structure saas with tools
This commit is contained in:
@@ -0,0 +1,150 @@
|
||||
from typing import Dict, Iterator, List, Optional, Tuple, Union
|
||||
|
||||
from .. import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers
|
||||
from ..models import BPE
|
||||
from ..normalizers import BertNormalizer, Lowercase, Sequence, unicode_normalizer_from_str
|
||||
from .base_tokenizer import BaseTokenizer
|
||||
|
||||
|
||||
class CharBPETokenizer(BaseTokenizer):
|
||||
"""Original BPE Tokenizer
|
||||
|
||||
Represents the BPE algorithm, as introduced by Rico Sennrich
|
||||
(https://arxiv.org/abs/1508.07909)
|
||||
|
||||
The defaults settings corresponds to OpenAI GPT BPE tokenizers and differs from the original
|
||||
Sennrich subword-nmt implementation by the following options that you can deactivate:
|
||||
- adding a normalizer to clean up the text (deactivate with `bert_normalizer=False`) by:
|
||||
* removing any control characters and replacing all whitespaces by the classic one.
|
||||
* handle chinese chars by putting spaces around them.
|
||||
* strip all accents.
|
||||
- spitting on punctuation in addition to whitespaces (deactivate it with
|
||||
`split_on_whitespace_only=True`)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab: Optional[Union[str, Dict[str, int]]] = None,
|
||||
merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None,
|
||||
unk_token: Union[str, AddedToken] = "<unk>",
|
||||
suffix: str = "</w>",
|
||||
dropout: Optional[float] = None,
|
||||
lowercase: bool = False,
|
||||
unicode_normalizer: Optional[str] = None,
|
||||
bert_normalizer: bool = True,
|
||||
split_on_whitespace_only: bool = False,
|
||||
):
|
||||
if vocab is not None and merges is not None:
|
||||
tokenizer = Tokenizer(
|
||||
BPE(
|
||||
vocab,
|
||||
merges,
|
||||
dropout=dropout,
|
||||
unk_token=str(unk_token),
|
||||
end_of_word_suffix=suffix,
|
||||
)
|
||||
)
|
||||
else:
|
||||
tokenizer = Tokenizer(BPE(unk_token=str(unk_token), dropout=dropout, end_of_word_suffix=suffix))
|
||||
|
||||
if tokenizer.token_to_id(str(unk_token)) is not None:
|
||||
tokenizer.add_special_tokens([str(unk_token)])
|
||||
|
||||
# Check for Unicode normalization first (before everything else)
|
||||
normalizers = []
|
||||
|
||||
if unicode_normalizer:
|
||||
normalizers += [unicode_normalizer_from_str(unicode_normalizer)]
|
||||
|
||||
if bert_normalizer:
|
||||
normalizers += [BertNormalizer(lowercase=False)]
|
||||
|
||||
if lowercase:
|
||||
normalizers += [Lowercase()]
|
||||
|
||||
# Create the normalizer structure
|
||||
if len(normalizers) > 0:
|
||||
if len(normalizers) > 1:
|
||||
tokenizer.normalizer = Sequence(normalizers)
|
||||
else:
|
||||
tokenizer.normalizer = normalizers[0]
|
||||
|
||||
if split_on_whitespace_only:
|
||||
tokenizer.pre_tokenizer = pre_tokenizers.WhitespaceSplit()
|
||||
else:
|
||||
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
||||
|
||||
tokenizer.decoder = decoders.BPEDecoder(suffix=suffix)
|
||||
|
||||
parameters = {
|
||||
"model": "BPE",
|
||||
"unk_token": unk_token,
|
||||
"suffix": suffix,
|
||||
"dropout": dropout,
|
||||
"lowercase": lowercase,
|
||||
"unicode_normalizer": unicode_normalizer,
|
||||
"bert_normalizer": bert_normalizer,
|
||||
"split_on_whitespace_only": split_on_whitespace_only,
|
||||
}
|
||||
|
||||
super().__init__(tokenizer, parameters)
|
||||
|
||||
@staticmethod
|
||||
def from_file(vocab_filename: str, merges_filename: str, **kwargs):
|
||||
vocab, merges = BPE.read_file(vocab_filename, merges_filename)
|
||||
return CharBPETokenizer(vocab, merges, **kwargs)
|
||||
|
||||
def train(
|
||||
self,
|
||||
files: Union[str, List[str]],
|
||||
vocab_size: int = 30000,
|
||||
min_frequency: int = 2,
|
||||
special_tokens: List[Union[str, AddedToken]] = ["<unk>"],
|
||||
limit_alphabet: int = 1000,
|
||||
initial_alphabet: List[str] = [],
|
||||
suffix: Optional[str] = "</w>",
|
||||
show_progress: bool = True,
|
||||
):
|
||||
"""Train the model using the given files"""
|
||||
|
||||
trainer = trainers.BpeTrainer(
|
||||
vocab_size=vocab_size,
|
||||
min_frequency=min_frequency,
|
||||
special_tokens=special_tokens,
|
||||
limit_alphabet=limit_alphabet,
|
||||
initial_alphabet=initial_alphabet,
|
||||
end_of_word_suffix=suffix,
|
||||
show_progress=show_progress,
|
||||
)
|
||||
if isinstance(files, str):
|
||||
files = [files]
|
||||
self._tokenizer.train(files, trainer=trainer)
|
||||
|
||||
def train_from_iterator(
|
||||
self,
|
||||
iterator: Union[Iterator[str], Iterator[Iterator[str]]],
|
||||
vocab_size: int = 30000,
|
||||
min_frequency: int = 2,
|
||||
special_tokens: List[Union[str, AddedToken]] = ["<unk>"],
|
||||
limit_alphabet: int = 1000,
|
||||
initial_alphabet: List[str] = [],
|
||||
suffix: Optional[str] = "</w>",
|
||||
show_progress: bool = True,
|
||||
length: Optional[int] = None,
|
||||
):
|
||||
"""Train the model using the given iterator"""
|
||||
|
||||
trainer = trainers.BpeTrainer(
|
||||
vocab_size=vocab_size,
|
||||
min_frequency=min_frequency,
|
||||
special_tokens=special_tokens,
|
||||
limit_alphabet=limit_alphabet,
|
||||
initial_alphabet=initial_alphabet,
|
||||
end_of_word_suffix=suffix,
|
||||
show_progress=show_progress,
|
||||
)
|
||||
self._tokenizer.train_from_iterator(
|
||||
iterator,
|
||||
trainer=trainer,
|
||||
length=length,
|
||||
)
|
||||
Reference in New Issue
Block a user