structure saas with tools

This commit is contained in:
Davidson Gomes
2025-04-25 15:30:54 -03:00
commit 1aef473937
16434 changed files with 6584257 additions and 0 deletions

View File

@@ -0,0 +1,22 @@
"""Ray on Vertex AI Prediction Tensorflow."""
# -*- coding: utf-8 -*-
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from .register import register_tensorflow
__all__ = ("register_tensorflow",)

View File

@@ -0,0 +1,161 @@
"""Regsiter Tensorflow for Ray on Vertex AI."""
# -*- coding: utf-8 -*-
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import logging
import ray
from typing import Callable, Optional, Union, TYPE_CHECKING
import warnings
from google.cloud import aiplatform
from google.cloud.aiplatform import initializer
from google.cloud.aiplatform import utils
from google.cloud.aiplatform.vertex_ray.predict.util import constants
from google.cloud.aiplatform.vertex_ray.predict.util import (
predict_utils,
)
from google.cloud.aiplatform.vertex_ray.util._validation_utils import (
_V2_4_WARNING_MESSAGE,
_V2_9_WARNING_MESSAGE,
)
try:
from ray.train import tensorflow as ray_tensorflow
if TYPE_CHECKING:
import tensorflow as tf
except ModuleNotFoundError as mnfe:
raise ModuleNotFoundError("Tensorflow isn't installed.") from mnfe
def register_tensorflow(
checkpoint: ray_tensorflow.TensorflowCheckpoint,
artifact_uri: Optional[str] = None,
_model: Optional[Union["tf.keras.Model", Callable[[], "tf.keras.Model"]]] = None,
display_name: Optional[str] = None,
tensorflow_version: Optional[str] = None,
**kwargs,
) -> aiplatform.Model:
"""Uploads a Ray Tensorflow Checkpoint as Tensorflow Model to Model Registry.
Example usage:
from vertex_ray.predict import tensorflow
def create_model():
model = tf.keras.Sequential(...)
...
return model
result = trainer.fit()
my_model = tensorflow.register_tensorflow(
checkpoint=result.checkpoint,
_model=create_model,
artifact_uri="gs://{gcs-bucket-name}/path/to/store",
use_gpu=True
)
1. `use_gpu` will be passed to aiplatform.Model.upload_tensorflow_saved_model()
2. The `create_model` provides the model_definition which is required if
you create the TensorflowCheckpoint using `from_model` method.
More here, https://docs.ray.io/en/latest/train/api/doc/ray.train.tensorflow.TensorflowCheckpoint.get_model.html#ray.train.tensorflow.TensorflowCheckpoint.get_model
Args:
checkpoint: TensorflowCheckpoint instance.
artifact_uri (str):
Optional. The path to the directory where Model Artifacts will be saved. If
not set, will use staging bucket set in aiplatform.init().
_model: Tensorflow Model Definition. Refer
https://docs.ray.io/en/latest/train/api/doc/ray.train.tensorflow.TensorflowCheckpoint.get_model.html#ray.train.tensorflow.TensorflowCheckpoint.get_model
display_name (str):
Optional. The display name of the Model. The name can be up to 128
characters long and can be consist of any UTF-8 characters.
tensorflow_version (str):
Optional. The version of the Tensorflow serving container.
Supported versions:
https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers
If the version is not specified, the latest version is used.
**kwargs:
Any kwargs will be passed to aiplatform.Model registration.
Returns:
model (aiplatform.Model):
Instantiated representation of the uploaded model resource.
Raises:
ValueError: Invalid Argument.
"""
if ray.__version__ == "2.9.3":
warnings.warn(_V2_9_WARNING_MESSAGE, DeprecationWarning, stacklevel=1)
if tensorflow_version is None:
tensorflow_version = constants._TENSORFLOW_VERSION
artifact_uri = artifact_uri or initializer.global_config.staging_bucket
predict_utils.validate_artifact_uri(artifact_uri)
prefix = "ray-on-vertex-registered-tensorflow-model"
display_model_name = (
(f"{prefix}-{utils.timestamped_unique_name()}")
if display_name is None
else display_name
)
tf_model = _get_tensorflow_model_from(checkpoint, model=_model)
model_dir = os.path.join(artifact_uri, prefix)
try:
import tensorflow as tf
tf.saved_model.save(tf_model, model_dir)
except ImportError:
logging.warning("TensorFlow must be installed to save the trained model.")
return aiplatform.Model.upload_tensorflow_saved_model(
saved_model_dir=model_dir,
display_name=display_model_name,
tensorflow_version=tensorflow_version,
**kwargs,
)
def _get_tensorflow_model_from(
checkpoint: ray_tensorflow.TensorflowCheckpoint,
model: Optional[Union["tf.keras.Model", Callable[[], "tf.keras.Model"]]] = None,
) -> "tf.keras.Model":
"""Converts a TensorflowCheckpoint to Tensorflow Model.
Args:
checkpoint: TensorflowCheckpoint instance.
model: Tensorflow Model Defination.
Returns:
A Tensorflow Native Framework Model.
Raises:
ValueError: Invalid Argument.
RuntimeError: Ray version 2.4.0 is not supported.
"""
ray_version = ray.__version__
if ray_version == "2.4.0":
raise RuntimeError(_V2_4_WARNING_MESSAGE)
try:
import tensorflow as tf
try:
return tf.saved_model.load(checkpoint.path)
except OSError:
return tf.saved_model.load("gs://" + checkpoint.path)
except ImportError:
logging.warning("TensorFlow must be installed to load the trained model.")