structure saas with tools

This commit is contained in:
Davidson Gomes
2025-04-25 15:30:54 -03:00
commit 1aef473937
16434 changed files with 6584257 additions and 0 deletions

View File

@@ -0,0 +1,22 @@
"""Ray on Vertex AI Prediction Tensorflow."""
# -*- coding: utf-8 -*-
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from .register import register_xgboost
__all__ = ("register_xgboost",)

View File

@@ -0,0 +1,189 @@
"""Regsiter XGBoost for Ray on Vertex AI."""
# -*- coding: utf-8 -*-
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import pickle
import ray
import tempfile
from typing import Optional, TYPE_CHECKING
import warnings
from google.cloud import aiplatform
from google.cloud.aiplatform import initializer
from google.cloud.aiplatform import utils
from google.cloud.aiplatform.utils import gcs_utils
from google.cloud.aiplatform.vertex_ray.predict.util import constants
from google.cloud.aiplatform.vertex_ray.predict.util import (
predict_utils,
)
from google.cloud.aiplatform.vertex_ray.util._validation_utils import (
_V2_4_WARNING_MESSAGE,
_V2_9_WARNING_MESSAGE,
)
try:
from ray.train import xgboost as ray_xgboost
if TYPE_CHECKING:
import xgboost
except ModuleNotFoundError as mnfe:
if ray.__version__ == "2.9.3":
raise ModuleNotFoundError("XGBoost isn't installed.") from mnfe
else:
xgboost = None
def register_xgboost(
checkpoint: "ray_xgboost.XGBoostCheckpoint",
artifact_uri: Optional[str] = None,
display_name: Optional[str] = None,
xgboost_version: Optional[str] = None,
**kwargs,
) -> aiplatform.Model:
"""Uploads a Ray XGBoost Checkpoint as XGBoost Model to Model Registry.
Example usage:
from vertex_ray.predict import xgboost
from ray.train.xgboost import XGBoostCheckpoint
trainer = XGBoostTrainer(...)
result = trainer.fit()
xgboost_checkpoint = XGBoostCheckpoint.from_checkpoint(result.checkpoint)
my_model = xgboost.register_xgboost(
checkpoint=xgboost_checkpoint,
artifact_uri="gs://{gcs-bucket-name}/path/to/store",
display_name="my-ray-on-vertex-xgboost-model",
)
Args:
checkpoint: XGBoostCheckpoint instance.
artifact_uri (str):
The path to the directory where Model Artifacts will be saved. If
not set, will use staging bucket set in aiplatform.init().
display_name (str):
Optional. The display name of the Model. The name can be up to 128
characters long and can be consist of any UTF-8 characters.
xgboost_version (str): Optional. The version of the XGBoost serving container.
Supported versions:
https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers
If the version is not specified, the version 1.6 is used.
**kwargs:
Any kwargs will be passed to aiplatform.Model registration.
Returns:
model (aiplatform.Model):
Instantiated representation of the uploaded model resource.
Raises:
ValueError: Invalid Argument.
RuntimeError: Only Ray version 2.9.3 is supported.
"""
ray_version = ray.__version__
if ray_version != "2.9.3":
raise RuntimeError(
f"Ray version {ray_version} is not supported to upload XGBoost"
" model to Vertex Model Registry yet. Please use Ray 2.9.3."
)
if ray_version == "2.9.3":
warnings.warn(_V2_9_WARNING_MESSAGE, DeprecationWarning, stacklevel=1)
artifact_uri = artifact_uri or initializer.global_config.staging_bucket
predict_utils.validate_artifact_uri(artifact_uri)
display_model_name = (
(f"ray-on-vertex-registered-xgboost-model-{utils.timestamped_unique_name()}")
if display_name is None
else display_name
)
model = _get_xgboost_model_from(checkpoint)
model_dir = os.path.join(artifact_uri, display_model_name)
file_path = os.path.join(model_dir, constants._PICKLE_FILE_NAME)
if xgboost_version is None:
xgboost_version = constants._XGBOOST_VERSION
with tempfile.NamedTemporaryFile(suffix=constants._PICKLE_EXTENTION) as temp_file:
pickle.dump(model, temp_file)
gcs_utils.upload_to_gcs(temp_file.name, file_path)
return aiplatform.Model.upload_xgboost_model_file(
model_file_path=temp_file.name,
display_name=display_model_name,
xgboost_version=xgboost_version,
**kwargs,
)
def _get_xgboost_model_from(
checkpoint: "ray_xgboost.XGBoostCheckpoint",
) -> "xgboost.Booster":
"""Converts a XGBoostCheckpoint to XGBoost model.
Args:
checkpoint: XGBoostCheckpoint instance.
Returns:
A XGBoost core Booster
Raises:
ValueError: Invalid Argument.
ModuleNotFoundError: XGBoost isn't installed.
RuntimeError: Model not found.
RuntimeError: Ray version 2.4 is not supported.
RuntimeError: Only Ray version 2.9.3 is supported.
"""
ray_version = ray.__version__
if ray_version == "2.4.0":
raise RuntimeError(_V2_4_WARNING_MESSAGE)
if ray_version != "2.9.3":
raise RuntimeError(
f"Ray version {ray_version} is not supported to convert a XGBoost"
" checkpoint to XGBoost model on Vertex yet. Please use Ray 2.9.3."
)
try:
# This works for Ray v2.5
return checkpoint.get_model()
except AttributeError:
# This works for Ray v2.9
model_file_name = ray.train.xgboost.XGBoostCheckpoint.MODEL_FILENAME
model_path = os.path.join(checkpoint.path, model_file_name)
try:
import xgboost
except ModuleNotFoundError as mnfe:
raise ModuleNotFoundError("XGBoost isn't installed.") from mnfe
booster = xgboost.Booster()
if os.path.exists(model_path):
booster.load_model(model_path)
return booster
try:
# Download from GCS to temp and then load_model
with tempfile.TemporaryDirectory() as temp_dir:
gcs_utils.download_from_gcs("gs://" + checkpoint.path, temp_dir)
booster.load_model(f"{temp_dir}/{model_file_name}")
return booster
except Exception as e:
raise RuntimeError(
f"{model_file_name} not found in this checkpoint due to: {e}."
)