structure saas with tools

This commit is contained in:
Davidson Gomes
2025-04-25 15:30:54 -03:00
commit 1aef473937
16434 changed files with 6584257 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,519 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import collections
import logging
import os
import sys
import threading
import typing
import weakref
from enum import Enum
from os import environ, linesep
from time import time_ns
from opentelemetry.context import (
_SUPPRESS_INSTRUMENTATION_KEY,
Context,
attach,
detach,
set_value,
)
from opentelemetry.sdk.environment_variables import (
OTEL_BSP_EXPORT_TIMEOUT,
OTEL_BSP_MAX_EXPORT_BATCH_SIZE,
OTEL_BSP_MAX_QUEUE_SIZE,
OTEL_BSP_SCHEDULE_DELAY,
)
from opentelemetry.sdk.trace import ReadableSpan, Span, SpanProcessor
from opentelemetry.util._once import Once
_DEFAULT_SCHEDULE_DELAY_MILLIS = 5000
_DEFAULT_MAX_EXPORT_BATCH_SIZE = 512
_DEFAULT_EXPORT_TIMEOUT_MILLIS = 30000
_DEFAULT_MAX_QUEUE_SIZE = 2048
_ENV_VAR_INT_VALUE_ERROR_MESSAGE = (
"Unable to parse value for %s as integer. Defaulting to %s."
)
logger = logging.getLogger(__name__)
class SpanExportResult(Enum):
SUCCESS = 0
FAILURE = 1
class SpanExporter:
"""Interface for exporting spans.
Interface to be implemented by services that want to export spans recorded
in their own format.
To export data this MUST be registered to the :class`opentelemetry.sdk.trace.Tracer` using a
`SimpleSpanProcessor` or a `BatchSpanProcessor`.
"""
def export(
self, spans: typing.Sequence[ReadableSpan]
) -> "SpanExportResult":
"""Exports a batch of telemetry data.
Args:
spans: The list of `opentelemetry.trace.Span` objects to be exported
Returns:
The result of the export
"""
def shutdown(self) -> None:
"""Shuts down the exporter.
Called when the SDK is shut down.
"""
def force_flush(self, timeout_millis: int = 30000) -> bool:
"""Hint to ensure that the export of any spans the exporter has received
prior to the call to ForceFlush SHOULD be completed as soon as possible, preferably
before returning from this method.
"""
class SimpleSpanProcessor(SpanProcessor):
"""Simple SpanProcessor implementation.
SimpleSpanProcessor is an implementation of `SpanProcessor` that
passes ended spans directly to the configured `SpanExporter`.
"""
def __init__(self, span_exporter: SpanExporter):
self.span_exporter = span_exporter
def on_start(
self, span: Span, parent_context: typing.Optional[Context] = None
) -> None:
pass
def on_end(self, span: ReadableSpan) -> None:
if not span.context.trace_flags.sampled:
return
token = attach(set_value(_SUPPRESS_INSTRUMENTATION_KEY, True))
try:
self.span_exporter.export((span,))
# pylint: disable=broad-exception-caught
except Exception:
logger.exception("Exception while exporting Span.")
detach(token)
def shutdown(self) -> None:
self.span_exporter.shutdown()
def force_flush(self, timeout_millis: int = 30000) -> bool:
# pylint: disable=unused-argument
return True
class _FlushRequest:
"""Represents a request for the BatchSpanProcessor to flush spans."""
__slots__ = ["event", "num_spans"]
def __init__(self):
self.event = threading.Event()
self.num_spans = 0
_BSP_RESET_ONCE = Once()
class BatchSpanProcessor(SpanProcessor):
"""Batch span processor implementation.
`BatchSpanProcessor` is an implementation of `SpanProcessor` that
batches ended spans and pushes them to the configured `SpanExporter`.
`BatchSpanProcessor` is configurable with the following environment
variables which correspond to constructor parameters:
- :envvar:`OTEL_BSP_SCHEDULE_DELAY`
- :envvar:`OTEL_BSP_MAX_QUEUE_SIZE`
- :envvar:`OTEL_BSP_MAX_EXPORT_BATCH_SIZE`
- :envvar:`OTEL_BSP_EXPORT_TIMEOUT`
"""
def __init__(
self,
span_exporter: SpanExporter,
max_queue_size: int | None = None,
schedule_delay_millis: float | None = None,
max_export_batch_size: int | None = None,
export_timeout_millis: float | None = None,
):
if max_queue_size is None:
max_queue_size = BatchSpanProcessor._default_max_queue_size()
if schedule_delay_millis is None:
schedule_delay_millis = (
BatchSpanProcessor._default_schedule_delay_millis()
)
if max_export_batch_size is None:
max_export_batch_size = (
BatchSpanProcessor._default_max_export_batch_size()
)
if export_timeout_millis is None:
export_timeout_millis = (
BatchSpanProcessor._default_export_timeout_millis()
)
BatchSpanProcessor._validate_arguments(
max_queue_size, schedule_delay_millis, max_export_batch_size
)
self.span_exporter = span_exporter
self.queue = collections.deque([], max_queue_size) # type: typing.Deque[Span]
self.worker_thread = threading.Thread(
name="OtelBatchSpanProcessor", target=self.worker, daemon=True
)
self.condition = threading.Condition(threading.Lock())
self._flush_request = None # type: typing.Optional[_FlushRequest]
self.schedule_delay_millis = schedule_delay_millis
self.max_export_batch_size = max_export_batch_size
self.max_queue_size = max_queue_size
self.export_timeout_millis = export_timeout_millis
self.done = False
# flag that indicates that spans are being dropped
self._spans_dropped = False
# precallocated list to send spans to exporter
self.spans_list = [None] * self.max_export_batch_size # type: typing.List[typing.Optional[Span]]
self.worker_thread.start()
if hasattr(os, "register_at_fork"):
weak_reinit = weakref.WeakMethod(self._at_fork_reinit)
os.register_at_fork(after_in_child=lambda: weak_reinit()()) # pylint: disable=unnecessary-lambda
self._pid = os.getpid()
def on_start(
self, span: Span, parent_context: Context | None = None
) -> None:
pass
def on_end(self, span: ReadableSpan) -> None:
if self.done:
logger.warning("Already shutdown, dropping span.")
return
if not span.context.trace_flags.sampled:
return
if self._pid != os.getpid():
_BSP_RESET_ONCE.do_once(self._at_fork_reinit)
if len(self.queue) == self.max_queue_size:
if not self._spans_dropped:
logger.warning("Queue is full, likely spans will be dropped.")
self._spans_dropped = True
self.queue.appendleft(span)
if len(self.queue) >= self.max_export_batch_size:
with self.condition:
self.condition.notify()
def _at_fork_reinit(self):
self.condition = threading.Condition(threading.Lock())
self.queue.clear()
# worker_thread is local to a process, only the thread that issued fork continues
# to exist. A new worker thread must be started in child process.
self.worker_thread = threading.Thread(
name="OtelBatchSpanProcessor", target=self.worker, daemon=True
)
self.worker_thread.start()
self._pid = os.getpid()
def worker(self):
timeout = self.schedule_delay_millis / 1e3
flush_request = None # type: typing.Optional[_FlushRequest]
while not self.done:
with self.condition:
if self.done:
# done flag may have changed, avoid waiting
break
flush_request = self._get_and_unset_flush_request()
if (
len(self.queue) < self.max_export_batch_size
and flush_request is None
):
self.condition.wait(timeout)
flush_request = self._get_and_unset_flush_request()
if not self.queue:
# spurious notification, let's wait again, reset timeout
timeout = self.schedule_delay_millis / 1e3
self._notify_flush_request_finished(flush_request)
flush_request = None
continue
if self.done:
# missing spans will be sent when calling flush
break
# subtract the duration of this export call to the next timeout
start = time_ns()
self._export(flush_request)
end = time_ns()
duration = (end - start) / 1e9
timeout = self.schedule_delay_millis / 1e3 - duration
self._notify_flush_request_finished(flush_request)
flush_request = None
# there might have been a new flush request while export was running
# and before the done flag switched to true
with self.condition:
shutdown_flush_request = self._get_and_unset_flush_request()
# be sure that all spans are sent
self._drain_queue()
self._notify_flush_request_finished(flush_request)
self._notify_flush_request_finished(shutdown_flush_request)
def _get_and_unset_flush_request(
self,
) -> typing.Optional[_FlushRequest]:
"""Returns the current flush request and makes it invisible to the
worker thread for subsequent calls.
"""
flush_request = self._flush_request
self._flush_request = None
if flush_request is not None:
flush_request.num_spans = len(self.queue)
return flush_request
@staticmethod
def _notify_flush_request_finished(
flush_request: typing.Optional[_FlushRequest],
):
"""Notifies the flush initiator(s) waiting on the given request/event
that the flush operation was finished.
"""
if flush_request is not None:
flush_request.event.set()
def _get_or_create_flush_request(self) -> _FlushRequest:
"""Either returns the current active flush event or creates a new one.
The flush event will be visible and read by the worker thread before an
export operation starts. Callers of a flush operation may wait on the
returned event to be notified when the flush/export operation was
finished.
This method is not thread-safe, i.e. callers need to take care about
synchronization/locking.
"""
if self._flush_request is None:
self._flush_request = _FlushRequest()
return self._flush_request
def _export(self, flush_request: typing.Optional[_FlushRequest]):
"""Exports spans considering the given flush_request.
In case of a given flush_requests spans are exported in batches until
the number of exported spans reached or exceeded the number of spans in
the flush request.
In no flush_request was given at most max_export_batch_size spans are
exported.
"""
if not flush_request:
self._export_batch()
return
num_spans = flush_request.num_spans
while self.queue:
num_exported = self._export_batch()
num_spans -= num_exported
if num_spans <= 0:
break
def _export_batch(self) -> int:
"""Exports at most max_export_batch_size spans and returns the number of
exported spans.
"""
idx = 0
# currently only a single thread acts as consumer, so queue.pop() will
# not raise an exception
while idx < self.max_export_batch_size and self.queue:
self.spans_list[idx] = self.queue.pop()
idx += 1
token = attach(set_value(_SUPPRESS_INSTRUMENTATION_KEY, True))
try:
# Ignore type b/c the Optional[None]+slicing is too "clever"
# for mypy
self.span_exporter.export(self.spans_list[:idx]) # type: ignore
except Exception: # pylint: disable=broad-exception-caught
logger.exception("Exception while exporting Span batch.")
detach(token)
# clean up list
for index in range(idx):
self.spans_list[index] = None
return idx
def _drain_queue(self):
"""Export all elements until queue is empty.
Can only be called from the worker thread context because it invokes
`export` that is not thread safe.
"""
while self.queue:
self._export_batch()
def force_flush(self, timeout_millis: int | None = None) -> bool:
if timeout_millis is None:
timeout_millis = self.export_timeout_millis
if self.done:
logger.warning("Already shutdown, ignoring call to force_flush().")
return True
with self.condition:
flush_request = self._get_or_create_flush_request()
# signal the worker thread to flush and wait for it to finish
self.condition.notify_all()
# wait for token to be processed
ret = flush_request.event.wait(timeout_millis / 1e3)
if not ret:
logger.warning("Timeout was exceeded in force_flush().")
return ret
def shutdown(self) -> None:
# signal the worker thread to finish and then wait for it
self.done = True
with self.condition:
self.condition.notify_all()
self.worker_thread.join()
self.span_exporter.shutdown()
@staticmethod
def _default_max_queue_size():
try:
return int(
environ.get(OTEL_BSP_MAX_QUEUE_SIZE, _DEFAULT_MAX_QUEUE_SIZE)
)
except ValueError:
logger.exception(
_ENV_VAR_INT_VALUE_ERROR_MESSAGE,
OTEL_BSP_MAX_QUEUE_SIZE,
_DEFAULT_MAX_QUEUE_SIZE,
)
return _DEFAULT_MAX_QUEUE_SIZE
@staticmethod
def _default_schedule_delay_millis():
try:
return int(
environ.get(
OTEL_BSP_SCHEDULE_DELAY, _DEFAULT_SCHEDULE_DELAY_MILLIS
)
)
except ValueError:
logger.exception(
_ENV_VAR_INT_VALUE_ERROR_MESSAGE,
OTEL_BSP_SCHEDULE_DELAY,
_DEFAULT_SCHEDULE_DELAY_MILLIS,
)
return _DEFAULT_SCHEDULE_DELAY_MILLIS
@staticmethod
def _default_max_export_batch_size():
try:
return int(
environ.get(
OTEL_BSP_MAX_EXPORT_BATCH_SIZE,
_DEFAULT_MAX_EXPORT_BATCH_SIZE,
)
)
except ValueError:
logger.exception(
_ENV_VAR_INT_VALUE_ERROR_MESSAGE,
OTEL_BSP_MAX_EXPORT_BATCH_SIZE,
_DEFAULT_MAX_EXPORT_BATCH_SIZE,
)
return _DEFAULT_MAX_EXPORT_BATCH_SIZE
@staticmethod
def _default_export_timeout_millis():
try:
return int(
environ.get(
OTEL_BSP_EXPORT_TIMEOUT, _DEFAULT_EXPORT_TIMEOUT_MILLIS
)
)
except ValueError:
logger.exception(
_ENV_VAR_INT_VALUE_ERROR_MESSAGE,
OTEL_BSP_EXPORT_TIMEOUT,
_DEFAULT_EXPORT_TIMEOUT_MILLIS,
)
return _DEFAULT_EXPORT_TIMEOUT_MILLIS
@staticmethod
def _validate_arguments(
max_queue_size, schedule_delay_millis, max_export_batch_size
):
if max_queue_size <= 0:
raise ValueError("max_queue_size must be a positive integer.")
if schedule_delay_millis <= 0:
raise ValueError("schedule_delay_millis must be positive.")
if max_export_batch_size <= 0:
raise ValueError(
"max_export_batch_size must be a positive integer."
)
if max_export_batch_size > max_queue_size:
raise ValueError(
"max_export_batch_size must be less than or equal to max_queue_size."
)
class ConsoleSpanExporter(SpanExporter):
"""Implementation of :class:`SpanExporter` that prints spans to the
console.
This class can be used for diagnostic purposes. It prints the exported
spans to the console STDOUT.
"""
def __init__(
self,
service_name: str | None = None,
out: typing.IO = sys.stdout,
formatter: typing.Callable[
[ReadableSpan], str
] = lambda span: span.to_json() + linesep,
):
self.out = out
self.formatter = formatter
self.service_name = service_name
def export(self, spans: typing.Sequence[ReadableSpan]) -> SpanExportResult:
for span in spans:
self.out.write(self.formatter(span))
self.out.flush()
return SpanExportResult.SUCCESS
def force_flush(self, timeout_millis: int = 30000) -> bool:
return True

View File

@@ -0,0 +1,61 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import threading
import typing
from opentelemetry.sdk.trace import ReadableSpan
from opentelemetry.sdk.trace.export import SpanExporter, SpanExportResult
class InMemorySpanExporter(SpanExporter):
"""Implementation of :class:`.SpanExporter` that stores spans in memory.
This class can be used for testing purposes. It stores the exported spans
in a list in memory that can be retrieved using the
:func:`.get_finished_spans` method.
"""
def __init__(self) -> None:
self._finished_spans: typing.List[ReadableSpan] = []
self._stopped = False
self._lock = threading.Lock()
def clear(self) -> None:
"""Clear list of collected spans."""
with self._lock:
self._finished_spans.clear()
def get_finished_spans(self) -> typing.Tuple[ReadableSpan, ...]:
"""Get list of collected spans."""
with self._lock:
return tuple(self._finished_spans)
def export(self, spans: typing.Sequence[ReadableSpan]) -> SpanExportResult:
"""Stores a list of spans in memory."""
if self._stopped:
return SpanExportResult.FAILURE
with self._lock:
self._finished_spans.extend(spans)
return SpanExportResult.SUCCESS
def shutdown(self) -> None:
"""Shut downs the exporter.
Calls to export after the exporter has been shut down will fail.
"""
self._stopped = True
def force_flush(self, timeout_millis: int = 30000) -> bool:
return True

View File

@@ -0,0 +1,60 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
import random
from opentelemetry import trace
class IdGenerator(abc.ABC):
@abc.abstractmethod
def generate_span_id(self) -> int:
"""Get a new span ID.
Returns:
A 64-bit int for use as a span ID
"""
@abc.abstractmethod
def generate_trace_id(self) -> int:
"""Get a new trace ID.
Implementations should at least make the 64 least significant bits
uniformly random. Samplers like the `TraceIdRatioBased` sampler rely on
this randomness to make sampling decisions.
See `the specification on TraceIdRatioBased <https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/trace/sdk.md#traceidratiobased>`_.
Returns:
A 128-bit int for use as a trace ID
"""
class RandomIdGenerator(IdGenerator):
"""The default ID generator for TracerProvider which randomly generates all
bits when generating IDs.
"""
def generate_span_id(self) -> int:
span_id = random.getrandbits(64)
while span_id == trace.INVALID_SPAN_ID:
span_id = random.getrandbits(64)
return span_id
def generate_trace_id(self) -> int:
trace_id = random.getrandbits(128)
while trace_id == trace.INVALID_TRACE_ID:
trace_id = random.getrandbits(128)
return trace_id

View File

@@ -0,0 +1,453 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
For general information about sampling, see `the specification <https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/trace/sdk.md#sampling>`_.
OpenTelemetry provides two types of samplers:
- `StaticSampler`
- `TraceIdRatioBased`
A `StaticSampler` always returns the same sampling result regardless of the conditions. Both possible StaticSamplers are already created:
- Always sample spans: ALWAYS_ON
- Never sample spans: ALWAYS_OFF
A `TraceIdRatioBased` sampler makes a random sampling result based on the sampling probability given.
If the span being sampled has a parent, `ParentBased` will respect the parent delegate sampler. Otherwise, it returns the sampling result from the given root sampler.
Currently, sampling results are always made during the creation of the span. However, this might not always be the case in the future (see `OTEP #115 <https://github.com/open-telemetry/oteps/pull/115>`_).
Custom samplers can be created by subclassing `Sampler` and implementing `Sampler.should_sample` as well as `Sampler.get_description`.
Samplers are able to modify the `opentelemetry.trace.span.TraceState` of the parent of the span being created. For custom samplers, it is suggested to implement `Sampler.should_sample` to utilize the
parent span context's `opentelemetry.trace.span.TraceState` and pass into the `SamplingResult` instead of the explicit trace_state field passed into the parameter of `Sampler.should_sample`.
To use a sampler, pass it into the tracer provider constructor. For example:
.. code:: python
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import (
ConsoleSpanExporter,
SimpleSpanProcessor,
)
from opentelemetry.sdk.trace.sampling import TraceIdRatioBased
# sample 1 in every 1000 traces
sampler = TraceIdRatioBased(1/1000)
# set the sampler onto the global tracer provider
trace.set_tracer_provider(TracerProvider(sampler=sampler))
# set up an exporter for sampled spans
trace.get_tracer_provider().add_span_processor(
SimpleSpanProcessor(ConsoleSpanExporter())
)
# created spans will now be sampled by the TraceIdRatioBased sampler
with trace.get_tracer(__name__).start_as_current_span("Test Span"):
...
The tracer sampler can also be configured via environment variables ``OTEL_TRACES_SAMPLER`` and ``OTEL_TRACES_SAMPLER_ARG`` (only if applicable).
The list of built-in values for ``OTEL_TRACES_SAMPLER`` are:
* always_on - Sampler that always samples spans, regardless of the parent span's sampling decision.
* always_off - Sampler that never samples spans, regardless of the parent span's sampling decision.
* traceidratio - Sampler that samples probabilistically based on rate.
* parentbased_always_on - (default) Sampler that respects its parent span's sampling decision, but otherwise always samples.
* parentbased_always_off - Sampler that respects its parent span's sampling decision, but otherwise never samples.
* parentbased_traceidratio - Sampler that respects its parent span's sampling decision, but otherwise samples probabilistically based on rate.
Sampling probability can be set with ``OTEL_TRACES_SAMPLER_ARG`` if the sampler is traceidratio or parentbased_traceidratio. Rate must be in the range [0.0,1.0]. When not provided rate will be set to
1.0 (maximum rate possible).
Prev example but with environment variables. Please make sure to set the env ``OTEL_TRACES_SAMPLER=traceidratio`` and ``OTEL_TRACES_SAMPLER_ARG=0.001``.
.. code:: python
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import (
ConsoleSpanExporter,
SimpleSpanProcessor,
)
trace.set_tracer_provider(TracerProvider())
# set up an exporter for sampled spans
trace.get_tracer_provider().add_span_processor(
SimpleSpanProcessor(ConsoleSpanExporter())
)
# created spans will now be sampled by the TraceIdRatioBased sampler with rate 1/1000.
with trace.get_tracer(__name__).start_as_current_span("Test Span"):
...
When utilizing a configurator, you can configure a custom sampler. In order to create a configurable custom sampler, create an entry point for the custom sampler
factory method or function under the entry point group, ``opentelemetry_traces_sampler``. The custom sampler factory method must be of type ``Callable[[str], Sampler]``, taking a single string argument and
returning a Sampler object. The single input will come from the string value of the ``OTEL_TRACES_SAMPLER_ARG`` environment variable. If ``OTEL_TRACES_SAMPLER_ARG`` is not configured, the input will
be an empty string. For example:
.. code:: python
setup(
...
entry_points={
...
"opentelemetry_traces_sampler": [
"custom_sampler_name = path.to.sampler.factory.method:CustomSamplerFactory.get_sampler"
]
}
)
# ...
class CustomRatioSampler(Sampler):
def __init__(rate):
# ...
# ...
class CustomSamplerFactory:
@staticmethod
def get_sampler(sampler_argument):
try:
rate = float(sampler_argument)
return CustomSampler(rate)
except ValueError: # In case argument is empty string.
return CustomSampler(0.5)
In order to configure you application with a custom sampler's entry point, set the ``OTEL_TRACES_SAMPLER`` environment variable to the key name of the entry point. For example, to configured the
above sampler, set ``OTEL_TRACES_SAMPLER=custom_sampler_name`` and ``OTEL_TRACES_SAMPLER_ARG=0.5``.
"""
import abc
import enum
import os
from logging import getLogger
from types import MappingProxyType
from typing import Optional, Sequence
# pylint: disable=unused-import
from opentelemetry.context import Context
from opentelemetry.sdk.environment_variables import (
OTEL_TRACES_SAMPLER,
OTEL_TRACES_SAMPLER_ARG,
)
from opentelemetry.trace import Link, SpanKind, get_current_span
from opentelemetry.trace.span import TraceState
from opentelemetry.util.types import Attributes
_logger = getLogger(__name__)
class Decision(enum.Enum):
# IsRecording() == false, span will not be recorded and all events and attributes will be dropped.
DROP = 0
# IsRecording() == true, but Sampled flag MUST NOT be set.
RECORD_ONLY = 1
# IsRecording() == true AND Sampled flag` MUST be set.
RECORD_AND_SAMPLE = 2
def is_recording(self):
return self in (Decision.RECORD_ONLY, Decision.RECORD_AND_SAMPLE)
def is_sampled(self):
return self is Decision.RECORD_AND_SAMPLE
class SamplingResult:
"""A sampling result as applied to a newly-created Span.
Args:
decision: A sampling decision based off of whether the span is recorded
and the sampled flag in trace flags in the span context.
attributes: Attributes to add to the `opentelemetry.trace.Span`.
trace_state: The tracestate used for the `opentelemetry.trace.Span`.
Could possibly have been modified by the sampler.
"""
def __repr__(self) -> str:
return f"{type(self).__name__}({str(self.decision)}, attributes={str(self.attributes)})"
def __init__(
self,
decision: Decision,
attributes: "Attributes" = None,
trace_state: Optional["TraceState"] = None,
) -> None:
self.decision = decision
if attributes is None:
self.attributes = MappingProxyType({})
else:
self.attributes = MappingProxyType(attributes)
self.trace_state = trace_state
class Sampler(abc.ABC):
@abc.abstractmethod
def should_sample(
self,
parent_context: Optional["Context"],
trace_id: int,
name: str,
kind: Optional[SpanKind] = None,
attributes: Attributes = None,
links: Optional[Sequence["Link"]] = None,
trace_state: Optional["TraceState"] = None,
) -> "SamplingResult":
pass
@abc.abstractmethod
def get_description(self) -> str:
pass
class StaticSampler(Sampler):
"""Sampler that always returns the same decision."""
def __init__(self, decision: "Decision") -> None:
self._decision = decision
def should_sample(
self,
parent_context: Optional["Context"],
trace_id: int,
name: str,
kind: Optional[SpanKind] = None,
attributes: Attributes = None,
links: Optional[Sequence["Link"]] = None,
trace_state: Optional["TraceState"] = None,
) -> "SamplingResult":
if self._decision is Decision.DROP:
attributes = None
return SamplingResult(
self._decision,
attributes,
_get_parent_trace_state(parent_context),
)
def get_description(self) -> str:
if self._decision is Decision.DROP:
return "AlwaysOffSampler"
return "AlwaysOnSampler"
ALWAYS_OFF = StaticSampler(Decision.DROP)
"""Sampler that never samples spans, regardless of the parent span's sampling decision."""
ALWAYS_ON = StaticSampler(Decision.RECORD_AND_SAMPLE)
"""Sampler that always samples spans, regardless of the parent span's sampling decision."""
class TraceIdRatioBased(Sampler):
"""
Sampler that makes sampling decisions probabilistically based on `rate`.
Args:
rate: Probability (between 0 and 1) that a span will be sampled
"""
def __init__(self, rate: float):
if rate < 0.0 or rate > 1.0:
raise ValueError("Probability must be in range [0.0, 1.0].")
self._rate = rate
self._bound = self.get_bound_for_rate(self._rate)
# For compatibility with 64 bit trace IDs, the sampler checks the 64
# low-order bits of the trace ID to decide whether to sample a given trace.
TRACE_ID_LIMIT = (1 << 64) - 1
@classmethod
def get_bound_for_rate(cls, rate: float) -> int:
return round(rate * (cls.TRACE_ID_LIMIT + 1))
@property
def rate(self) -> float:
return self._rate
@property
def bound(self) -> int:
return self._bound
def should_sample(
self,
parent_context: Optional["Context"],
trace_id: int,
name: str,
kind: Optional[SpanKind] = None,
attributes: Attributes = None,
links: Optional[Sequence["Link"]] = None,
trace_state: Optional["TraceState"] = None,
) -> "SamplingResult":
decision = Decision.DROP
if trace_id & self.TRACE_ID_LIMIT < self.bound:
decision = Decision.RECORD_AND_SAMPLE
if decision is Decision.DROP:
attributes = None
return SamplingResult(
decision,
attributes,
_get_parent_trace_state(parent_context),
)
def get_description(self) -> str:
return f"TraceIdRatioBased{{{self._rate}}}"
class ParentBased(Sampler):
"""
If a parent is set, applies the respective delegate sampler.
Otherwise, uses the root provided at initialization to make a
decision.
Args:
root: Sampler called for spans with no parent (root spans).
remote_parent_sampled: Sampler called for a remote sampled parent.
remote_parent_not_sampled: Sampler called for a remote parent that is
not sampled.
local_parent_sampled: Sampler called for a local sampled parent.
local_parent_not_sampled: Sampler called for a local parent that is
not sampled.
"""
def __init__(
self,
root: Sampler,
remote_parent_sampled: Sampler = ALWAYS_ON,
remote_parent_not_sampled: Sampler = ALWAYS_OFF,
local_parent_sampled: Sampler = ALWAYS_ON,
local_parent_not_sampled: Sampler = ALWAYS_OFF,
):
self._root = root
self._remote_parent_sampled = remote_parent_sampled
self._remote_parent_not_sampled = remote_parent_not_sampled
self._local_parent_sampled = local_parent_sampled
self._local_parent_not_sampled = local_parent_not_sampled
def should_sample(
self,
parent_context: Optional["Context"],
trace_id: int,
name: str,
kind: Optional[SpanKind] = None,
attributes: Attributes = None,
links: Optional[Sequence["Link"]] = None,
trace_state: Optional["TraceState"] = None,
) -> "SamplingResult":
parent_span_context = get_current_span(
parent_context
).get_span_context()
# default to the root sampler
sampler = self._root
# respect the sampling and remote flag of the parent if present
if parent_span_context is not None and parent_span_context.is_valid:
if parent_span_context.is_remote:
if parent_span_context.trace_flags.sampled:
sampler = self._remote_parent_sampled
else:
sampler = self._remote_parent_not_sampled
else:
if parent_span_context.trace_flags.sampled:
sampler = self._local_parent_sampled
else:
sampler = self._local_parent_not_sampled
return sampler.should_sample(
parent_context=parent_context,
trace_id=trace_id,
name=name,
kind=kind,
attributes=attributes,
links=links,
)
def get_description(self):
return f"ParentBased{{root:{self._root.get_description()},remoteParentSampled:{self._remote_parent_sampled.get_description()},remoteParentNotSampled:{self._remote_parent_not_sampled.get_description()},localParentSampled:{self._local_parent_sampled.get_description()},localParentNotSampled:{self._local_parent_not_sampled.get_description()}}}"
DEFAULT_OFF = ParentBased(ALWAYS_OFF)
"""Sampler that respects its parent span's sampling decision, but otherwise never samples."""
DEFAULT_ON = ParentBased(ALWAYS_ON)
"""Sampler that respects its parent span's sampling decision, but otherwise always samples."""
class ParentBasedTraceIdRatio(ParentBased):
"""
Sampler that respects its parent span's sampling decision, but otherwise
samples probabilistically based on `rate`.
"""
def __init__(self, rate: float):
root = TraceIdRatioBased(rate=rate)
super().__init__(root=root)
class _AlwaysOff(StaticSampler):
def __init__(self, _):
super().__init__(Decision.DROP)
class _AlwaysOn(StaticSampler):
def __init__(self, _):
super().__init__(Decision.RECORD_AND_SAMPLE)
class _ParentBasedAlwaysOff(ParentBased):
def __init__(self, _):
super().__init__(ALWAYS_OFF)
class _ParentBasedAlwaysOn(ParentBased):
def __init__(self, _):
super().__init__(ALWAYS_ON)
_KNOWN_SAMPLERS = {
"always_on": ALWAYS_ON,
"always_off": ALWAYS_OFF,
"parentbased_always_on": DEFAULT_ON,
"parentbased_always_off": DEFAULT_OFF,
"traceidratio": TraceIdRatioBased,
"parentbased_traceidratio": ParentBasedTraceIdRatio,
}
def _get_from_env_or_default() -> Sampler:
trace_sampler = os.getenv(
OTEL_TRACES_SAMPLER, "parentbased_always_on"
).lower()
if trace_sampler not in _KNOWN_SAMPLERS:
_logger.warning("Couldn't recognize sampler %s.", trace_sampler)
trace_sampler = "parentbased_always_on"
if trace_sampler in ("traceidratio", "parentbased_traceidratio"):
try:
rate = float(os.getenv(OTEL_TRACES_SAMPLER_ARG))
except (ValueError, TypeError):
_logger.warning("Could not convert TRACES_SAMPLER_ARG to float.")
rate = 1.0
return _KNOWN_SAMPLERS[trace_sampler](rate)
return _KNOWN_SAMPLERS[trace_sampler]
def _get_parent_trace_state(
parent_context: Optional[Context],
) -> Optional["TraceState"]:
parent_span_context = get_current_span(parent_context).get_span_context()
if parent_span_context is None or not parent_span_context.is_valid:
return None
return parent_span_context.trace_state