structure saas with tools
This commit is contained in:
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,519 @@
|
||||
# Copyright The OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import annotations
|
||||
|
||||
import collections
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
import typing
|
||||
import weakref
|
||||
from enum import Enum
|
||||
from os import environ, linesep
|
||||
from time import time_ns
|
||||
|
||||
from opentelemetry.context import (
|
||||
_SUPPRESS_INSTRUMENTATION_KEY,
|
||||
Context,
|
||||
attach,
|
||||
detach,
|
||||
set_value,
|
||||
)
|
||||
from opentelemetry.sdk.environment_variables import (
|
||||
OTEL_BSP_EXPORT_TIMEOUT,
|
||||
OTEL_BSP_MAX_EXPORT_BATCH_SIZE,
|
||||
OTEL_BSP_MAX_QUEUE_SIZE,
|
||||
OTEL_BSP_SCHEDULE_DELAY,
|
||||
)
|
||||
from opentelemetry.sdk.trace import ReadableSpan, Span, SpanProcessor
|
||||
from opentelemetry.util._once import Once
|
||||
|
||||
_DEFAULT_SCHEDULE_DELAY_MILLIS = 5000
|
||||
_DEFAULT_MAX_EXPORT_BATCH_SIZE = 512
|
||||
_DEFAULT_EXPORT_TIMEOUT_MILLIS = 30000
|
||||
_DEFAULT_MAX_QUEUE_SIZE = 2048
|
||||
_ENV_VAR_INT_VALUE_ERROR_MESSAGE = (
|
||||
"Unable to parse value for %s as integer. Defaulting to %s."
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SpanExportResult(Enum):
|
||||
SUCCESS = 0
|
||||
FAILURE = 1
|
||||
|
||||
|
||||
class SpanExporter:
|
||||
"""Interface for exporting spans.
|
||||
|
||||
Interface to be implemented by services that want to export spans recorded
|
||||
in their own format.
|
||||
|
||||
To export data this MUST be registered to the :class`opentelemetry.sdk.trace.Tracer` using a
|
||||
`SimpleSpanProcessor` or a `BatchSpanProcessor`.
|
||||
"""
|
||||
|
||||
def export(
|
||||
self, spans: typing.Sequence[ReadableSpan]
|
||||
) -> "SpanExportResult":
|
||||
"""Exports a batch of telemetry data.
|
||||
|
||||
Args:
|
||||
spans: The list of `opentelemetry.trace.Span` objects to be exported
|
||||
|
||||
Returns:
|
||||
The result of the export
|
||||
"""
|
||||
|
||||
def shutdown(self) -> None:
|
||||
"""Shuts down the exporter.
|
||||
|
||||
Called when the SDK is shut down.
|
||||
"""
|
||||
|
||||
def force_flush(self, timeout_millis: int = 30000) -> bool:
|
||||
"""Hint to ensure that the export of any spans the exporter has received
|
||||
prior to the call to ForceFlush SHOULD be completed as soon as possible, preferably
|
||||
before returning from this method.
|
||||
"""
|
||||
|
||||
|
||||
class SimpleSpanProcessor(SpanProcessor):
|
||||
"""Simple SpanProcessor implementation.
|
||||
|
||||
SimpleSpanProcessor is an implementation of `SpanProcessor` that
|
||||
passes ended spans directly to the configured `SpanExporter`.
|
||||
"""
|
||||
|
||||
def __init__(self, span_exporter: SpanExporter):
|
||||
self.span_exporter = span_exporter
|
||||
|
||||
def on_start(
|
||||
self, span: Span, parent_context: typing.Optional[Context] = None
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
def on_end(self, span: ReadableSpan) -> None:
|
||||
if not span.context.trace_flags.sampled:
|
||||
return
|
||||
token = attach(set_value(_SUPPRESS_INSTRUMENTATION_KEY, True))
|
||||
try:
|
||||
self.span_exporter.export((span,))
|
||||
# pylint: disable=broad-exception-caught
|
||||
except Exception:
|
||||
logger.exception("Exception while exporting Span.")
|
||||
detach(token)
|
||||
|
||||
def shutdown(self) -> None:
|
||||
self.span_exporter.shutdown()
|
||||
|
||||
def force_flush(self, timeout_millis: int = 30000) -> bool:
|
||||
# pylint: disable=unused-argument
|
||||
return True
|
||||
|
||||
|
||||
class _FlushRequest:
|
||||
"""Represents a request for the BatchSpanProcessor to flush spans."""
|
||||
|
||||
__slots__ = ["event", "num_spans"]
|
||||
|
||||
def __init__(self):
|
||||
self.event = threading.Event()
|
||||
self.num_spans = 0
|
||||
|
||||
|
||||
_BSP_RESET_ONCE = Once()
|
||||
|
||||
|
||||
class BatchSpanProcessor(SpanProcessor):
|
||||
"""Batch span processor implementation.
|
||||
|
||||
`BatchSpanProcessor` is an implementation of `SpanProcessor` that
|
||||
batches ended spans and pushes them to the configured `SpanExporter`.
|
||||
|
||||
`BatchSpanProcessor` is configurable with the following environment
|
||||
variables which correspond to constructor parameters:
|
||||
|
||||
- :envvar:`OTEL_BSP_SCHEDULE_DELAY`
|
||||
- :envvar:`OTEL_BSP_MAX_QUEUE_SIZE`
|
||||
- :envvar:`OTEL_BSP_MAX_EXPORT_BATCH_SIZE`
|
||||
- :envvar:`OTEL_BSP_EXPORT_TIMEOUT`
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
span_exporter: SpanExporter,
|
||||
max_queue_size: int | None = None,
|
||||
schedule_delay_millis: float | None = None,
|
||||
max_export_batch_size: int | None = None,
|
||||
export_timeout_millis: float | None = None,
|
||||
):
|
||||
if max_queue_size is None:
|
||||
max_queue_size = BatchSpanProcessor._default_max_queue_size()
|
||||
|
||||
if schedule_delay_millis is None:
|
||||
schedule_delay_millis = (
|
||||
BatchSpanProcessor._default_schedule_delay_millis()
|
||||
)
|
||||
|
||||
if max_export_batch_size is None:
|
||||
max_export_batch_size = (
|
||||
BatchSpanProcessor._default_max_export_batch_size()
|
||||
)
|
||||
|
||||
if export_timeout_millis is None:
|
||||
export_timeout_millis = (
|
||||
BatchSpanProcessor._default_export_timeout_millis()
|
||||
)
|
||||
|
||||
BatchSpanProcessor._validate_arguments(
|
||||
max_queue_size, schedule_delay_millis, max_export_batch_size
|
||||
)
|
||||
|
||||
self.span_exporter = span_exporter
|
||||
self.queue = collections.deque([], max_queue_size) # type: typing.Deque[Span]
|
||||
self.worker_thread = threading.Thread(
|
||||
name="OtelBatchSpanProcessor", target=self.worker, daemon=True
|
||||
)
|
||||
self.condition = threading.Condition(threading.Lock())
|
||||
self._flush_request = None # type: typing.Optional[_FlushRequest]
|
||||
self.schedule_delay_millis = schedule_delay_millis
|
||||
self.max_export_batch_size = max_export_batch_size
|
||||
self.max_queue_size = max_queue_size
|
||||
self.export_timeout_millis = export_timeout_millis
|
||||
self.done = False
|
||||
# flag that indicates that spans are being dropped
|
||||
self._spans_dropped = False
|
||||
# precallocated list to send spans to exporter
|
||||
self.spans_list = [None] * self.max_export_batch_size # type: typing.List[typing.Optional[Span]]
|
||||
self.worker_thread.start()
|
||||
if hasattr(os, "register_at_fork"):
|
||||
weak_reinit = weakref.WeakMethod(self._at_fork_reinit)
|
||||
os.register_at_fork(after_in_child=lambda: weak_reinit()()) # pylint: disable=unnecessary-lambda
|
||||
self._pid = os.getpid()
|
||||
|
||||
def on_start(
|
||||
self, span: Span, parent_context: Context | None = None
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
def on_end(self, span: ReadableSpan) -> None:
|
||||
if self.done:
|
||||
logger.warning("Already shutdown, dropping span.")
|
||||
return
|
||||
if not span.context.trace_flags.sampled:
|
||||
return
|
||||
if self._pid != os.getpid():
|
||||
_BSP_RESET_ONCE.do_once(self._at_fork_reinit)
|
||||
|
||||
if len(self.queue) == self.max_queue_size:
|
||||
if not self._spans_dropped:
|
||||
logger.warning("Queue is full, likely spans will be dropped.")
|
||||
self._spans_dropped = True
|
||||
|
||||
self.queue.appendleft(span)
|
||||
|
||||
if len(self.queue) >= self.max_export_batch_size:
|
||||
with self.condition:
|
||||
self.condition.notify()
|
||||
|
||||
def _at_fork_reinit(self):
|
||||
self.condition = threading.Condition(threading.Lock())
|
||||
self.queue.clear()
|
||||
|
||||
# worker_thread is local to a process, only the thread that issued fork continues
|
||||
# to exist. A new worker thread must be started in child process.
|
||||
self.worker_thread = threading.Thread(
|
||||
name="OtelBatchSpanProcessor", target=self.worker, daemon=True
|
||||
)
|
||||
self.worker_thread.start()
|
||||
self._pid = os.getpid()
|
||||
|
||||
def worker(self):
|
||||
timeout = self.schedule_delay_millis / 1e3
|
||||
flush_request = None # type: typing.Optional[_FlushRequest]
|
||||
while not self.done:
|
||||
with self.condition:
|
||||
if self.done:
|
||||
# done flag may have changed, avoid waiting
|
||||
break
|
||||
flush_request = self._get_and_unset_flush_request()
|
||||
if (
|
||||
len(self.queue) < self.max_export_batch_size
|
||||
and flush_request is None
|
||||
):
|
||||
self.condition.wait(timeout)
|
||||
flush_request = self._get_and_unset_flush_request()
|
||||
if not self.queue:
|
||||
# spurious notification, let's wait again, reset timeout
|
||||
timeout = self.schedule_delay_millis / 1e3
|
||||
self._notify_flush_request_finished(flush_request)
|
||||
flush_request = None
|
||||
continue
|
||||
if self.done:
|
||||
# missing spans will be sent when calling flush
|
||||
break
|
||||
|
||||
# subtract the duration of this export call to the next timeout
|
||||
start = time_ns()
|
||||
self._export(flush_request)
|
||||
end = time_ns()
|
||||
duration = (end - start) / 1e9
|
||||
timeout = self.schedule_delay_millis / 1e3 - duration
|
||||
|
||||
self._notify_flush_request_finished(flush_request)
|
||||
flush_request = None
|
||||
|
||||
# there might have been a new flush request while export was running
|
||||
# and before the done flag switched to true
|
||||
with self.condition:
|
||||
shutdown_flush_request = self._get_and_unset_flush_request()
|
||||
|
||||
# be sure that all spans are sent
|
||||
self._drain_queue()
|
||||
self._notify_flush_request_finished(flush_request)
|
||||
self._notify_flush_request_finished(shutdown_flush_request)
|
||||
|
||||
def _get_and_unset_flush_request(
|
||||
self,
|
||||
) -> typing.Optional[_FlushRequest]:
|
||||
"""Returns the current flush request and makes it invisible to the
|
||||
worker thread for subsequent calls.
|
||||
"""
|
||||
flush_request = self._flush_request
|
||||
self._flush_request = None
|
||||
if flush_request is not None:
|
||||
flush_request.num_spans = len(self.queue)
|
||||
return flush_request
|
||||
|
||||
@staticmethod
|
||||
def _notify_flush_request_finished(
|
||||
flush_request: typing.Optional[_FlushRequest],
|
||||
):
|
||||
"""Notifies the flush initiator(s) waiting on the given request/event
|
||||
that the flush operation was finished.
|
||||
"""
|
||||
if flush_request is not None:
|
||||
flush_request.event.set()
|
||||
|
||||
def _get_or_create_flush_request(self) -> _FlushRequest:
|
||||
"""Either returns the current active flush event or creates a new one.
|
||||
|
||||
The flush event will be visible and read by the worker thread before an
|
||||
export operation starts. Callers of a flush operation may wait on the
|
||||
returned event to be notified when the flush/export operation was
|
||||
finished.
|
||||
|
||||
This method is not thread-safe, i.e. callers need to take care about
|
||||
synchronization/locking.
|
||||
"""
|
||||
if self._flush_request is None:
|
||||
self._flush_request = _FlushRequest()
|
||||
return self._flush_request
|
||||
|
||||
def _export(self, flush_request: typing.Optional[_FlushRequest]):
|
||||
"""Exports spans considering the given flush_request.
|
||||
|
||||
In case of a given flush_requests spans are exported in batches until
|
||||
the number of exported spans reached or exceeded the number of spans in
|
||||
the flush request.
|
||||
In no flush_request was given at most max_export_batch_size spans are
|
||||
exported.
|
||||
"""
|
||||
if not flush_request:
|
||||
self._export_batch()
|
||||
return
|
||||
|
||||
num_spans = flush_request.num_spans
|
||||
while self.queue:
|
||||
num_exported = self._export_batch()
|
||||
num_spans -= num_exported
|
||||
|
||||
if num_spans <= 0:
|
||||
break
|
||||
|
||||
def _export_batch(self) -> int:
|
||||
"""Exports at most max_export_batch_size spans and returns the number of
|
||||
exported spans.
|
||||
"""
|
||||
idx = 0
|
||||
# currently only a single thread acts as consumer, so queue.pop() will
|
||||
# not raise an exception
|
||||
while idx < self.max_export_batch_size and self.queue:
|
||||
self.spans_list[idx] = self.queue.pop()
|
||||
idx += 1
|
||||
token = attach(set_value(_SUPPRESS_INSTRUMENTATION_KEY, True))
|
||||
try:
|
||||
# Ignore type b/c the Optional[None]+slicing is too "clever"
|
||||
# for mypy
|
||||
self.span_exporter.export(self.spans_list[:idx]) # type: ignore
|
||||
except Exception: # pylint: disable=broad-exception-caught
|
||||
logger.exception("Exception while exporting Span batch.")
|
||||
detach(token)
|
||||
|
||||
# clean up list
|
||||
for index in range(idx):
|
||||
self.spans_list[index] = None
|
||||
return idx
|
||||
|
||||
def _drain_queue(self):
|
||||
"""Export all elements until queue is empty.
|
||||
|
||||
Can only be called from the worker thread context because it invokes
|
||||
`export` that is not thread safe.
|
||||
"""
|
||||
while self.queue:
|
||||
self._export_batch()
|
||||
|
||||
def force_flush(self, timeout_millis: int | None = None) -> bool:
|
||||
if timeout_millis is None:
|
||||
timeout_millis = self.export_timeout_millis
|
||||
|
||||
if self.done:
|
||||
logger.warning("Already shutdown, ignoring call to force_flush().")
|
||||
return True
|
||||
|
||||
with self.condition:
|
||||
flush_request = self._get_or_create_flush_request()
|
||||
# signal the worker thread to flush and wait for it to finish
|
||||
self.condition.notify_all()
|
||||
|
||||
# wait for token to be processed
|
||||
ret = flush_request.event.wait(timeout_millis / 1e3)
|
||||
if not ret:
|
||||
logger.warning("Timeout was exceeded in force_flush().")
|
||||
return ret
|
||||
|
||||
def shutdown(self) -> None:
|
||||
# signal the worker thread to finish and then wait for it
|
||||
self.done = True
|
||||
with self.condition:
|
||||
self.condition.notify_all()
|
||||
self.worker_thread.join()
|
||||
self.span_exporter.shutdown()
|
||||
|
||||
@staticmethod
|
||||
def _default_max_queue_size():
|
||||
try:
|
||||
return int(
|
||||
environ.get(OTEL_BSP_MAX_QUEUE_SIZE, _DEFAULT_MAX_QUEUE_SIZE)
|
||||
)
|
||||
except ValueError:
|
||||
logger.exception(
|
||||
_ENV_VAR_INT_VALUE_ERROR_MESSAGE,
|
||||
OTEL_BSP_MAX_QUEUE_SIZE,
|
||||
_DEFAULT_MAX_QUEUE_SIZE,
|
||||
)
|
||||
return _DEFAULT_MAX_QUEUE_SIZE
|
||||
|
||||
@staticmethod
|
||||
def _default_schedule_delay_millis():
|
||||
try:
|
||||
return int(
|
||||
environ.get(
|
||||
OTEL_BSP_SCHEDULE_DELAY, _DEFAULT_SCHEDULE_DELAY_MILLIS
|
||||
)
|
||||
)
|
||||
except ValueError:
|
||||
logger.exception(
|
||||
_ENV_VAR_INT_VALUE_ERROR_MESSAGE,
|
||||
OTEL_BSP_SCHEDULE_DELAY,
|
||||
_DEFAULT_SCHEDULE_DELAY_MILLIS,
|
||||
)
|
||||
return _DEFAULT_SCHEDULE_DELAY_MILLIS
|
||||
|
||||
@staticmethod
|
||||
def _default_max_export_batch_size():
|
||||
try:
|
||||
return int(
|
||||
environ.get(
|
||||
OTEL_BSP_MAX_EXPORT_BATCH_SIZE,
|
||||
_DEFAULT_MAX_EXPORT_BATCH_SIZE,
|
||||
)
|
||||
)
|
||||
except ValueError:
|
||||
logger.exception(
|
||||
_ENV_VAR_INT_VALUE_ERROR_MESSAGE,
|
||||
OTEL_BSP_MAX_EXPORT_BATCH_SIZE,
|
||||
_DEFAULT_MAX_EXPORT_BATCH_SIZE,
|
||||
)
|
||||
return _DEFAULT_MAX_EXPORT_BATCH_SIZE
|
||||
|
||||
@staticmethod
|
||||
def _default_export_timeout_millis():
|
||||
try:
|
||||
return int(
|
||||
environ.get(
|
||||
OTEL_BSP_EXPORT_TIMEOUT, _DEFAULT_EXPORT_TIMEOUT_MILLIS
|
||||
)
|
||||
)
|
||||
except ValueError:
|
||||
logger.exception(
|
||||
_ENV_VAR_INT_VALUE_ERROR_MESSAGE,
|
||||
OTEL_BSP_EXPORT_TIMEOUT,
|
||||
_DEFAULT_EXPORT_TIMEOUT_MILLIS,
|
||||
)
|
||||
return _DEFAULT_EXPORT_TIMEOUT_MILLIS
|
||||
|
||||
@staticmethod
|
||||
def _validate_arguments(
|
||||
max_queue_size, schedule_delay_millis, max_export_batch_size
|
||||
):
|
||||
if max_queue_size <= 0:
|
||||
raise ValueError("max_queue_size must be a positive integer.")
|
||||
|
||||
if schedule_delay_millis <= 0:
|
||||
raise ValueError("schedule_delay_millis must be positive.")
|
||||
|
||||
if max_export_batch_size <= 0:
|
||||
raise ValueError(
|
||||
"max_export_batch_size must be a positive integer."
|
||||
)
|
||||
|
||||
if max_export_batch_size > max_queue_size:
|
||||
raise ValueError(
|
||||
"max_export_batch_size must be less than or equal to max_queue_size."
|
||||
)
|
||||
|
||||
|
||||
class ConsoleSpanExporter(SpanExporter):
|
||||
"""Implementation of :class:`SpanExporter` that prints spans to the
|
||||
console.
|
||||
|
||||
This class can be used for diagnostic purposes. It prints the exported
|
||||
spans to the console STDOUT.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
service_name: str | None = None,
|
||||
out: typing.IO = sys.stdout,
|
||||
formatter: typing.Callable[
|
||||
[ReadableSpan], str
|
||||
] = lambda span: span.to_json() + linesep,
|
||||
):
|
||||
self.out = out
|
||||
self.formatter = formatter
|
||||
self.service_name = service_name
|
||||
|
||||
def export(self, spans: typing.Sequence[ReadableSpan]) -> SpanExportResult:
|
||||
for span in spans:
|
||||
self.out.write(self.formatter(span))
|
||||
self.out.flush()
|
||||
return SpanExportResult.SUCCESS
|
||||
|
||||
def force_flush(self, timeout_millis: int = 30000) -> bool:
|
||||
return True
|
||||
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,61 @@
|
||||
# Copyright The OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import threading
|
||||
import typing
|
||||
|
||||
from opentelemetry.sdk.trace import ReadableSpan
|
||||
from opentelemetry.sdk.trace.export import SpanExporter, SpanExportResult
|
||||
|
||||
|
||||
class InMemorySpanExporter(SpanExporter):
|
||||
"""Implementation of :class:`.SpanExporter` that stores spans in memory.
|
||||
|
||||
This class can be used for testing purposes. It stores the exported spans
|
||||
in a list in memory that can be retrieved using the
|
||||
:func:`.get_finished_spans` method.
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self._finished_spans: typing.List[ReadableSpan] = []
|
||||
self._stopped = False
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def clear(self) -> None:
|
||||
"""Clear list of collected spans."""
|
||||
with self._lock:
|
||||
self._finished_spans.clear()
|
||||
|
||||
def get_finished_spans(self) -> typing.Tuple[ReadableSpan, ...]:
|
||||
"""Get list of collected spans."""
|
||||
with self._lock:
|
||||
return tuple(self._finished_spans)
|
||||
|
||||
def export(self, spans: typing.Sequence[ReadableSpan]) -> SpanExportResult:
|
||||
"""Stores a list of spans in memory."""
|
||||
if self._stopped:
|
||||
return SpanExportResult.FAILURE
|
||||
with self._lock:
|
||||
self._finished_spans.extend(spans)
|
||||
return SpanExportResult.SUCCESS
|
||||
|
||||
def shutdown(self) -> None:
|
||||
"""Shut downs the exporter.
|
||||
|
||||
Calls to export after the exporter has been shut down will fail.
|
||||
"""
|
||||
self._stopped = True
|
||||
|
||||
def force_flush(self, timeout_millis: int = 30000) -> bool:
|
||||
return True
|
||||
@@ -0,0 +1,60 @@
|
||||
# Copyright The OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import abc
|
||||
import random
|
||||
|
||||
from opentelemetry import trace
|
||||
|
||||
|
||||
class IdGenerator(abc.ABC):
|
||||
@abc.abstractmethod
|
||||
def generate_span_id(self) -> int:
|
||||
"""Get a new span ID.
|
||||
|
||||
Returns:
|
||||
A 64-bit int for use as a span ID
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def generate_trace_id(self) -> int:
|
||||
"""Get a new trace ID.
|
||||
|
||||
Implementations should at least make the 64 least significant bits
|
||||
uniformly random. Samplers like the `TraceIdRatioBased` sampler rely on
|
||||
this randomness to make sampling decisions.
|
||||
|
||||
See `the specification on TraceIdRatioBased <https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/trace/sdk.md#traceidratiobased>`_.
|
||||
|
||||
Returns:
|
||||
A 128-bit int for use as a trace ID
|
||||
"""
|
||||
|
||||
|
||||
class RandomIdGenerator(IdGenerator):
|
||||
"""The default ID generator for TracerProvider which randomly generates all
|
||||
bits when generating IDs.
|
||||
"""
|
||||
|
||||
def generate_span_id(self) -> int:
|
||||
span_id = random.getrandbits(64)
|
||||
while span_id == trace.INVALID_SPAN_ID:
|
||||
span_id = random.getrandbits(64)
|
||||
return span_id
|
||||
|
||||
def generate_trace_id(self) -> int:
|
||||
trace_id = random.getrandbits(128)
|
||||
while trace_id == trace.INVALID_TRACE_ID:
|
||||
trace_id = random.getrandbits(128)
|
||||
return trace_id
|
||||
@@ -0,0 +1,453 @@
|
||||
# Copyright The OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
For general information about sampling, see `the specification <https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/trace/sdk.md#sampling>`_.
|
||||
|
||||
OpenTelemetry provides two types of samplers:
|
||||
|
||||
- `StaticSampler`
|
||||
- `TraceIdRatioBased`
|
||||
|
||||
A `StaticSampler` always returns the same sampling result regardless of the conditions. Both possible StaticSamplers are already created:
|
||||
|
||||
- Always sample spans: ALWAYS_ON
|
||||
- Never sample spans: ALWAYS_OFF
|
||||
|
||||
A `TraceIdRatioBased` sampler makes a random sampling result based on the sampling probability given.
|
||||
|
||||
If the span being sampled has a parent, `ParentBased` will respect the parent delegate sampler. Otherwise, it returns the sampling result from the given root sampler.
|
||||
|
||||
Currently, sampling results are always made during the creation of the span. However, this might not always be the case in the future (see `OTEP #115 <https://github.com/open-telemetry/oteps/pull/115>`_).
|
||||
|
||||
Custom samplers can be created by subclassing `Sampler` and implementing `Sampler.should_sample` as well as `Sampler.get_description`.
|
||||
|
||||
Samplers are able to modify the `opentelemetry.trace.span.TraceState` of the parent of the span being created. For custom samplers, it is suggested to implement `Sampler.should_sample` to utilize the
|
||||
parent span context's `opentelemetry.trace.span.TraceState` and pass into the `SamplingResult` instead of the explicit trace_state field passed into the parameter of `Sampler.should_sample`.
|
||||
|
||||
To use a sampler, pass it into the tracer provider constructor. For example:
|
||||
|
||||
.. code:: python
|
||||
|
||||
from opentelemetry import trace
|
||||
from opentelemetry.sdk.trace import TracerProvider
|
||||
from opentelemetry.sdk.trace.export import (
|
||||
ConsoleSpanExporter,
|
||||
SimpleSpanProcessor,
|
||||
)
|
||||
from opentelemetry.sdk.trace.sampling import TraceIdRatioBased
|
||||
|
||||
# sample 1 in every 1000 traces
|
||||
sampler = TraceIdRatioBased(1/1000)
|
||||
|
||||
# set the sampler onto the global tracer provider
|
||||
trace.set_tracer_provider(TracerProvider(sampler=sampler))
|
||||
|
||||
# set up an exporter for sampled spans
|
||||
trace.get_tracer_provider().add_span_processor(
|
||||
SimpleSpanProcessor(ConsoleSpanExporter())
|
||||
)
|
||||
|
||||
# created spans will now be sampled by the TraceIdRatioBased sampler
|
||||
with trace.get_tracer(__name__).start_as_current_span("Test Span"):
|
||||
...
|
||||
|
||||
The tracer sampler can also be configured via environment variables ``OTEL_TRACES_SAMPLER`` and ``OTEL_TRACES_SAMPLER_ARG`` (only if applicable).
|
||||
The list of built-in values for ``OTEL_TRACES_SAMPLER`` are:
|
||||
|
||||
* always_on - Sampler that always samples spans, regardless of the parent span's sampling decision.
|
||||
* always_off - Sampler that never samples spans, regardless of the parent span's sampling decision.
|
||||
* traceidratio - Sampler that samples probabilistically based on rate.
|
||||
* parentbased_always_on - (default) Sampler that respects its parent span's sampling decision, but otherwise always samples.
|
||||
* parentbased_always_off - Sampler that respects its parent span's sampling decision, but otherwise never samples.
|
||||
* parentbased_traceidratio - Sampler that respects its parent span's sampling decision, but otherwise samples probabilistically based on rate.
|
||||
|
||||
Sampling probability can be set with ``OTEL_TRACES_SAMPLER_ARG`` if the sampler is traceidratio or parentbased_traceidratio. Rate must be in the range [0.0,1.0]. When not provided rate will be set to
|
||||
1.0 (maximum rate possible).
|
||||
|
||||
Prev example but with environment variables. Please make sure to set the env ``OTEL_TRACES_SAMPLER=traceidratio`` and ``OTEL_TRACES_SAMPLER_ARG=0.001``.
|
||||
|
||||
.. code:: python
|
||||
|
||||
from opentelemetry import trace
|
||||
from opentelemetry.sdk.trace import TracerProvider
|
||||
from opentelemetry.sdk.trace.export import (
|
||||
ConsoleSpanExporter,
|
||||
SimpleSpanProcessor,
|
||||
)
|
||||
|
||||
trace.set_tracer_provider(TracerProvider())
|
||||
|
||||
# set up an exporter for sampled spans
|
||||
trace.get_tracer_provider().add_span_processor(
|
||||
SimpleSpanProcessor(ConsoleSpanExporter())
|
||||
)
|
||||
|
||||
# created spans will now be sampled by the TraceIdRatioBased sampler with rate 1/1000.
|
||||
with trace.get_tracer(__name__).start_as_current_span("Test Span"):
|
||||
...
|
||||
|
||||
When utilizing a configurator, you can configure a custom sampler. In order to create a configurable custom sampler, create an entry point for the custom sampler
|
||||
factory method or function under the entry point group, ``opentelemetry_traces_sampler``. The custom sampler factory method must be of type ``Callable[[str], Sampler]``, taking a single string argument and
|
||||
returning a Sampler object. The single input will come from the string value of the ``OTEL_TRACES_SAMPLER_ARG`` environment variable. If ``OTEL_TRACES_SAMPLER_ARG`` is not configured, the input will
|
||||
be an empty string. For example:
|
||||
|
||||
.. code:: python
|
||||
|
||||
setup(
|
||||
...
|
||||
entry_points={
|
||||
...
|
||||
"opentelemetry_traces_sampler": [
|
||||
"custom_sampler_name = path.to.sampler.factory.method:CustomSamplerFactory.get_sampler"
|
||||
]
|
||||
}
|
||||
)
|
||||
# ...
|
||||
class CustomRatioSampler(Sampler):
|
||||
def __init__(rate):
|
||||
# ...
|
||||
# ...
|
||||
class CustomSamplerFactory:
|
||||
@staticmethod
|
||||
def get_sampler(sampler_argument):
|
||||
try:
|
||||
rate = float(sampler_argument)
|
||||
return CustomSampler(rate)
|
||||
except ValueError: # In case argument is empty string.
|
||||
return CustomSampler(0.5)
|
||||
|
||||
In order to configure you application with a custom sampler's entry point, set the ``OTEL_TRACES_SAMPLER`` environment variable to the key name of the entry point. For example, to configured the
|
||||
above sampler, set ``OTEL_TRACES_SAMPLER=custom_sampler_name`` and ``OTEL_TRACES_SAMPLER_ARG=0.5``.
|
||||
"""
|
||||
|
||||
import abc
|
||||
import enum
|
||||
import os
|
||||
from logging import getLogger
|
||||
from types import MappingProxyType
|
||||
from typing import Optional, Sequence
|
||||
|
||||
# pylint: disable=unused-import
|
||||
from opentelemetry.context import Context
|
||||
from opentelemetry.sdk.environment_variables import (
|
||||
OTEL_TRACES_SAMPLER,
|
||||
OTEL_TRACES_SAMPLER_ARG,
|
||||
)
|
||||
from opentelemetry.trace import Link, SpanKind, get_current_span
|
||||
from opentelemetry.trace.span import TraceState
|
||||
from opentelemetry.util.types import Attributes
|
||||
|
||||
_logger = getLogger(__name__)
|
||||
|
||||
|
||||
class Decision(enum.Enum):
|
||||
# IsRecording() == false, span will not be recorded and all events and attributes will be dropped.
|
||||
DROP = 0
|
||||
# IsRecording() == true, but Sampled flag MUST NOT be set.
|
||||
RECORD_ONLY = 1
|
||||
# IsRecording() == true AND Sampled flag` MUST be set.
|
||||
RECORD_AND_SAMPLE = 2
|
||||
|
||||
def is_recording(self):
|
||||
return self in (Decision.RECORD_ONLY, Decision.RECORD_AND_SAMPLE)
|
||||
|
||||
def is_sampled(self):
|
||||
return self is Decision.RECORD_AND_SAMPLE
|
||||
|
||||
|
||||
class SamplingResult:
|
||||
"""A sampling result as applied to a newly-created Span.
|
||||
|
||||
Args:
|
||||
decision: A sampling decision based off of whether the span is recorded
|
||||
and the sampled flag in trace flags in the span context.
|
||||
attributes: Attributes to add to the `opentelemetry.trace.Span`.
|
||||
trace_state: The tracestate used for the `opentelemetry.trace.Span`.
|
||||
Could possibly have been modified by the sampler.
|
||||
"""
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"{type(self).__name__}({str(self.decision)}, attributes={str(self.attributes)})"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
decision: Decision,
|
||||
attributes: "Attributes" = None,
|
||||
trace_state: Optional["TraceState"] = None,
|
||||
) -> None:
|
||||
self.decision = decision
|
||||
if attributes is None:
|
||||
self.attributes = MappingProxyType({})
|
||||
else:
|
||||
self.attributes = MappingProxyType(attributes)
|
||||
self.trace_state = trace_state
|
||||
|
||||
|
||||
class Sampler(abc.ABC):
|
||||
@abc.abstractmethod
|
||||
def should_sample(
|
||||
self,
|
||||
parent_context: Optional["Context"],
|
||||
trace_id: int,
|
||||
name: str,
|
||||
kind: Optional[SpanKind] = None,
|
||||
attributes: Attributes = None,
|
||||
links: Optional[Sequence["Link"]] = None,
|
||||
trace_state: Optional["TraceState"] = None,
|
||||
) -> "SamplingResult":
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def get_description(self) -> str:
|
||||
pass
|
||||
|
||||
|
||||
class StaticSampler(Sampler):
|
||||
"""Sampler that always returns the same decision."""
|
||||
|
||||
def __init__(self, decision: "Decision") -> None:
|
||||
self._decision = decision
|
||||
|
||||
def should_sample(
|
||||
self,
|
||||
parent_context: Optional["Context"],
|
||||
trace_id: int,
|
||||
name: str,
|
||||
kind: Optional[SpanKind] = None,
|
||||
attributes: Attributes = None,
|
||||
links: Optional[Sequence["Link"]] = None,
|
||||
trace_state: Optional["TraceState"] = None,
|
||||
) -> "SamplingResult":
|
||||
if self._decision is Decision.DROP:
|
||||
attributes = None
|
||||
return SamplingResult(
|
||||
self._decision,
|
||||
attributes,
|
||||
_get_parent_trace_state(parent_context),
|
||||
)
|
||||
|
||||
def get_description(self) -> str:
|
||||
if self._decision is Decision.DROP:
|
||||
return "AlwaysOffSampler"
|
||||
return "AlwaysOnSampler"
|
||||
|
||||
|
||||
ALWAYS_OFF = StaticSampler(Decision.DROP)
|
||||
"""Sampler that never samples spans, regardless of the parent span's sampling decision."""
|
||||
|
||||
ALWAYS_ON = StaticSampler(Decision.RECORD_AND_SAMPLE)
|
||||
"""Sampler that always samples spans, regardless of the parent span's sampling decision."""
|
||||
|
||||
|
||||
class TraceIdRatioBased(Sampler):
|
||||
"""
|
||||
Sampler that makes sampling decisions probabilistically based on `rate`.
|
||||
|
||||
Args:
|
||||
rate: Probability (between 0 and 1) that a span will be sampled
|
||||
"""
|
||||
|
||||
def __init__(self, rate: float):
|
||||
if rate < 0.0 or rate > 1.0:
|
||||
raise ValueError("Probability must be in range [0.0, 1.0].")
|
||||
self._rate = rate
|
||||
self._bound = self.get_bound_for_rate(self._rate)
|
||||
|
||||
# For compatibility with 64 bit trace IDs, the sampler checks the 64
|
||||
# low-order bits of the trace ID to decide whether to sample a given trace.
|
||||
TRACE_ID_LIMIT = (1 << 64) - 1
|
||||
|
||||
@classmethod
|
||||
def get_bound_for_rate(cls, rate: float) -> int:
|
||||
return round(rate * (cls.TRACE_ID_LIMIT + 1))
|
||||
|
||||
@property
|
||||
def rate(self) -> float:
|
||||
return self._rate
|
||||
|
||||
@property
|
||||
def bound(self) -> int:
|
||||
return self._bound
|
||||
|
||||
def should_sample(
|
||||
self,
|
||||
parent_context: Optional["Context"],
|
||||
trace_id: int,
|
||||
name: str,
|
||||
kind: Optional[SpanKind] = None,
|
||||
attributes: Attributes = None,
|
||||
links: Optional[Sequence["Link"]] = None,
|
||||
trace_state: Optional["TraceState"] = None,
|
||||
) -> "SamplingResult":
|
||||
decision = Decision.DROP
|
||||
if trace_id & self.TRACE_ID_LIMIT < self.bound:
|
||||
decision = Decision.RECORD_AND_SAMPLE
|
||||
if decision is Decision.DROP:
|
||||
attributes = None
|
||||
return SamplingResult(
|
||||
decision,
|
||||
attributes,
|
||||
_get_parent_trace_state(parent_context),
|
||||
)
|
||||
|
||||
def get_description(self) -> str:
|
||||
return f"TraceIdRatioBased{{{self._rate}}}"
|
||||
|
||||
|
||||
class ParentBased(Sampler):
|
||||
"""
|
||||
If a parent is set, applies the respective delegate sampler.
|
||||
Otherwise, uses the root provided at initialization to make a
|
||||
decision.
|
||||
|
||||
Args:
|
||||
root: Sampler called for spans with no parent (root spans).
|
||||
remote_parent_sampled: Sampler called for a remote sampled parent.
|
||||
remote_parent_not_sampled: Sampler called for a remote parent that is
|
||||
not sampled.
|
||||
local_parent_sampled: Sampler called for a local sampled parent.
|
||||
local_parent_not_sampled: Sampler called for a local parent that is
|
||||
not sampled.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
root: Sampler,
|
||||
remote_parent_sampled: Sampler = ALWAYS_ON,
|
||||
remote_parent_not_sampled: Sampler = ALWAYS_OFF,
|
||||
local_parent_sampled: Sampler = ALWAYS_ON,
|
||||
local_parent_not_sampled: Sampler = ALWAYS_OFF,
|
||||
):
|
||||
self._root = root
|
||||
self._remote_parent_sampled = remote_parent_sampled
|
||||
self._remote_parent_not_sampled = remote_parent_not_sampled
|
||||
self._local_parent_sampled = local_parent_sampled
|
||||
self._local_parent_not_sampled = local_parent_not_sampled
|
||||
|
||||
def should_sample(
|
||||
self,
|
||||
parent_context: Optional["Context"],
|
||||
trace_id: int,
|
||||
name: str,
|
||||
kind: Optional[SpanKind] = None,
|
||||
attributes: Attributes = None,
|
||||
links: Optional[Sequence["Link"]] = None,
|
||||
trace_state: Optional["TraceState"] = None,
|
||||
) -> "SamplingResult":
|
||||
parent_span_context = get_current_span(
|
||||
parent_context
|
||||
).get_span_context()
|
||||
# default to the root sampler
|
||||
sampler = self._root
|
||||
# respect the sampling and remote flag of the parent if present
|
||||
if parent_span_context is not None and parent_span_context.is_valid:
|
||||
if parent_span_context.is_remote:
|
||||
if parent_span_context.trace_flags.sampled:
|
||||
sampler = self._remote_parent_sampled
|
||||
else:
|
||||
sampler = self._remote_parent_not_sampled
|
||||
else:
|
||||
if parent_span_context.trace_flags.sampled:
|
||||
sampler = self._local_parent_sampled
|
||||
else:
|
||||
sampler = self._local_parent_not_sampled
|
||||
|
||||
return sampler.should_sample(
|
||||
parent_context=parent_context,
|
||||
trace_id=trace_id,
|
||||
name=name,
|
||||
kind=kind,
|
||||
attributes=attributes,
|
||||
links=links,
|
||||
)
|
||||
|
||||
def get_description(self):
|
||||
return f"ParentBased{{root:{self._root.get_description()},remoteParentSampled:{self._remote_parent_sampled.get_description()},remoteParentNotSampled:{self._remote_parent_not_sampled.get_description()},localParentSampled:{self._local_parent_sampled.get_description()},localParentNotSampled:{self._local_parent_not_sampled.get_description()}}}"
|
||||
|
||||
|
||||
DEFAULT_OFF = ParentBased(ALWAYS_OFF)
|
||||
"""Sampler that respects its parent span's sampling decision, but otherwise never samples."""
|
||||
|
||||
DEFAULT_ON = ParentBased(ALWAYS_ON)
|
||||
"""Sampler that respects its parent span's sampling decision, but otherwise always samples."""
|
||||
|
||||
|
||||
class ParentBasedTraceIdRatio(ParentBased):
|
||||
"""
|
||||
Sampler that respects its parent span's sampling decision, but otherwise
|
||||
samples probabilistically based on `rate`.
|
||||
"""
|
||||
|
||||
def __init__(self, rate: float):
|
||||
root = TraceIdRatioBased(rate=rate)
|
||||
super().__init__(root=root)
|
||||
|
||||
|
||||
class _AlwaysOff(StaticSampler):
|
||||
def __init__(self, _):
|
||||
super().__init__(Decision.DROP)
|
||||
|
||||
|
||||
class _AlwaysOn(StaticSampler):
|
||||
def __init__(self, _):
|
||||
super().__init__(Decision.RECORD_AND_SAMPLE)
|
||||
|
||||
|
||||
class _ParentBasedAlwaysOff(ParentBased):
|
||||
def __init__(self, _):
|
||||
super().__init__(ALWAYS_OFF)
|
||||
|
||||
|
||||
class _ParentBasedAlwaysOn(ParentBased):
|
||||
def __init__(self, _):
|
||||
super().__init__(ALWAYS_ON)
|
||||
|
||||
|
||||
_KNOWN_SAMPLERS = {
|
||||
"always_on": ALWAYS_ON,
|
||||
"always_off": ALWAYS_OFF,
|
||||
"parentbased_always_on": DEFAULT_ON,
|
||||
"parentbased_always_off": DEFAULT_OFF,
|
||||
"traceidratio": TraceIdRatioBased,
|
||||
"parentbased_traceidratio": ParentBasedTraceIdRatio,
|
||||
}
|
||||
|
||||
|
||||
def _get_from_env_or_default() -> Sampler:
|
||||
trace_sampler = os.getenv(
|
||||
OTEL_TRACES_SAMPLER, "parentbased_always_on"
|
||||
).lower()
|
||||
if trace_sampler not in _KNOWN_SAMPLERS:
|
||||
_logger.warning("Couldn't recognize sampler %s.", trace_sampler)
|
||||
trace_sampler = "parentbased_always_on"
|
||||
|
||||
if trace_sampler in ("traceidratio", "parentbased_traceidratio"):
|
||||
try:
|
||||
rate = float(os.getenv(OTEL_TRACES_SAMPLER_ARG))
|
||||
except (ValueError, TypeError):
|
||||
_logger.warning("Could not convert TRACES_SAMPLER_ARG to float.")
|
||||
rate = 1.0
|
||||
return _KNOWN_SAMPLERS[trace_sampler](rate)
|
||||
|
||||
return _KNOWN_SAMPLERS[trace_sampler]
|
||||
|
||||
|
||||
def _get_parent_trace_state(
|
||||
parent_context: Optional[Context],
|
||||
) -> Optional["TraceState"]:
|
||||
parent_span_context = get_current_span(parent_context).get_span_context()
|
||||
if parent_span_context is None or not parent_span_context.is_valid:
|
||||
return None
|
||||
return parent_span_context.trace_state
|
||||
Reference in New Issue
Block a user