app_name"] = os.environ.get(
"GOOGLE_CLOUD_AGENT_ENGINE_ID",
self._tmpl_attrs.get("app_name"),
)
else:
self._tmpl_attrs["session_service"] = InMemorySessionService()
self._tmpl_attrs["runner"] = Runner(
agent=self._tmpl_attrs.get("agent"),
session_service=self._tmpl_attrs.get("session_service"),
artifact_service=self._tmpl_attrs.get("artifact_service"),
app_name=self._tmpl_attrs.get("app_name"),
)
self._tmpl_attrs["in_memory_session_service"] = InMemorySessionService()
self._tmpl_attrs["in_memory_artifact_service"] = InMemoryArtifactService()
self._tmpl_attrs["in_memory_runner"] = Runner(
agent=self._tmpl_attrs.get("agent"),
session_service=self._tmpl_attrs.get("in_memory_session_service"),
artifact_service=self._tmpl_attrs.get("in_memory_artifact_service"),
app_name=self._tmpl_attrs.get("app_name"),
)
def stream_query(
self,
*,
message: str,
user_id: str,
session_id: Optional[str] = None,
**kwargs,
):
"""Streams responses from the ADK application in response to a message.
Args:
message (str):
Required. The message to stream responses for.
user_id (str):
Required. The ID of the user.
session_id (str):
Optional. The ID of the session. If not provided, a new
session will be created for the user.
**kwargs (dict[str, Any]):
Optional. Additional keyword arguments to pass to the
runner.
Yields:
The output of querying the ADK application.
"""
from google.genai import types
content = types.Content(role="user", parts=[types.Part(text=message)])
if not self._tmpl_attrs.get("runner"):
self.set_up()
if not session_id:
session = self.create_session(user_id=user_id)
session_id = session.id
for event in self._tmpl_attrs.get("runner").run(
user_id=user_id, session_id=session_id, new_message=content, **kwargs
):
yield event.model_dump(exclude_none=True)
def streaming_agent_run_with_events(self, request_json: str):
import json
from google.genai import types
request = _StreamRunRequest(**json.loads(request_json))
if not self._tmpl_attrs.get("in_memory_runner"):
self.set_up()
if not self._tmpl_attrs.get("artifact_service"):
self.set_up()
# Prepare the in-memory session.
if not self._tmpl_attrs.get("in_memory_artifact_service"):
self.set_up()
if not self._tmpl_attrs.get("in_memory_session_service"):
self.set_up()
session = self._init_session(
session_service=self._tmpl_attrs.get("in_memory_session_service"),
artifact_service=self._tmpl_attrs.get("in_memory_artifact_service"),
request=request,
)
if not session:
raise RuntimeError("Session initialization failed.")
# Run the agent.
for event in self._tmpl_attrs.get("in_memory_runner").run(
user_id=request.user_id,
session_id=session.id,
new_message=types.Content(**request.message),
):
yield self._convert_response_events(
user_id=request.user_id,
session_id=session.id,
events=[event],
artifact_service=self._tmpl_attrs.get("in_memory_artifact_service"),
)
self._tmpl_attrs.get("in_memory_session_service").delete_session(
app_name=self._tmpl_attrs.get("app_name"),
user_id=request.user_id,
session_id=session.id,
)
def get_session(
self,
*,
user_id: str,
session_id: str,
**kwargs,
):
"""Get a session for the given user.
Args:
user_id (str):
Required. The ID of the user.
session_id (str):
Required. The ID of the session.
**kwargs (dict[str, Any]):
Optional. Additional keyword arguments to pass to the
session service.
Returns:
Session: The session instance (if any). It returns None if the
session is not found.
Raises:
RuntimeError: If the session is not found.
"""
if not self._tmpl_attrs.get("session_service"):
self.set_up()
session = self._tmpl_attrs.get("session_service").get_session(
app_name=self._tmpl_attrs.get("app_name"),
user_id=user_id,
session_id=session_id,
**kwargs,
)
if not session:
raise RuntimeError(
"Session not found. Please create it using .create_session()"
)
return session
def list_sessions(self, *, user_id: str, **kwargs):
"""List sessions for the given user.
Args:
user_id (str):
Required. The ID of the user.
**kwargs (dict[str, Any]):
Optional. Additional keyword arguments to pass to the
session service.
Returns:
ListSessionsResponse: The list of sessions.
"""
if not self._tmpl_attrs.get("session_service"):
self.set_up()
return self._tmpl_attrs.get("session_service").list_sessions(
app_name=self._tmpl_attrs.get("app_name"),
user_id=user_id,
**kwargs,
)
def create_session(
self,
*,
user_id: str,
session_id: Optional[str] = None,
state: Optional[Dict[str, Any]] = None,
**kwargs,
):
"""Creates a new session.
Args:
user_id (str):
Required. The ID of the user.
session_id (str):
Optional. The ID of the session. If not provided, an ID
will be be generated for the session.
state (dict[str, Any]):
Optional. The initial state of the session.
**kwargs (dict[str, Any]):
Optional. Additional keyword arguments to pass to the
session service.
Returns:
Session: The newly created session instance.
"""
if not self._tmpl_attrs.get("session_service"):
self.set_up()
session = self._tmpl_attrs.get("session_service").create_session(
app_name=self._tmpl_attrs.get("app_name"),
user_id=user_id,
session_id=session_id,
state=state,
**kwargs,
)
return session
def delete_session(
self,
*,
user_id: str,
session_id: str,
**kwargs,
):
"""Deletes a session for the given user.
Args:
user_id (str):
Required. The ID of the user.
session_id (str):
Required. The ID of the session.
**kwargs (dict[str, Any]):
Optional. Additional keyword arguments to pass to the
session service.
"""
if not self._tmpl_attrs.get("session_service"):
self.set_up()
self._tmpl_attrs.get("session_service").delete_session(
app_name=self._tmpl_attrs.get("app_name"),
user_id=user_id,
session_id=session_id,
**kwargs,
)
def register_operations(self) -> Dict[str, List[str]]:
"""Registers the operations of the ADK application."""
return {
"": [
"get_session",
"list_sessions",
"create_session",
"delete_session",
],
"stream": ["stream_query", "streaming_agent_run_with_events"],
}

View File

@@ -0,0 +1,474 @@
# -*- coding: utf-8 -*-
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Mapping,
Optional,
Sequence,
Union,
)
if TYPE_CHECKING:
try:
from autogen import agentchat
ConversableAgent = agentchat.ConversableAgent
ChatResult = agentchat.ChatResult
except ImportError:
ConversableAgent = Any
try:
from opentelemetry.sdk import trace
TracerProvider = trace.TracerProvider
SpanProcessor = trace.SpanProcessor
SynchronousMultiSpanProcessor = trace.SynchronousMultiSpanProcessor
except ImportError:
TracerProvider = Any
SpanProcessor = Any
SynchronousMultiSpanProcessor = Any
def _prepare_runnable_kwargs(
runnable_kwargs: Mapping[str, Any],
system_instruction: str,
runnable_name: str,
llm_config: Mapping[str, Any],
) -> Mapping[str, Any]:
"""Prepares the configuration for a runnable, applying defaults and enforcing constraints."""
if runnable_kwargs is None:
runnable_kwargs = {}
if (
"human_input_mode" in runnable_kwargs
and runnable_kwargs["human_input_mode"] != "NEVER"
):
from google.cloud.aiplatform import base
_LOGGER = base.Logger(__name__)
_LOGGER.warning(
f"human_input_mode={runnable_kwargs['human_input_mode']}"
"is not supported. Will be enforced to 'NEVER'."
)
runnable_kwargs["human_input_mode"] = "NEVER"
if "system_message" not in runnable_kwargs and system_instruction:
runnable_kwargs["system_message"] = system_instruction
if "name" not in runnable_kwargs:
runnable_kwargs["name"] = runnable_name
if "llm_config" not in runnable_kwargs:
runnable_kwargs["llm_config"] = llm_config
return runnable_kwargs
def _default_runnable_builder(
**runnable_kwargs: Any,
) -> "ConversableAgent":
from autogen import agentchat
return agentchat.ConversableAgent(**runnable_kwargs)
def _validate_callable_parameters_are_annotated(callable: Callable):
"""Validates that the parameters of the callable have type annotations.
This ensures that they can be used for constructing AG2 tools that are
usable with Gemini function calling.
"""
import inspect
parameters = dict(inspect.signature(callable).parameters)
for name, parameter in parameters.items():
if parameter.annotation == inspect.Parameter.empty:
raise TypeError(
f"Callable={callable.__name__} has untyped input_arg={name}. "
f"Please specify a type when defining it, e.g. `{name}: str`."
)
def _validate_tools(tools: Sequence[Callable[..., Any]]):
"""Validates that the tools are usable for tool calling."""
for tool in tools:
if isinstance(tool, Callable):
_validate_callable_parameters_are_annotated(tool)
def _override_active_span_processor(
tracer_provider: "TracerProvider",
active_span_processor: "SynchronousMultiSpanProcessor",
):
"""Overrides the active span processor.
When working with multiple AG2Agents in the same environment,
it's crucial to manage trace exports carefully.
Each agent needs its own span processor tied to a unique project ID.
While we add a new span processor for each agent, this can lead to
unexpected behavior.
For instance, with two agents linked to different projects, traces from the
second agent might be sent to both projects.
To prevent this and guarantee traces go to the correct project, we overwrite
the active span processor whenever a new AG2Agent is created.
Args:
tracer_provider (TracerProvider):
The tracer provider to use for the project.
active_span_processor (SynchronousMultiSpanProcessor):
The active span processor overrides the tracer provider's
active span processor.
"""
if tracer_provider._active_span_processor:
tracer_provider._active_span_processor.shutdown()
tracer_provider._active_span_processor = active_span_processor
class AG2Agent:
"""An AG2 Agent.
See https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/develop/ag2
for details.
"""
def __init__(
self,
model: str,
runnable_name: str,
*,
api_type: Optional[str] = None,
llm_config: Optional[Mapping[str, Any]] = None,
system_instruction: Optional[str] = None,
runnable_kwargs: Optional[Mapping[str, Any]] = None,
runnable_builder: Optional[Callable[..., "ConversableAgent"]] = None,
tools: Optional[Sequence[Callable[..., Any]]] = None,
enable_tracing: bool = False,
):
"""Initializes the AG2 Agent.
Under-the-hood, assuming .set_up() is called, this will correspond to
```python
# runnable_builder
runnable = runnable_builder(
llm_config=llm_config,
system_message=system_instruction,
**runnable_kwargs,
)
```
When everything is based on their default values, this corresponds to
```python
# llm_config
llm_config = {
"config_list": [{
"project_id": initializer.global_config.project,
"location": initializer.global_config.location,
"model": "gemini-1.0-pro-001",
"api_type": "google",
}]
}
# runnable_builder
runnable = ConversableAgent(
llm_config=llm_config,
name="Default AG2 Agent"
system_message="You are a helpful AI Assistant.",
human_input_mode="NEVER",
)
```
By default, if `llm_config` is not specified, a default configuration
will be created using the provided `model` and `api_type`.
If `runnable_builder` is not specified, a default runnable builder will
be used, configured with the `system_instruction`, `runnable_name` and
`runnable_kwargs`.
Args:
model (str):
Required. The name of the model (e.g. "gemini-1.0-pro").
Used to create a default `llm_config` if one is not provided.
This parameter is ignored if `llm_config` is provided.
runnable_name (str):
Required. The name of the runnable.
This name is used as the default `runnable_kwargs["name"]`
unless `runnable_kwargs` already contains a "name", in which
case the provided `runnable_kwargs["name"]` will be used.
api_type (str):
Optional. The API type to use for the language model.
Used to create a default `llm_config` if one is not provided.
This parameter is ignored if `llm_config` is provided.
llm_config (Mapping[str, Any]):
Optional. Configuration dictionary for the language model.
If provided, this configuration will be used directly.
Otherwise, a default `llm_config` will be created using `model`
and `api_type`. This `llm_config` is used as the default
`runnable_kwargs["llm_config"]` unless `runnable_kwargs` already
contains a "llm_config", in which case the provided
`runnable_kwargs["llm_config"]` will be used.
system_instruction (str):
Optional. The system instruction for the agent.
This instruction is used as the default
`runnable_kwargs["system_message"]` unless `runnable_kwargs`
already contains a "system_message", in which case the provided
`runnable_kwargs["system_message"]` will be used.
runnable_kwargs (Mapping[str, Any]):
Optional. Additional keyword arguments for the constructor of
the runnable. Details of the kwargs can be found in
https://docs.ag2.ai/docs/api-reference/autogen/ConversableAgent.
`runnable_kwargs` only supports `human_input_mode="NEVER"`.
Other `human_input_mode` values will trigger a warning.
runnable_builder (Callable[..., "ConversableAgent"]):
Optional. Callable that returns a new runnable. This can be used
for customizing the orchestration logic of the Agent.
If not provided, a default runnable builder will be used.
tools (Sequence[Callable[..., Any]]):
Optional. The tools for the agent to be able to use. All input
callables (e.g. function or class method) will be converted
to a AG2 tool . Defaults to None.
enable_tracing (bool):
Optional. Whether to enable tracing in Cloud Trace. Defaults to
False.
"""
from google.cloud.aiplatform import initializer
# Set up llm config.
self._project = initializer.global_config.project
self._location = initializer.global_config.location
self._model_name = model or "gemini-1.0-pro-001"
self._api_type = api_type or "google"
self._llm_config = llm_config or {
"config_list": [
{
"project_id": self._project,
"location": self._location,
"model": self._model_name,
"api_type": self._api_type,
}
]
}
self._system_instruction = system_instruction
self._runnable_name = runnable_name
self._runnable_kwargs = _prepare_runnable_kwargs(
runnable_kwargs=runnable_kwargs,
llm_config=self._llm_config,
system_instruction=self._system_instruction,
runnable_name=self._runnable_name,
)
self._tools = []
if tools:
# We validate tools at initialization for actionable feedback before
# they are deployed.
_validate_tools(tools)
self._tools = tools
self._ag2_tool_objects = []
self._runnable = None
self._runnable_builder = runnable_builder
self._instrumentor = None
self._enable_tracing = enable_tracing
def set_up(self):
"""Sets up the agent for execution of queries at runtime.
It initializes the runnable, binds the runnable with tools.
This method should not be called for an object that being passed to
the ReasoningEngine service for deployment, as it initializes clients
that can not be serialized.
"""
if self._enable_tracing:
from vertexai.reasoning_engines import _utils
cloud_trace_exporter = _utils._import_cloud_trace_exporter_or_warn()
cloud_trace_v2 = _utils._import_cloud_trace_v2_or_warn()
openinference_autogen = _utils._import_openinference_autogen_or_warn()
opentelemetry = _utils._import_opentelemetry_or_warn()
opentelemetry_sdk_trace = _utils._import_opentelemetry_sdk_trace_or_warn()
if all(
(
cloud_trace_exporter,
cloud_trace_v2,
openinference_autogen,
opentelemetry,
opentelemetry_sdk_trace,
)
):
import google.auth
credentials, _ = google.auth.default()
span_exporter = cloud_trace_exporter.CloudTraceSpanExporter(
project_id=self._project,
client=cloud_trace_v2.TraceServiceClient(
credentials=credentials.with_quota_project(self._project),
),
)
span_processor: SpanProcessor = (
opentelemetry_sdk_trace.export.SimpleSpanProcessor(
span_exporter=span_exporter,
)
)
tracer_provider: TracerProvider = (
opentelemetry.trace.get_tracer_provider()
)
# Get the appropriate tracer provider:
# 1. If _TRACER_PROVIDER is already set, use that.
# 2. Otherwise, if the OTEL_PYTHON_TRACER_PROVIDER environment
# variable is set, use that.
# 3. As a final fallback, use _PROXY_TRACER_PROVIDER.
# If none of the above is set, we log a warning, and
# create a tracer provider.
if not tracer_provider:
from google.cloud.aiplatform import base
_LOGGER = base.Logger(__name__)
_LOGGER.warning(
"No tracer provider. By default, "
"we should get one of the following providers: "
"OTEL_PYTHON_TRACER_PROVIDER, _TRACER_PROVIDER, "
"or _PROXY_TRACER_PROVIDER."
)
tracer_provider = opentelemetry_sdk_trace.TracerProvider()
opentelemetry.trace.set_tracer_provider(tracer_provider)
# Avoids AttributeError:
# 'ProxyTracerProvider' and 'NoOpTracerProvider' objects has no
# attribute 'add_span_processor'.
if _utils.is_noop_or_proxy_tracer_provider(tracer_provider):
tracer_provider = opentelemetry_sdk_trace.TracerProvider()
opentelemetry.trace.set_tracer_provider(tracer_provider)
# Avoids OpenTelemetry client already exists error.
_override_active_span_processor(
tracer_provider,
opentelemetry_sdk_trace.SynchronousMultiSpanProcessor(),
)
tracer_provider.add_span_processor(span_processor)
# Keep the instrumentation up-to-date.
# When creating multiple AG2Agents,
# we need to keep the instrumentation up-to-date.
# We deliberately override the instrument each time,
# so that if different agents end up using different
# instrumentations, we guarantee that the user is always
# working with the most recent agent's instrumentation.
self._instrumentor = openinference_autogen.AutogenInstrumentor()
self._instrumentor.uninstrument()
self._instrumentor.instrument()
else:
from google.cloud.aiplatform import base
_LOGGER = base.Logger(__name__)
_LOGGER.warning(
"enable_tracing=True but proceeding with tracing disabled "
"because not all packages for tracing have been installed"
)
# Set up tools.
if self._tools and not self._ag2_tool_objects:
from vertexai.reasoning_engines import _utils
autogen_tools = _utils._import_autogen_tools_or_warn()
if autogen_tools:
for tool in self._tools:
self._ag2_tool_objects.append(autogen_tools.Tool(func_or_tool=tool))
# Set up runnable.
runnable_builder = self._runnable_builder or _default_runnable_builder
self._runnable = runnable_builder(
**self._runnable_kwargs,
)
def clone(self) -> "AG2Agent":
"""Returns a clone of the AG2Agent."""
import copy
return AG2Agent(
model=self._model_name,
api_type=self._api_type,
llm_config=copy.deepcopy(self._llm_config),
system_instruction=self._system_instruction,
runnable_name=self._runnable_name,
tools=copy.deepcopy(self._tools),
runnable_kwargs=copy.deepcopy(self._runnable_kwargs),
runnable_builder=self._runnable_builder,
enable_tracing=self._enable_tracing,
)
def query(
self,
*,
input: Union[str, Mapping[str, Any]],
max_turns: Optional[int] = None,
**kwargs: Any,
) -> Dict[str, Any]:
"""Queries the Agent with the given input.
Args:
input (Union[str, Mapping[str, Any]]):
Required. The input to be passed to the Agent.
max_turns (int):
Optional. The maximum number of turns to run the agent for.
If not provided, the agent will run indefinitely.
If `max_turns` is a `float`, it will be converted to `int`
through rounding.
**kwargs:
Optional. Any additional keyword arguments to be passed to the
`.run()` method of the corresponding runnable.
Details of the kwargs can be found in
https://docs.ag2.ai/docs/api-reference/autogen/ConversableAgent#run.
The `user_input` parameter defaults to `False`, and should not
be passed through `kwargs`.
Returns:
The output of querying the Agent with the given input.
"""
if isinstance(input, str):
input = {"content": input}
if max_turns and isinstance(max_turns, float):
# Supporting auto-conversion float to int.
max_turns = round(max_turns)
if "user_input" in kwargs:
from google.cloud.aiplatform import base
_LOGGER = base.Logger(__name__)
_LOGGER.warning(
"The `user_input` parameter should not be passed through"
"kwargs. The `user_input` defaults to `False`."
)
kwargs.pop("user_input")
if not self._runnable:
self.set_up()
from vertexai.reasoning_engines import _utils
# `.run()` will return a `ChatResult` object, which is a dataclass.
# We need to convert it to a JSON-serializable object.
# More details of `ChatResult` can be found in
# https://docs.ag2.ai/docs/api-reference/autogen/ChatResult.
return _utils.dataclass_to_dict(
self._runnable.run(
input,
user_input=False,
tools=self._ag2_tool_objects,
max_turns=max_turns,
**kwargs,
)
)

View File

@@ -0,0 +1,643 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Iterable,
Mapping,
Optional,
Sequence,
Union,
)
if TYPE_CHECKING:
try:
from langchain_core import runnables
from langchain_core import tools as lc_tools
from langchain_core.language_models import base as lc_language_models
BaseTool = lc_tools.BaseTool
BaseLanguageModel = lc_language_models.BaseLanguageModel
GetSessionHistoryCallable = runnables.history.GetSessionHistoryCallable
RunnableConfig = runnables.RunnableConfig
RunnableSerializable = runnables.RunnableSerializable
except ImportError:
BaseTool = Any
BaseLanguageModel = Any
GetSessionHistoryCallable = Any
RunnableConfig = Any
RunnableSerializable = Any
try:
from langchain_google_vertexai.functions_utils import _ToolsType
_ToolLike = _ToolsType
except ImportError:
_ToolLike = Any
try:
from opentelemetry.sdk import trace
TracerProvider = trace.TracerProvider
SpanProcessor = trace.SpanProcessor
SynchronousMultiSpanProcessor = trace.SynchronousMultiSpanProcessor
except ImportError:
TracerProvider = Any
SpanProcessor = Any
SynchronousMultiSpanProcessor = Any
def _default_runnable_kwargs(has_history: bool) -> Mapping[str, Any]:
# https://github.com/langchain-ai/langchain/blob/5784dfed001730530637793bea1795d9d5a7c244/libs/core/langchain_core/runnables/history.py#L237-L241
runnable_kwargs = {
# input_messages_key (str): Must be specified if the underlying
# agent accepts a dict as input.
"input_messages_key": "input",
# output_messages_key (str): Must be specified if the underlying
# agent returns a dict as output.
"output_messages_key": "output",
}
if has_history:
# history_messages_key (str): Must be specified if the underlying
# agent accepts a dict as input and a separate key for historical
# messages.
runnable_kwargs["history_messages_key"] = "history"
return runnable_kwargs
def _default_output_parser():
try:
from langchain.agents.output_parsers.tools import ToolsAgentOutputParser
except (ModuleNotFoundError, ImportError):
# Fallback to an older version if needed.
from langchain.agents.output_parsers.openai_tools import (
OpenAIToolsAgentOutputParser as ToolsAgentOutputParser,
)
return ToolsAgentOutputParser()
def _default_model_builder(
model_name: str,
*,
project: str,
location: str,
model_kwargs: Optional[Mapping[str, Any]] = None,
) -> "BaseLanguageModel":
import vertexai
from google.cloud.aiplatform import initializer
from langchain_google_vertexai import ChatVertexAI
model_kwargs = model_kwargs or {}
current_project = initializer.global_config.project
current_location = initializer.global_config.location
vertexai.init(project=project, location=location)
model = ChatVertexAI(model_name=model_name, **model_kwargs)
vertexai.init(project=current_project, location=current_location)
return model
def _default_runnable_builder(
model: "BaseLanguageModel",
*,
system_instruction: Optional[str] = None,
tools: Optional[Sequence["_ToolLike"]] = None,
prompt: Optional["RunnableSerializable"] = None,
output_parser: Optional["RunnableSerializable"] = None,
chat_history: Optional["GetSessionHistoryCallable"] = None,
model_tool_kwargs: Optional[Mapping[str, Any]] = None,
agent_executor_kwargs: Optional[Mapping[str, Any]] = None,
runnable_kwargs: Optional[Mapping[str, Any]] = None,
) -> "RunnableSerializable":
from langchain_core import tools as lc_tools
from langchain.agents import AgentExecutor
from langchain.tools.base import StructuredTool
# The prompt template and runnable_kwargs needs to be customized depending
# on whether the user intends for the agent to have history. The way the
# user would reflect that is by setting chat_history (which defaults to
# None).
has_history: bool = chat_history is not None
prompt = prompt or _default_prompt(
has_history=has_history,
system_instruction=system_instruction,
)
output_parser = output_parser or _default_output_parser()
model_tool_kwargs = model_tool_kwargs or {}
agent_executor_kwargs = agent_executor_kwargs or {}
runnable_kwargs = runnable_kwargs or _default_runnable_kwargs(has_history)
if tools:
model = model.bind_tools(tools=tools, **model_tool_kwargs)
else:
tools = []
agent_executor = AgentExecutor(
agent=prompt | model | output_parser,
tools=[
tool
if isinstance(tool, lc_tools.BaseTool)
else StructuredTool.from_function(tool)
for tool in tools
if isinstance(tool, (Callable, lc_tools.BaseTool))
],
**agent_executor_kwargs,
)
if has_history:
from langchain_core.runnables.history import RunnableWithMessageHistory
return RunnableWithMessageHistory(
runnable=agent_executor,
get_session_history=chat_history,
**runnable_kwargs,
)
return agent_executor
def _default_prompt(
has_history: bool,
system_instruction: Optional[str] = None,
) -> "RunnableSerializable":
from langchain_core import prompts
try:
from langchain.agents.format_scratchpad.tools import format_to_tool_messages
except (ModuleNotFoundError, ImportError):
# Fallback to an older version if needed.
from langchain.agents.format_scratchpad.openai_tools import (
format_to_openai_tool_messages as format_to_tool_messages,
)
system_instructions = []
if system_instruction:
system_instructions = [("system", system_instruction)]
if has_history:
return {
"history": lambda x: x["history"],
"input": lambda x: x["input"],
"agent_scratchpad": (
lambda x: format_to_tool_messages(x["intermediate_steps"])
),
} | prompts.ChatPromptTemplate.from_messages(
system_instructions
+ [
prompts.MessagesPlaceholder(variable_name="history"),
("user", "{input}"),
prompts.MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
else:
return {
"input": lambda x: x["input"],
"agent_scratchpad": (
lambda x: format_to_tool_messages(x["intermediate_steps"])
),
} | prompts.ChatPromptTemplate.from_messages(
system_instructions
+ [
("user", "{input}"),
prompts.MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
def _validate_callable_parameters_are_annotated(callable: Callable):
"""Validates that the parameters of the callable have type annotations.
This ensures that they can be used for constructing LangChain tools that are
usable with Gemini function calling.
"""
import inspect
parameters = dict(inspect.signature(callable).parameters)
for name, parameter in parameters.items():
if parameter.annotation == inspect.Parameter.empty:
raise TypeError(
f"Callable={callable.__name__} has untyped input_arg={name}. "
f"Please specify a type when defining it, e.g. `{name}: str`."
)
def _validate_tools(tools: Sequence["_ToolLike"]):
"""Validates that the tools are usable for tool calling."""
for tool in tools:
if isinstance(tool, Callable):
_validate_callable_parameters_are_annotated(tool)
def _override_active_span_processor(
tracer_provider: "TracerProvider",
active_span_processor: "SynchronousMultiSpanProcessor",
):
"""Overrides the active span processor.
When working with multiple LangchainAgents in the same environment,
it's crucial to manage trace exports carefully.
Each agent needs its own span processor tied to a unique project ID.
While we add a new span processor for each agent, this can lead to
unexpected behavior.
For instance, with two agents linked to different projects, traces from the
second agent might be sent to both projects.
To prevent this and guarantee traces go to the correct project, we overwrite
the active span processor whenever a new LangchainAgent is created.
Args:
tracer_provider (TracerProvider):
The tracer provider to use for the project.
active_span_processor (SynchronousMultiSpanProcessor):
The active span processor overrides the tracer provider's
active span processor.
"""
if tracer_provider._active_span_processor:
tracer_provider._active_span_processor.shutdown()
tracer_provider._active_span_processor = active_span_processor
class LangchainAgent:
"""A Langchain Agent.
See https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/develop/langchain
for details.
"""
def __init__(
self,
model: str,
*,
system_instruction: Optional[str] = None,
prompt: Optional["RunnableSerializable"] = None,
tools: Optional[Sequence["_ToolLike"]] = None,
output_parser: Optional["RunnableSerializable"] = None,
chat_history: Optional["GetSessionHistoryCallable"] = None,
model_kwargs: Optional[Mapping[str, Any]] = None,
model_tool_kwargs: Optional[Mapping[str, Any]] = None,
agent_executor_kwargs: Optional[Mapping[str, Any]] = None,
runnable_kwargs: Optional[Mapping[str, Any]] = None,
model_builder: Optional[Callable] = None,
runnable_builder: Optional[Callable] = None,
enable_tracing: bool = False,
):
"""Initializes the LangchainAgent.
Under-the-hood, assuming .set_up() is called, this will correspond to
```
model = model_builder(model_name=model, model_kwargs=model_kwargs)
runnable = runnable_builder(
prompt=prompt,
model=model,
tools=tools,
output_parser=output_parser,
chat_history=chat_history,
agent_executor_kwargs=agent_executor_kwargs,
runnable_kwargs=runnable_kwargs,
)
```
When everything is based on their default values, this corresponds to
```
# model_builder
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model_name=model, **model_kwargs)
# runnable_builder
from langchain import agents
from langchain_core.runnables.history import RunnableWithMessageHistory
llm_with_tools = llm.bind_tools(tools=tools, **model_tool_kwargs)
agent_executor = agents.AgentExecutor(
agent=prompt | llm_with_tools | output_parser,
tools=tools,
**agent_executor_kwargs,
)
runnable = RunnableWithMessageHistory(
runnable=agent_executor,
get_session_history=chat_history,
**runnable_kwargs,
)
```
Args:
model (str):
Optional. The name of the model (e.g. "gemini-1.0-pro").
system_instruction (str):
Optional. The system instruction to use for the agent. This
argument should not be specified if `prompt` is specified.
prompt (langchain_core.runnables.RunnableSerializable):
Optional. The prompt template for the model. Defaults to a
ChatPromptTemplate.
tools (Sequence[langchain_core.tools.BaseTool, Callable]):
Optional. The tools for the agent to be able to use. All input
callables (e.g. function or class method) will be converted
to a langchain.tools.base.StructuredTool. Defaults to None.
output_parser (langchain_core.runnables.RunnableSerializable):
Optional. The output parser for the model. Defaults to an
output parser that works with Gemini function-calling.
chat_history (langchain_core.runnables.history.GetSessionHistoryCallable):
Optional. Callable that returns a new BaseChatMessageHistory.
Defaults to None, i.e. chat_history is not preserved.
model_kwargs (Mapping[str, Any]):
Optional. Additional keyword arguments for the constructor of
chat_models.ChatVertexAI. An example would be
```
{
# temperature (float): Sampling temperature, it controls the
# degree of randomness in token selection.
"temperature": 0.28,
# max_output_tokens (int): Token limit determines the
# maximum amount of text output from one prompt.
"max_output_tokens": 1000,
# top_p (float): Tokens are selected from most probable to
# least, until the sum of their probabilities equals the
# top_p value.
"top_p": 0.95,
# top_k (int): How the model selects tokens for output, the
# next token is selected from among the top_k most probable
# tokens.
"top_k": 40,
}
```
model_tool_kwargs (Mapping[str, Any]):
Optional. Additional keyword arguments when binding tools to the
model using `model.bind_tools()`.
agent_executor_kwargs (Mapping[str, Any]):
Optional. Additional keyword arguments for the constructor of
langchain.agents.AgentExecutor. An example would be
```
{
# Whether to return the agent's trajectory of intermediate
# steps at the end in addition to the final output.
"return_intermediate_steps": False,
# The maximum number of steps to take before ending the
# execution loop.
"max_iterations": 15,
# The method to use for early stopping if the agent never
# returns `AgentFinish`. Either 'force' or 'generate'.
"early_stopping_method": "force",
# How to handle errors raised by the agent's output parser.
# Defaults to `False`, which raises the error.
"handle_parsing_errors": False,
}
```
runnable_kwargs (Mapping[str, Any]):
Optional. Additional keyword arguments for the constructor of
langchain.runnables.history.RunnableWithMessageHistory if
chat_history is specified. If chat_history is None, this will be
ignored.
model_builder (Callable):
Optional. Callable that returns a new language model. Defaults
to a a callable that returns ChatVertexAI based on `model`,
`model_kwargs` and the parameters in `vertexai.init`.
runnable_builder (Callable):
Optional. Callable that returns a new runnable. This can be used
for customizing the orchestration logic of the Agent based on
the model returned by `model_builder` and the rest of the input
arguments.
enable_tracing (bool):
Optional. Whether to enable tracing in Cloud Trace. Defaults to
False.
Raises:
ValueError: If both `prompt` and `system_instruction` are specified.
TypeError: If there is an invalid tool (e.g. function with an input
that did not specify its type).
"""
from google.cloud.aiplatform import initializer
self._project = initializer.global_config.project
self._location = initializer.global_config.location
self._tools = []
if tools:
# We validate tools at initialization for actionable feedback before
# they are deployed.
_validate_tools(tools)
self._tools = tools
if prompt and system_instruction:
raise ValueError(
"Only one of `prompt` or `system_instruction` should be specified. "
"Consider incorporating the system instruction into the prompt "
"rather than passing it separately as an argument."
)
self._model_name = model
self._system_instruction = system_instruction
self._prompt = prompt
self._output_parser = output_parser
self._chat_history = chat_history
self._model_kwargs = model_kwargs
self._model_tool_kwargs = model_tool_kwargs
self._agent_executor_kwargs = agent_executor_kwargs
self._runnable_kwargs = runnable_kwargs
self._model = None
self._model_builder = model_builder
self._runnable = None
self._runnable_builder = runnable_builder
self._instrumentor = None
self._enable_tracing = enable_tracing
def set_up(self):
"""Sets up the agent for execution of queries at runtime.
It initializes the model, binds the model with tools, and connects it
with the prompt template and output parser.
This method should not be called for an object that being passed to
the ReasoningEngine service for deployment, as it initializes clients
that can not be serialized.
"""
if self._enable_tracing:
from vertexai.reasoning_engines import _utils
cloud_trace_exporter = _utils._import_cloud_trace_exporter_or_warn()
cloud_trace_v2 = _utils._import_cloud_trace_v2_or_warn()
openinference_langchain = _utils._import_openinference_langchain_or_warn()
opentelemetry = _utils._import_opentelemetry_or_warn()
opentelemetry_sdk_trace = _utils._import_opentelemetry_sdk_trace_or_warn()
if all(
(
cloud_trace_exporter,
cloud_trace_v2,
openinference_langchain,
opentelemetry,
opentelemetry_sdk_trace,
)
):
import google.auth
credentials, _ = google.auth.default()
span_exporter = cloud_trace_exporter.CloudTraceSpanExporter(
project_id=self._project,
client=cloud_trace_v2.TraceServiceClient(
credentials=credentials.with_quota_project(self._project),
),
)
span_processor: SpanProcessor = (
opentelemetry_sdk_trace.export.SimpleSpanProcessor(
span_exporter=span_exporter,
)
)
tracer_provider: TracerProvider = (
opentelemetry.trace.get_tracer_provider()
)
# Get the appropriate tracer provider:
# 1. If _TRACER_PROVIDER is already set, use that.
# 2. Otherwise, if the OTEL_PYTHON_TRACER_PROVIDER environment
# variable is set, use that.
# 3. As a final fallback, use _PROXY_TRACER_PROVIDER.
# If none of the above is set, we log a warning, and
# create a tracer provider.
if not tracer_provider:
from google.cloud.aiplatform import base
_LOGGER = base.Logger(__name__)
_LOGGER.warning(
"No tracer provider. By default, "
"we should get one of the following providers: "
"OTEL_PYTHON_TRACER_PROVIDER, _TRACER_PROVIDER, "
"or _PROXY_TRACER_PROVIDER."
)
tracer_provider = opentelemetry_sdk_trace.TracerProvider()
opentelemetry.trace.set_tracer_provider(tracer_provider)
# Avoids AttributeError:
# 'ProxyTracerProvider' and 'NoOpTracerProvider' objects has no
# attribute 'add_span_processor'.
if _utils.is_noop_or_proxy_tracer_provider(tracer_provider):
tracer_provider = opentelemetry_sdk_trace.TracerProvider()
opentelemetry.trace.set_tracer_provider(tracer_provider)
# Avoids OpenTelemetry client already exists error.
_override_active_span_processor(
tracer_provider,
opentelemetry_sdk_trace.SynchronousMultiSpanProcessor(),
)
tracer_provider.add_span_processor(span_processor)
# Keep the instrumentation up-to-date.
# When creating multiple LangchainAgents,
# we need to keep the instrumentation up-to-date.
# We deliberately override the instrument each time,
# so that if different agents end up using different
# instrumentations, we guarantee that the user is always
# working with the most recent agent's instrumentation.
self._instrumentor = openinference_langchain.LangChainInstrumentor()
if self._instrumentor.is_instrumented_by_opentelemetry:
self._instrumentor.uninstrument()
self._instrumentor.instrument()
else:
from google.cloud.aiplatform import base
_LOGGER = base.Logger(__name__)
_LOGGER.warning(
"enable_tracing=True but proceeding with tracing disabled "
"because not all packages for tracing have been installed"
)
model_builder = self._model_builder or _default_model_builder
self._model = model_builder(
model_name=self._model_name,
model_kwargs=self._model_kwargs,
project=self._project,
location=self._location,
)
runnable_builder = self._runnable_builder or _default_runnable_builder
self._runnable = runnable_builder(
prompt=self._prompt,
model=self._model,
tools=self._tools,
system_instruction=self._system_instruction,
output_parser=self._output_parser,
chat_history=self._chat_history,
model_tool_kwargs=self._model_tool_kwargs,
agent_executor_kwargs=self._agent_executor_kwargs,
runnable_kwargs=self._runnable_kwargs,
)
def clone(self) -> "LangchainAgent":
"""Returns a clone of the LangchainAgent."""
import copy
return LangchainAgent(
model=self._model_name,
system_instruction=self._system_instruction,
prompt=copy.deepcopy(self._prompt),
tools=copy.deepcopy(self._tools),
output_parser=copy.deepcopy(self._output_parser),
chat_history=copy.deepcopy(self._chat_history),
model_kwargs=copy.deepcopy(self._model_kwargs),
model_tool_kwargs=copy.deepcopy(self._model_tool_kwargs),
agent_executor_kwargs=copy.deepcopy(self._agent_executor_kwargs),
runnable_kwargs=copy.deepcopy(self._runnable_kwargs),
model_builder=self._model_builder,
runnable_builder=self._runnable_builder,
enable_tracing=self._enable_tracing,
)
def query(
self,
*,
input: Union[str, Mapping[str, Any]],
config: Optional["RunnableConfig"] = None,
**kwargs: Any,
) -> Dict[str, Any]:
"""Queries the Agent with the given input and config.
Args:
input (Union[str, Mapping[str, Any]]):
Required. The input to be passed to the Agent.
config (langchain_core.runnables.RunnableConfig):
Optional. The config (if any) to be used for invoking the Agent.
**kwargs:
Optional. Any additional keyword arguments to be passed to the
`.invoke()` method of the corresponding AgentExecutor.
Returns:
The output of querying the Agent with the given input and config.
"""
from langchain.load import dump as langchain_load_dump
if isinstance(input, str):
input = {"input": input}
if not self._runnable:
self.set_up()
return langchain_load_dump.dumpd(
self._runnable.invoke(input=input, config=config, **kwargs)
)
def stream_query(
self,
*,
input: Union[str, Mapping[str, Any]],
config: Optional["RunnableConfig"] = None,
**kwargs,
) -> Iterable[Any]:
"""Stream queries the Agent with the given input and config.
Args:
input (Union[str, Mapping[str, Any]]):
Required. The input to be passed to the Agent.
config (langchain_core.runnables.RunnableConfig):
Optional. The config (if any) to be used for invoking the Agent.
**kwargs:
Optional. Any additional keyword arguments to be passed to the
`.invoke()` method of the corresponding AgentExecutor.
Yields:
The output of querying the Agent with the given input and config.
"""
from langchain.load import dump as langchain_load_dump
if isinstance(input, str):
input = {"input": input}
if not self._runnable:
self.set_up()
for chunk in self._runnable.stream(input=input, config=config, **kwargs):
yield langchain_load_dump.dumpd(chunk)

View File

@@ -0,0 +1,658 @@
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Iterable,
Mapping,
Optional,
Sequence,
Union,
)
if TYPE_CHECKING:
try:
from langchain_core import runnables
from langchain_core import tools as lc_tools
from langchain_core.language_models import base as lc_language_models
BaseTool = lc_tools.BaseTool
BaseLanguageModel = lc_language_models.BaseLanguageModel
RunnableConfig = runnables.RunnableConfig
RunnableSerializable = runnables.RunnableSerializable
except ImportError:
BaseTool = Any
BaseLanguageModel = Any
RunnableConfig = Any
RunnableSerializable = Any
try:
from langchain_google_vertexai.functions_utils import _ToolsType
_ToolLike = _ToolsType
except ImportError:
_ToolLike = Any
try:
from opentelemetry.sdk import trace
TracerProvider = trace.TracerProvider
SpanProcessor = trace.SpanProcessor
SynchronousMultiSpanProcessor = trace.SynchronousMultiSpanProcessor
except ImportError:
TracerProvider = Any
SpanProcessor = Any
SynchronousMultiSpanProcessor = Any
try:
from langgraph_checkpoint.checkpoint import base
BaseCheckpointSaver = base.BaseCheckpointSaver
except ImportError:
try:
from langgraph.checkpoint import base
BaseCheckpointSaver = base.BaseCheckpointSaver
except ImportError:
BaseCheckpointSaver = Any
def _default_model_builder(
model_name: str,
*,
project: str,
location: str,
model_kwargs: Optional[Mapping[str, Any]] = None,
) -> "BaseLanguageModel":
"""Default callable for building a language model.
Args:
model_name (str):
Required. The name of the model (e.g. "gemini-1.0-pro").
project (str):
Required. The Google Cloud project ID.
location (str):
Required. The Google Cloud location.
model_kwargs (Mapping[str, Any]):
Optional. Additional keyword arguments for the constructor of
chat_models.ChatVertexAI.
Returns:
BaseLanguageModel: The language model.
"""
import vertexai
from google.cloud.aiplatform import initializer
from langchain_google_vertexai import ChatVertexAI
model_kwargs = model_kwargs or {}
current_project = initializer.global_config.project
current_location = initializer.global_config.location
vertexai.init(project=project, location=location)
model = ChatVertexAI(model_name=model_name, **model_kwargs)
vertexai.init(project=current_project, location=current_location)
return model
def _default_runnable_builder(
model: "BaseLanguageModel",
*,
tools: Optional[Sequence["_ToolLike"]] = None,
checkpointer: Optional[Any] = None,
model_tool_kwargs: Optional[Mapping[str, Any]] = None,
runnable_kwargs: Optional[Mapping[str, Any]] = None,
) -> "RunnableSerializable":
"""Default callable for building a runnable.
Args:
model (BaseLanguageModel):
Required. The language model.
tools (Optional[Sequence[_ToolLike]]):
Optional. The tools for the agent to be able to use.
checkpointer (Optional[Checkpointer]):
Optional. The checkpointer for the agent.
model_tool_kwargs (Optional[Mapping[str, Any]]):
Optional. Additional keyword arguments when binding tools to the model.
runnable_kwargs (Optional[Mapping[str, Any]]):
Optional. Additional keyword arguments for the runnable.
Returns:
RunnableSerializable: The runnable.
"""
from langgraph import prebuilt as langgraph_prebuilt
model_tool_kwargs = model_tool_kwargs or {}
runnable_kwargs = runnable_kwargs or {}
if tools:
model = model.bind_tools(tools=tools, **model_tool_kwargs)
else:
tools = []
if checkpointer:
if "checkpointer" in runnable_kwargs:
from google.cloud.aiplatform import base
base.Logger(__name__).warning(
"checkpointer is being specified in both checkpointer_builder "
"and runnable_kwargs. Please specify it in only one of them. "
"Overriding the checkpointer in runnable_kwargs."
)
runnable_kwargs["checkpointer"] = checkpointer
return langgraph_prebuilt.create_react_agent(
model,
tools=tools,
**runnable_kwargs,
)
def _validate_callable_parameters_are_annotated(callable: Callable):
"""Validates that the parameters of the callable have type annotations.
This ensures that they can be used for constructing LangChain tools that are
usable with Gemini function calling.
Args:
callable (Callable): The callable to validate.
Raises:
TypeError: If any parameter is not annotated.
"""
import inspect
parameters = dict(inspect.signature(callable).parameters)
for name, parameter in parameters.items():
if parameter.annotation == inspect.Parameter.empty:
raise TypeError(
f"Callable={callable.__name__} has untyped input_arg={name}. "
f"Please specify a type when defining it, e.g. `{name}: str`."
)
def _validate_tools(tools: Sequence["_ToolLike"]):
"""Validates that the tools are usable for tool calling.
Args:
tools (Sequence[_ToolLike]): The tools to validate.
Raises:
TypeError: If any tool is a callable with untyped parameters.
"""
for tool in tools:
if isinstance(tool, Callable):
_validate_callable_parameters_are_annotated(tool)
def _override_active_span_processor(
tracer_provider: "TracerProvider",
active_span_processor: "SynchronousMultiSpanProcessor",
):
"""Overrides the active span processor.
When working with multiple LangchainAgents in the same environment,
it's crucial to manage trace exports carefully.
Each agent needs its own span processor tied to a unique project ID.
While we add a new span processor for each agent, this can lead to
unexpected behavior.
For instance, with two agents linked to different projects, traces from the
second agent might be sent to both projects.
To prevent this and guarantee traces go to the correct project, we overwrite
the active span processor whenever a new LangchainAgent is created.
Args:
tracer_provider (TracerProvider):
The tracer provider to use for the project.
active_span_processor (SynchronousMultiSpanProcessor):
The active span processor overrides the tracer provider's
active span processor.
"""
if tracer_provider._active_span_processor:
tracer_provider._active_span_processor.shutdown()
tracer_provider._active_span_processor = active_span_processor
class LanggraphAgent:
"""A LangGraph Agent.
See https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/develop/langgraph
for details.
"""
def __init__(
self,
model: str,
*,
tools: Optional[Sequence["_ToolLike"]] = None,
model_kwargs: Optional[Mapping[str, Any]] = None,
model_tool_kwargs: Optional[Mapping[str, Any]] = None,
model_builder: Optional[Callable[..., "BaseLanguageModel"]] = None,
runnable_kwargs: Optional[Mapping[str, Any]] = None,
runnable_builder: Optional[Callable[..., "RunnableSerializable"]] = None,
checkpointer_kwargs: Optional[Mapping[str, Any]] = None,
checkpointer_builder: Optional[Callable[..., "BaseCheckpointSaver"]] = None,
enable_tracing: bool = False,
):
"""Initializes the LangGraph Agent.
Under-the-hood, assuming .set_up() is called, this will correspond to
```python
model = model_builder(model_name=model, model_kwargs=model_kwargs)
runnable = runnable_builder(
model=model,
tools=tools,
model_tool_kwargs=model_tool_kwargs,
runnable_kwargs=runnable_kwargs,
)
```
When everything is based on their default values, this corresponds to
```python
# model_builder
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model_name=model, **model_kwargs)
# runnable_builder
from langgraph.prebuilt import create_react_agent
llm_with_tools = llm.bind_tools(tools=tools, **model_tool_kwargs)
runnable = create_react_agent(
llm_with_tools,
tools=tools,
**runnable_kwargs,
)
```
By default, no checkpointer is used (i.e. there is no state history). To
enable checkpointing, provide a `checkpointer_builder` function that
returns a checkpointer instance.
**Example using Spanner:**
```python
def checkpointer_builder(instance_id, database_id, project_id, **kwargs):
from langchain_google_spanner import SpannerCheckpointSaver
checkpointer = SpannerCheckpointSaver(instance_id, database_id, project_id)
with checkpointer.cursor() as cur:
cur.execute("DROP TABLE IF EXISTS checkpoints")
cur.execute("DROP TABLE IF EXISTS checkpoint_writes")
checkpointer.setup()
return checkpointer
```
**Example using an in-memory checkpointer:**
```python
def checkpointer_builder(**kwargs):
from langgraph.checkpoint.memory import MemorySaver
return MemorySaver()
```
The `checkpointer_builder` function will be called with any keyword
arguments passed to the agent's constructor. Ensure your
`checkpointer_builder` function accepts `**kwargs` to handle these
arguments, even if unused.
Args:
model (str):
Optional. The name of the model (e.g. "gemini-1.0-pro").
tools (Sequence[langchain_core.tools.BaseTool, Callable]):
Optional. The tools for the agent to be able to use. All input
callables (e.g. function or class method) will be converted
to a langchain.tools.base.StructuredTool. Defaults to None.
model_kwargs (Mapping[str, Any]):
Optional. Additional keyword arguments for the constructor of
chat_models.ChatVertexAI. An example would be
```
{
# temperature (float): Sampling temperature, it controls the
# degree of randomness in token selection.
"temperature": 0.28,
# max_output_tokens (int): Token limit determines the
# maximum amount of text output from one prompt.
"max_output_tokens": 1000,
# top_p (float): Tokens are selected from most probable to
# least, until the sum of their probabilities equals the
# top_p value.
"top_p": 0.95,
# top_k (int): How the model selects tokens for output, the
# next token is selected from among the top_k most probable
# tokens.
"top_k": 40,
}
```
model_tool_kwargs (Mapping[str, Any]):
Optional. Additional keyword arguments when binding tools to the
model using `model.bind_tools()`.
model_builder (Callable[..., "BaseLanguageModel"]):
Optional. Callable that returns a new language model. Defaults
to a a callable that returns ChatVertexAI based on `model`,
`model_kwargs` and the parameters in `vertexai.init`.
runnable_kwargs (Mapping[str, Any]):
Optional. Additional keyword arguments for the constructor of
langchain.runnables.history.RunnableWithMessageHistory if
chat_history is specified. If chat_history is None, this will be
ignored.
runnable_builder (Callable[..., "RunnableSerializable"]):
Optional. Callable that returns a new runnable. This can be used
for customizing the orchestration logic of the Agent based on
the model returned by `model_builder` and the rest of the input
arguments.
checkpointer_kwargs (Mapping[str, Any]):
Optional. Additional keyword arguments for the constructor of
the checkpointer returned by `checkpointer_builder`.
checkpointer_builder (Callable[..., "BaseCheckpointSaver"]):
Optional. Callable that returns a checkpointer. This can be used
for defining the checkpointer of the Agent. Defaults to None.
enable_tracing (bool):
Optional. Whether to enable tracing in Cloud Trace. Defaults to
False.
Raises:
TypeError: If there is an invalid tool (e.g. function with an input
that did not specify its type).
"""
from google.cloud.aiplatform import initializer
self._project = initializer.global_config.project
self._location = initializer.global_config.location
self._tools = []
if tools:
# We validate tools at initialization for actionable feedback before
# they are deployed.
_validate_tools(tools)
self._tools = tools
self._model_name = model
self._model_kwargs = model_kwargs
self._model_tool_kwargs = model_tool_kwargs
self._runnable_kwargs = runnable_kwargs
self._checkpointer_kwargs = checkpointer_kwargs
self._model = None
self._model_builder = model_builder
self._runnable = None
self._runnable_builder = runnable_builder
self._checkpointer_builder = checkpointer_builder
self._instrumentor = None
self._enable_tracing = enable_tracing
def set_up(self):
"""Sets up the agent for execution of queries at runtime.
It initializes the model, binds the model with tools, and connects it
with the prompt template and output parser.
This method should not be called for an object that being passed to
the ReasoningEngine service for deployment, as it initializes clients
that can not be serialized.
"""
if self._enable_tracing:
from vertexai.reasoning_engines import _utils
cloud_trace_exporter = _utils._import_cloud_trace_exporter_or_warn()
cloud_trace_v2 = _utils._import_cloud_trace_v2_or_warn()
openinference_langchain = _utils._import_openinference_langchain_or_warn()
opentelemetry = _utils._import_opentelemetry_or_warn()
opentelemetry_sdk_trace = _utils._import_opentelemetry_sdk_trace_or_warn()
if all(
(
cloud_trace_exporter,
cloud_trace_v2,
openinference_langchain,
opentelemetry,
opentelemetry_sdk_trace,
)
):
import google.auth
credentials, _ = google.auth.default()
span_exporter = cloud_trace_exporter.CloudTraceSpanExporter(
project_id=self._project,
client=cloud_trace_v2.TraceServiceClient(
credentials=credentials.with_quota_project(self._project),
),
)
span_processor: SpanProcessor = (
opentelemetry_sdk_trace.export.SimpleSpanProcessor(
span_exporter=span_exporter,
)
)
tracer_provider: TracerProvider = (
opentelemetry.trace.get_tracer_provider()
)
# Get the appropriate tracer provider:
# 1. If _TRACER_PROVIDER is already set, use that.
# 2. Otherwise, if the OTEL_PYTHON_TRACER_PROVIDER environment
# variable is set, use that.
# 3. As a final fallback, use _PROXY_TRACER_PROVIDER.
# If none of the above is set, we log a warning, and
# create a tracer provider.
if not tracer_provider:
from google.cloud.aiplatform import base
base.Logger(__name__).warning(
"No tracer provider. By default, "
"we should get one of the following providers: "
"OTEL_PYTHON_TRACER_PROVIDER, _TRACER_PROVIDER, "
"or _PROXY_TRACER_PROVIDER."
)
tracer_provider = opentelemetry_sdk_trace.TracerProvider()
opentelemetry.trace.set_tracer_provider(tracer_provider)
# Avoids AttributeError:
# 'ProxyTracerProvider' and 'NoOpTracerProvider' objects has no
# attribute 'add_span_processor'.
if _utils.is_noop_or_proxy_tracer_provider(tracer_provider):
tracer_provider = opentelemetry_sdk_trace.TracerProvider()
opentelemetry.trace.set_tracer_provider(tracer_provider)
# Avoids OpenTelemetry client already exists error.
_override_active_span_processor(
tracer_provider,
opentelemetry_sdk_trace.SynchronousMultiSpanProcessor(),
)
tracer_provider.add_span_processor(span_processor)
# Keep the instrumentation up-to-date.
# When creating multiple LangchainAgents,
# we need to keep the instrumentation up-to-date.
# We deliberately override the instrument each time,
# so that if different agents end up using different
# instrumentations, we guarantee that the user is always
# working with the most recent agent's instrumentation.
self._instrumentor = openinference_langchain.LangChainInstrumentor()
if self._instrumentor.is_instrumented_by_opentelemetry:
self._instrumentor.uninstrument()
self._instrumentor.instrument()
else:
from google.cloud.aiplatform import base
_LOGGER = base.Logger(__name__)
_LOGGER.warning(
"enable_tracing=True but proceeding with tracing disabled "
"because not all packages for tracing have been installed"
)
model_builder = self._model_builder or _default_model_builder
self._model = model_builder(
model_name=self._model_name,
model_kwargs=self._model_kwargs,
project=self._project,
location=self._location,
)
self._checkpointer = None
if self._checkpointer_builder:
checkpointer_kwargs = self._checkpointer_kwargs or {}
self._checkpointer = self._checkpointer_builder(
**checkpointer_kwargs,
)
runnable_builder = self._runnable_builder or _default_runnable_builder
self._runnable = runnable_builder(
model=self._model,
tools=self._tools,
checkpointer=self._checkpointer,
model_tool_kwargs=self._model_tool_kwargs,
runnable_kwargs=self._runnable_kwargs,
)
def clone(self) -> "LanggraphAgent":
"""Returns a clone of the LanggraphAgent."""
import copy
return LanggraphAgent(
model=self._model_name,
tools=copy.deepcopy(self._tools),
model_kwargs=copy.deepcopy(self._model_kwargs),
model_tool_kwargs=copy.deepcopy(self._model_tool_kwargs),
runnable_kwargs=copy.deepcopy(self._runnable_kwargs),
checkpointer_kwargs=copy.deepcopy(self._checkpointer_kwargs),
model_builder=self._model_builder,
runnable_builder=self._runnable_builder,
checkpointer_builder=self._checkpointer_builder,
enable_tracing=self._enable_tracing,
)
def query(
self,
*,
input: Union[str, Mapping[str, Any]],
config: Optional["RunnableConfig"] = None,
**kwargs: Any,
) -> Dict[str, Any]:
"""Queries the Agent with the given input and config.
Args:
input (Union[str, Mapping[str, Any]]):
Required. The input to be passed to the Agent.
config (langchain_core.runnables.RunnableConfig):
Optional. The config (if any) to be used for invoking the Agent.
**kwargs:
Optional. Any additional keyword arguments to be passed to the
`.invoke()` method of the corresponding AgentExecutor.
Returns:
The output of querying the Agent with the given input and config.
"""
from langchain.load import dump as langchain_load_dump
if isinstance(input, str):
input = {"input": input}
if not self._runnable:
self.set_up()
return langchain_load_dump.dumpd(
self._runnable.invoke(input=input, config=config, **kwargs)
)
def stream_query(
self,
*,
input: Union[str, Mapping[str, Any]],
config: Optional["RunnableConfig"] = None,
**kwargs,
) -> Iterable[Any]:
"""Stream queries the Agent with the given input and config.
Args:
input (Union[str, Mapping[str, Any]]):
Required. The input to be passed to the Agent.
config (langchain_core.runnables.RunnableConfig):
Optional. The config (if any) to be used for invoking the Agent.
**kwargs:
Optional. Any additional keyword arguments to be passed to the
`.invoke()` method of the corresponding AgentExecutor.
Yields:
The output of querying the Agent with the given input and config.
"""
from langchain.load import dump as langchain_load_dump
if isinstance(input, str):
input = {"input": input}
if not self._runnable:
self.set_up()
for chunk in self._runnable.stream(input=input, config=config, **kwargs):
yield langchain_load_dump.dumpd(chunk)
def get_state_history(
self,
config: Optional["RunnableConfig"] = None,
**kwargs: Any,
) -> Iterable[Any]:
"""Gets the state history of the Agent.
Args:
config (Optional[RunnableConfig]):
Optional. The config for invoking the Agent.
**kwargs:
Optional. Additional keyword arguments for the `.invoke()` method.
Yields:
Dict[str, Any]: The state history of the Agent.
"""
if not self._runnable:
self.set_up()
for state_snapshot in self._runnable.get_state_history(config=config, **kwargs):
yield state_snapshot._asdict()
def get_state(
self,
config: Optional["RunnableConfig"] = None,
**kwargs: Any,
) -> Dict[str, Any]:
"""Gets the current state of the Agent.
Args:
config (Optional[RunnableConfig]):
Optional. The config for invoking the Agent.
**kwargs:
Optional. Additional keyword arguments for the `.invoke()` method.
Returns:
Dict[str, Any]: The current state of the Agent.
"""
if not self._runnable:
self.set_up()
return self._runnable.get_state(config=config, **kwargs)._asdict()
def update_state(
self,
config: Optional["RunnableConfig"] = None,
**kwargs: Any,
) -> Dict[str, Any]:
"""Updates the state of the Agent.
Args:
config (Optional[RunnableConfig]):
Optional. The config for invoking the Agent.
**kwargs:
Optional. Additional keyword arguments for the `.invoke()` method.
Returns:
Dict[str, Any]: The updated state of the Agent.
"""
if not self._runnable:
self.set_up()
return self._runnable.update_state(config=config, **kwargs)
def register_operations(self) -> Mapping[str, Sequence[str]]:
"""Registers the operations of the Agent.
This mapping defines how different operation modes (e.g., "", "stream")
are implemented by specific methods of the Agent. The "default" mode,
represented by the empty string ``, is associated with the `query` API,
while the "stream" mode is associated with the `stream_query` API.
Returns:
Mapping[str, Sequence[str]]: A mapping of operation modes to a list
of method names that implement those operation modes.
"""
return {
"": ["query", "get_state", "update_state"],
"stream": ["stream_query", "get_state_history"],
}

View File

@@ -0,0 +1,553 @@
# -*- coding: utf-8 -*-
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Mapping,
Optional,
Sequence,
Union,
)
if TYPE_CHECKING:
try:
from llama_index.core.base.query_pipeline import query
from llama_index.core.llms import function_calling
from llama_index.core import query_pipeline
FunctionCallingLLM = function_calling.FunctionCallingLLM
QueryComponent = query.QUERY_COMPONENT_TYPE
QueryPipeline = query_pipeline.QueryPipeline
except ImportError:
FunctionCallingLLM = Any
QueryComponent = Any
QueryPipeline = Any
try:
from opentelemetry.sdk import trace
TracerProvider = trace.TracerProvider
SpanProcessor = trace.SpanProcessor
SynchronousMultiSpanProcessor = trace.SynchronousMultiSpanProcessor
except ImportError:
TracerProvider = Any
SpanProcessor = Any
SynchronousMultiSpanProcessor = Any
def _default_model_builder(
model_name: str,
*,
project: str,
location: str,
model_kwargs: Optional[Mapping[str, Any]] = None,
) -> "FunctionCallingLLM":
"""Creates a default model builder for LlamaIndex."""
import vertexai
from google.cloud.aiplatform import initializer
from llama_index.llms import google_genai
model_kwargs = model_kwargs or {}
model = google_genai.GoogleGenAI(
model=model_name,
vertexai_config={"project": project, "location": location},
**model_kwargs,
)
current_project = initializer.global_config.project
current_location = initializer.global_config.location
vertexai.init(project=current_project, location=current_location)
return model
def _default_runnable_builder(
model: "FunctionCallingLLM",
*,
system_instruction: Optional[str] = None,
prompt: Optional["QueryComponent"] = None,
retriever: Optional["QueryComponent"] = None,
response_synthesizer: Optional["QueryComponent"] = None,
runnable_kwargs: Optional[Mapping[str, Any]] = None,
) -> "QueryPipeline":
"""Creates a default runnable builder for LlamaIndex."""
try:
from llama_index.core.query_pipeline import QueryPipeline
except ImportError:
raise ImportError(
"Please call 'pip install google-cloud-aiplatform[llama_index]'."
)
prompt = prompt or _default_prompt(
system_instruction=system_instruction,
)
pipeline = QueryPipeline(**runnable_kwargs)
pipeline_modules = {
"prompt": prompt,
"model": model,
}
if retriever:
pipeline_modules["retriever"] = retriever
if response_synthesizer:
pipeline_modules["response_synthesizer"] = response_synthesizer
pipeline.add_modules(pipeline_modules)
pipeline.add_link("prompt", "model")
if "retriever" in pipeline_modules:
pipeline.add_link("model", "retriever")
if "response_synthesizer" in pipeline_modules:
pipeline.add_link("model", "response_synthesizer", dest_key="query_str")
if "retriever" in pipeline_modules:
pipeline.add_link("retriever", "response_synthesizer", dest_key="nodes")
return pipeline
def _default_prompt(
system_instruction: Optional[str] = None,
) -> "QueryComponent":
"""Creates a default prompt template for LlamaIndex.
Handles both system instruction and user input.
Args:
system_instruction (str, optional): The system instruction to use.
Returns:
QueryComponent: The LlamaIndex QueryComponent.
"""
try:
from llama_index.core import prompts
from llama_index.core.base.llms import types
except ImportError:
raise ImportError(
"Please call 'pip install google-cloud-aiplatform[llama_index]'."
)
# Define a prompt template
message_templates = []
if system_instruction:
message_templates.append(
types.ChatMessage(role=types.MessageRole.SYSTEM, content=system_instruction)
)
# Add user input message
message_templates.append(
types.ChatMessage(role=types.MessageRole.USER, content="{input}")
)
# Create the prompt template
return prompts.ChatPromptTemplate(message_templates=message_templates)
def _override_active_span_processor(
tracer_provider: "TracerProvider",
active_span_processor: "SynchronousMultiSpanProcessor",
):
"""Overrides the active span processor.
When working with multiple LlamaIndexQueryPipelineAgents in the same
environment, it's crucial to manage trace exports carefully.
Each agent needs its own span processor tied to a unique project ID.
While we add a new span processor for each agent, this can lead to
unexpected behavior.
For instance, with two agents linked to different projects, traces from the
second agent might be sent to both projects.
To prevent this and guarantee traces go to the correct project, we overwrite
the active span processor whenever a new LlamaIndexQueryPipelineAgent is
created.
Args:
tracer_provider (TracerProvider):
The tracer provider to use for the project.
active_span_processor (SynchronousMultiSpanProcessor):
The active span processor overrides the tracer provider's
active span processor.
"""
if tracer_provider._active_span_processor:
tracer_provider._active_span_processor.shutdown()
tracer_provider._active_span_processor = active_span_processor
class LlamaIndexQueryPipelineAgent:
"""A LlamaIndex Query Pipeline Agent.
This agent uses a query pipeline for LLAIndex, including prompt, model,
retrieval and summarization steps. More details can be found in
https://docs.llamaindex.ai/en/stable/module_guides/querying/pipeline/.
"""
def __init__(
self,
model: str,
*,
system_instruction: Optional[str] = None,
prompt: Optional["QueryComponent"] = None,
model_kwargs: Optional[Mapping[str, Any]] = None,
model_builder: Optional[Callable[..., "FunctionCallingLLM"]] = None,
retriever_kwargs: Optional[Mapping[str, Any]] = None,
retriever_builder: Optional[Callable[..., "QueryComponent"]] = None,
response_synthesizer_kwargs: Optional[Mapping[str, Any]] = None,
response_synthesizer_builder: Optional[Callable[..., "QueryComponent"]] = None,
runnable_kwargs: Optional[Mapping[str, Any]] = None,
runnable_builder: Optional[Callable[..., "QueryPipeline"]] = None,
enable_tracing: bool = False,
):
"""Initializes the LlamaIndexQueryPipelineAgent.
Under-the-hood, assuming .set_up() is called, this will correspond to
```python
# model_builder
model = model_builder(model_name, project, location, model_kwargs)
# runnable_builder
runnable = runnable_builder(
prompt=prompt,
model=model,
retriever=retriever_builder(model, retriever_kwargs),
response_synthesizer=response_synthesizer_builder(
model, response_synthesizer_kwargs
),
runnable_kwargs=runnable_kwargs,
)
```
When everything is based on their default values, this corresponds to a
query pipeline `Prompt - Model`:
```python
# Default Model Builder
model = google_genai.GoogleGenAI(
model=model_name,
vertexai_config={
"project": initializer.global_config.project,
"location": initializer.global_config.location,
},
)
# Default Prompt Builder
prompt = prompts.ChatPromptTemplate(
message_templates=[
types.ChatMessage(
role=types.MessageRole.USER,
content="{input}",
),
],
)
# Default Runnable Builder
runnable = QueryPipeline(
modules = {
"prompt": prompt,
"model": model,
},
)
pipeline.add_link("prompt", "model")
```
When `system_instruction` is specified, the prompt will be updated to
include the system instruction.
```python
# Updated Prompt Builder
prompt = prompts.ChatPromptTemplate(
message_templates=[
types.ChatMessage(
role=types.MessageRole.SYSTEM,
content=system_instruction,
),
types.ChatMessage(
role=types.MessageRole.USER,
content="{input}",
),
],
)
```
When all inputs are specified, this corresponds to a query pipeline
`Prompt - Model - Retriever - Summarizer`:
```python
runnable = QueryPipeline(
modules = {
"prompt": prompt,
"model": model,
"retriever": retriever_builder(retriever_kwargs),
"response_synthesizer": response_synthesizer_builder(
response_synthesizer_kwargs
),
},
)
pipeline.add_link("prompt", "model")
pipeline.add_link("model", "retriever")
pipeline.add_link("model", "response_synthesizer", dest_key="query_str")
pipeline.add_link("retriever", "response_synthesizer", dest_key="nodes")
```
Args:
model (str):
The name of the model (e.g. "gemini-1.0-pro").
system_instruction (str):
Optional. The system instruction to use for the agent.
prompt (llama_index.core.base.query_pipeline.query.QUERY_COMPONENT_TYPE):
Optional. The prompt template for the model.
model_kwargs (Mapping[str, Any]):
Optional. Keyword arguments for the model constructor of the
google_genai.GoogleGenAI. An example of a model_kwargs is:
```python
{
# api_key (string): The API key for the GoogleGenAI model.
# The API can also be fetched from the GOOGLE_API_KEY
# environment variable. If `vertexai_config` is provided,
# the API key is ignored.
"api_key": "your_api_key",
# temperature (float): Sampling temperature, it controls the
# degree of randomness in token selection. If not provided,
# the default temperature is 0.1.
"temperature": 0.1,
# context_window (int): The context window of the model.
# If not provided, the default context window is 200000.
"context_window": 200000,
# max_tokens (int): Token limit determines the maximum
# amount of text output from one prompt. If not provided,
# the default max_tokens is 256.
"max_tokens": 256,
# is_function_calling_model (bool): Whether the model is a
# function calling model. If not provided, the default
# is_function_calling_model is True.
"is_function_calling_model": True,
}
```
model_builder (Callable):
Optional. Callable that returns a language model.
retriever_kwargs (Mapping[str, Any]):
Optional. Keyword arguments for the retriever constructor.
retriever_builder (Callable):
Optional. Callable that returns a retriever object.
response_synthesizer_kwargs (Mapping[str, Any]):
Optional. Keyword arguments for the response synthesizer constructor.
response_synthesizer_builder (Callable):
Optional. Callable that returns a response_synthesizer object.
runnable_kwargs (Mapping[str, Any]):
Optional. Keyword arguments for the runnable constructor.
runnable_builder (Callable):
Optional. Callable that returns a runnable (query pipeline).
enable_tracing (bool):
Optional. Whether to enable tracing. Defaults to False.
"""
from google.cloud.aiplatform import initializer
self._project = initializer.global_config.project
self._location = initializer.global_config.location
self._model_name = model
self._system_instruction = system_instruction
self._prompt = prompt
self._model = None
self._model_kwargs = model_kwargs or {}
self._model_builder = model_builder
self._retriever = None
self._retriever_kwargs = retriever_kwargs or {}
self._retriever_builder = retriever_builder
self._response_synthesizer = None
self._response_synthesizer_kwargs = response_synthesizer_kwargs or {}
self._response_synthesizer_builder = response_synthesizer_builder
self._runnable = None
self._runnable_kwargs = runnable_kwargs or {}
self._runnable_builder = runnable_builder
self._instrumentor = None
self._enable_tracing = enable_tracing
def set_up(self):
"""Sets up the agent for execution of queries at runtime.
It initializes the model, connects it with the prompt template,
retriever and response_synthesizer.
This method should not be called for an object that being passed to
the ReasoningEngine service for deployment, as it initializes clients
that can not be serialized.
"""
if self._enable_tracing:
from vertexai.reasoning_engines import _utils
cloud_trace_exporter = _utils._import_cloud_trace_exporter_or_warn()
cloud_trace_v2 = _utils._import_cloud_trace_v2_or_warn()
openinference_llama_index = (
_utils._import_openinference_llama_index_or_warn()
)
opentelemetry = _utils._import_opentelemetry_or_warn()
opentelemetry_sdk_trace = _utils._import_opentelemetry_sdk_trace_or_warn()
if all(
(
cloud_trace_exporter,
cloud_trace_v2,
openinference_llama_index,
opentelemetry,
opentelemetry_sdk_trace,
)
):
import google.auth
credentials, _ = google.auth.default()
span_exporter = cloud_trace_exporter.CloudTraceSpanExporter(
project_id=self._project,
client=cloud_trace_v2.TraceServiceClient(
credentials=credentials.with_quota_project(self._project),
),
)
span_processor: SpanProcessor = (
opentelemetry_sdk_trace.export.SimpleSpanProcessor(
span_exporter=span_exporter,
)
)
tracer_provider: TracerProvider = (
opentelemetry.trace.get_tracer_provider()
)
# Get the appropriate tracer provider:
# 1. If _TRACER_PROVIDER is already set, use that.
# 2. Otherwise, if the OTEL_PYTHON_TRACER_PROVIDER environment
# variable is set, use that.
# 3. As a final fallback, use _PROXY_TRACER_PROVIDER.
# If none of the above is set, we log a warning, and
# create a tracer provider.
if not tracer_provider:
from google.cloud.aiplatform import base
_LOGGER = base.Logger(__name__)
_LOGGER.warning(
"No tracer provider. By default, "
"we should get one of the following providers: "
"OTEL_PYTHON_TRACER_PROVIDER, _TRACER_PROVIDER, "
"or _PROXY_TRACER_PROVIDER."
)
tracer_provider = opentelemetry_sdk_trace.TracerProvider()
opentelemetry.trace.set_tracer_provider(tracer_provider)
# Avoids AttributeError:
# 'ProxyTracerProvider' and 'NoOpTracerProvider' objects has no
# attribute 'add_span_processor'.
if _utils.is_noop_or_proxy_tracer_provider(tracer_provider):
tracer_provider = opentelemetry_sdk_trace.TracerProvider()
opentelemetry.trace.set_tracer_provider(tracer_provider)
# Avoids OpenTelemetry client already exists error.
_override_active_span_processor(
tracer_provider,
opentelemetry_sdk_trace.SynchronousMultiSpanProcessor(),
)
tracer_provider.add_span_processor(span_processor)
# Keep the instrumentation up-to-date.
# When creating multiple LlamaIndexQueryPipelineAgents,
# we need to keep the instrumentation up-to-date.
# We deliberately override the instrument each time,
# so that if different agents end up using different
# instrumentations, we guarantee that the user is always
# working with the most recent agent's instrumentation.
self._instrumentor = openinference_llama_index.LlamaIndexInstrumentor()
if self._instrumentor.is_instrumented_by_opentelemetry:
self._instrumentor.uninstrument()
self._instrumentor.instrument()
else:
from google.cloud.aiplatform import base
_LOGGER = base.Logger(__name__)
_LOGGER.warning(
"enable_tracing=True but proceeding with tracing disabled "
"because not all packages for tracing have been installed"
)
model_builder = self._model_builder or _default_model_builder
self._model = model_builder(
model_name=self._model_name,
model_kwargs=self._model_kwargs,
project=self._project,
location=self._location,
)
if self._retriever_builder:
self._retriever = self._retriever_builder(
model=self._model,
retriever_kwargs=self._retriever_kwargs,
)
if self._response_synthesizer_builder:
self._response_synthesizer = self._response_synthesizer_builder(
model=self._model,
response_synthesizer_kwargs=self._response_synthesizer_kwargs,
)
runnable_builder = self._runnable_builder or _default_runnable_builder
self._runnable = runnable_builder(
prompt=self._prompt,
model=self._model,
system_instruction=self._system_instruction,
retriever=self._retriever,
response_synthesizer=self._response_synthesizer,
runnable_kwargs=self._runnable_kwargs,
)
def clone(self) -> "LlamaIndexQueryPipelineAgent":
"""Returns a clone of the LlamaIndexQueryPipelineAgent."""
import copy
return LlamaIndexQueryPipelineAgent(
model=self._model_name,
system_instruction=self._system_instruction,
prompt=copy.deepcopy(self._prompt),
model_kwargs=copy.deepcopy(self._model_kwargs),
model_builder=self._model_builder,
retriever_kwargs=copy.deepcopy(self._retriever_kwargs),
retriever_builder=self._retriever_builder,
response_synthesizer_kwargs=copy.deepcopy(
self._response_synthesizer_kwargs
),
response_synthesizer_builder=self._response_synthesizer_builder,
runnable_kwargs=copy.deepcopy(self._runnable_kwargs),
runnable_builder=self._runnable_builder,
enable_tracing=self._enable_tracing,
)
def query(
self,
input: Union[str, Mapping[str, Any]],
**kwargs: Any,
) -> Union[str, Dict[str, Any], Sequence[Union[str, Dict[str, Any]]]]:
"""Queries the Agent with the given input and config.
Args:
input (Union[str, Mapping[str, Any]]):
Required. The input to be passed to the Agent.
**kwargs:
Optional. Any additional keyword arguments to be passed to the
`.invoke()` method of the corresponding AgentExecutor.
Returns:
The output of querying the Agent with the given input and config.
"""
from vertexai.reasoning_engines import _utils
if isinstance(input, str):
input = {"input": input}
if not self._runnable:
self.set_up()
if kwargs.get("batch"):
nest_asyncio = _utils._import_nest_asyncio_or_warn()
nest_asyncio.apply()
return _utils.to_json_serializable_llama_index_object(
self._runnable.run(**input, **kwargs)
)

View File

@@ -0,0 +1,23 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# We just want to re-export certain classes
# pylint: disable=g-multiple-import,g-importing-member
from vertexai.tokenization._tokenizers import (
_get_tokenizer_for_model_preview as get_tokenizer_for_model,
)
__all__ = ["get_tokenizer_for_model"]

View File

@@ -0,0 +1,23 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Classes for tuning models."""
# We just want to re-export certain classes
# pylint: disable=g-multiple-import,g-importing-member
from vertexai.tuning._tuning import TuningJob
__all__ = [
"TuningJob",
]

Some files were not shown because too many files have changed in this diff Show More