structure saas with tools
This commit is contained in:
@@ -0,0 +1,22 @@
|
||||
"""Ray on Vertex AI Prediction Tensorflow."""
|
||||
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Copyright 2023 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from .register import register_sklearn
|
||||
|
||||
__all__ = ("register_sklearn",)
|
||||
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,173 @@
|
||||
"""Regsiter Scikit Learn for Ray on Vertex AI."""
|
||||
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Copyright 2023 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import os
|
||||
import pickle
|
||||
import warnings
|
||||
import ray
|
||||
import ray.cloudpickle as cpickle
|
||||
import tempfile
|
||||
from typing import Optional, TYPE_CHECKING
|
||||
|
||||
from google.cloud import aiplatform
|
||||
from google.cloud.aiplatform import initializer
|
||||
from google.cloud.aiplatform import utils
|
||||
from google.cloud.aiplatform.utils import gcs_utils
|
||||
from google.cloud.aiplatform.vertex_ray.predict.util import constants
|
||||
from google.cloud.aiplatform.vertex_ray.predict.util import (
|
||||
predict_utils,
|
||||
)
|
||||
from google.cloud.aiplatform.vertex_ray.util._validation_utils import (
|
||||
_V2_4_WARNING_MESSAGE,
|
||||
_V2_9_WARNING_MESSAGE,
|
||||
)
|
||||
|
||||
|
||||
try:
|
||||
from ray.train import sklearn as ray_sklearn
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import sklearn
|
||||
|
||||
except ImportError as ie:
|
||||
if ray.__version__ < "2.42.0":
|
||||
raise ModuleNotFoundError("Sklearn isn't installed.") from ie
|
||||
else:
|
||||
sklearn = None
|
||||
|
||||
|
||||
def register_sklearn(
|
||||
checkpoint: "ray_sklearn.SklearnCheckpoint",
|
||||
artifact_uri: Optional[str] = None,
|
||||
display_name: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> aiplatform.Model:
|
||||
"""Uploads a Ray Sklearn Checkpoint as Sklearn Model to Model Registry.
|
||||
|
||||
Example usage:
|
||||
from vertex_ray.predict import sklearn
|
||||
from ray.train.sklearn import SklearnCheckpoint
|
||||
|
||||
trainer = SklearnTrainer(estimator=RandomForestClassifier, ...)
|
||||
result = trainer.fit()
|
||||
sklearn_checkpoint = SklearnCheckpoint.from_checkpoint(result.checkpoint)
|
||||
|
||||
my_model = sklearn.register_sklearn(
|
||||
checkpoint=sklearn_checkpoint,
|
||||
artifact_uri="gs://{gcs-bucket-name}/path/to/store"
|
||||
)
|
||||
|
||||
|
||||
Args:
|
||||
checkpoint: SklearnCheckpoint instance.
|
||||
artifact_uri (str):
|
||||
Optional. The path to the directory where Model Artifacts will be saved. If
|
||||
not set, will use staging bucket set in aiplatform.init().
|
||||
display_name (str):
|
||||
Optional. The display name of the Model. The name can be up to 128
|
||||
characters long and can be consist of any UTF-8 characters.
|
||||
**kwargs:
|
||||
Any kwargs will be passed to aiplatform.Model registration.
|
||||
|
||||
Returns:
|
||||
model (aiplatform.Model):
|
||||
Instantiated representation of the uploaded model resource.
|
||||
|
||||
Raises:
|
||||
ValueError: Invalid Argument.
|
||||
RuntimeError: Only Ray version 2.9.3 is supported.
|
||||
"""
|
||||
ray_version = ray.__version__
|
||||
if ray_version != "2.9.3":
|
||||
raise RuntimeError(
|
||||
f"Ray version {ray_version} is not supported to upload Sklearn"
|
||||
" model to Vertex Model Registry yet. Please use Ray 2.9.3."
|
||||
)
|
||||
if ray_version == "2.9.3":
|
||||
warnings.warn(_V2_9_WARNING_MESSAGE, DeprecationWarning, stacklevel=1)
|
||||
|
||||
artifact_uri = artifact_uri or initializer.global_config.staging_bucket
|
||||
predict_utils.validate_artifact_uri(artifact_uri)
|
||||
display_model_name = (
|
||||
(f"ray-on-vertex-registered-sklearn-model-{utils.timestamped_unique_name()}")
|
||||
if display_name is None
|
||||
else display_name
|
||||
)
|
||||
estimator = _get_estimator_from(checkpoint)
|
||||
|
||||
model_dir = os.path.join(artifact_uri, display_model_name)
|
||||
file_path = os.path.join(model_dir, constants._PICKLE_FILE_NAME)
|
||||
|
||||
with tempfile.NamedTemporaryFile(suffix=constants._PICKLE_EXTENTION) as temp_file:
|
||||
pickle.dump(estimator, temp_file)
|
||||
gcs_utils.upload_to_gcs(temp_file.name, file_path)
|
||||
return aiplatform.Model.upload_scikit_learn_model_file(
|
||||
model_file_path=temp_file.name, display_name=display_model_name, **kwargs
|
||||
)
|
||||
|
||||
|
||||
def _get_estimator_from(
|
||||
checkpoint: "ray_sklearn.SklearnCheckpoint",
|
||||
) -> "sklearn.base.BaseEstimator":
|
||||
"""Converts a SklearnCheckpoint to sklearn estimator.
|
||||
|
||||
Args:
|
||||
checkpoint: SklearnCheckpoint instance.
|
||||
|
||||
Returns:
|
||||
A Sklearn BaseEstimator
|
||||
|
||||
Raises:
|
||||
ValueError: Invalid Argument.
|
||||
RuntimeError: Model not found.
|
||||
RuntimeError: Ray version 2.4 is not supported.
|
||||
RuntimeError: Only Ray version 2.9.3 is supported.
|
||||
"""
|
||||
|
||||
ray_version = ray.__version__
|
||||
if ray_version == "2.4.0":
|
||||
raise RuntimeError(_V2_4_WARNING_MESSAGE)
|
||||
if ray_version != "2.9.3":
|
||||
raise RuntimeError(
|
||||
f"Ray version {ray_version} is not supported to convert a Sklearn"
|
||||
" checkpoint to sklearn estimator on Vertex yet. Please use Ray 2.9.3."
|
||||
)
|
||||
|
||||
try:
|
||||
return checkpoint.get_model()
|
||||
except AttributeError:
|
||||
model_file_name = ray.train.sklearn.SklearnCheckpoint.MODEL_FILENAME
|
||||
|
||||
model_path = os.path.join(checkpoint.path, model_file_name)
|
||||
|
||||
if os.path.exists(model_path):
|
||||
with open(model_path, mode="rb") as f:
|
||||
obj = pickle.load(f)
|
||||
else:
|
||||
try:
|
||||
# Download from GCS to temp and then load_model
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
gcs_utils.download_from_gcs("gs://" + checkpoint.path, temp_dir)
|
||||
with open(f"{temp_dir}/{model_file_name}", mode="rb") as f:
|
||||
obj = cpickle.load(f)
|
||||
except Exception as e:
|
||||
raise RuntimeError(
|
||||
f"{model_file_name} not found in this checkpoint due to: {e}."
|
||||
)
|
||||
return obj
|
||||
Reference in New Issue
Block a user