structure saas with tools

This commit is contained in:
Davidson Gomes
2025-04-25 15:30:54 -03:00
commit 1aef473937
16434 changed files with 6584257 additions and 0 deletions

View File

@@ -0,0 +1,582 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import weakref
from atexit import register, unregister
from logging import getLogger
from os import environ
from threading import Lock
from time import time_ns
from typing import Optional, Sequence
# This kind of import is needed to avoid Sphinx errors.
import opentelemetry.sdk.metrics
from opentelemetry.metrics import Counter as APICounter
from opentelemetry.metrics import Histogram as APIHistogram
from opentelemetry.metrics import Meter as APIMeter
from opentelemetry.metrics import MeterProvider as APIMeterProvider
from opentelemetry.metrics import NoOpMeter
from opentelemetry.metrics import ObservableCounter as APIObservableCounter
from opentelemetry.metrics import ObservableGauge as APIObservableGauge
from opentelemetry.metrics import (
ObservableUpDownCounter as APIObservableUpDownCounter,
)
from opentelemetry.metrics import UpDownCounter as APIUpDownCounter
from opentelemetry.metrics import _Gauge as APIGauge
from opentelemetry.sdk.environment_variables import (
OTEL_METRICS_EXEMPLAR_FILTER,
OTEL_SDK_DISABLED,
)
from opentelemetry.sdk.metrics._internal.exceptions import MetricsTimeoutError
from opentelemetry.sdk.metrics._internal.exemplar import (
AlwaysOffExemplarFilter,
AlwaysOnExemplarFilter,
ExemplarFilter,
TraceBasedExemplarFilter,
)
from opentelemetry.sdk.metrics._internal.instrument import (
_Counter,
_Gauge,
_Histogram,
_ObservableCounter,
_ObservableGauge,
_ObservableUpDownCounter,
_UpDownCounter,
)
from opentelemetry.sdk.metrics._internal.measurement_consumer import (
MeasurementConsumer,
SynchronousMeasurementConsumer,
)
from opentelemetry.sdk.metrics._internal.sdk_configuration import (
SdkConfiguration,
)
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.util.instrumentation import InstrumentationScope
from opentelemetry.util._once import Once
from opentelemetry.util.types import (
Attributes,
)
_logger = getLogger(__name__)
class Meter(APIMeter):
"""See `opentelemetry.metrics.Meter`."""
def __init__(
self,
instrumentation_scope: InstrumentationScope,
measurement_consumer: MeasurementConsumer,
):
super().__init__(
name=instrumentation_scope.name,
version=instrumentation_scope.version,
schema_url=instrumentation_scope.schema_url,
)
self._instrumentation_scope = instrumentation_scope
self._measurement_consumer = measurement_consumer
self._instrument_id_instrument = {}
self._instrument_id_instrument_lock = Lock()
def create_counter(self, name, unit="", description="") -> APICounter:
status = self._register_instrument(name, _Counter, unit, description)
if status.conflict:
# FIXME #2558 go through all views here and check if this
# instrument registration conflict can be fixed. If it can be, do
# not log the following warning.
self._log_instrument_registration_conflict(
name,
APICounter.__name__,
unit,
description,
status,
)
if status.already_registered:
with self._instrument_id_instrument_lock:
return self._instrument_id_instrument[status.instrument_id]
instrument = _Counter(
name,
self._instrumentation_scope,
self._measurement_consumer,
unit,
description,
)
with self._instrument_id_instrument_lock:
self._instrument_id_instrument[status.instrument_id] = instrument
return instrument
def create_up_down_counter(
self, name, unit="", description=""
) -> APIUpDownCounter:
status = self._register_instrument(
name, _UpDownCounter, unit, description
)
if status.conflict:
# FIXME #2558 go through all views here and check if this
# instrument registration conflict can be fixed. If it can be, do
# not log the following warning.
self._log_instrument_registration_conflict(
name,
APIUpDownCounter.__name__,
unit,
description,
status,
)
if status.already_registered:
with self._instrument_id_instrument_lock:
return self._instrument_id_instrument[status.instrument_id]
instrument = _UpDownCounter(
name,
self._instrumentation_scope,
self._measurement_consumer,
unit,
description,
)
with self._instrument_id_instrument_lock:
self._instrument_id_instrument[status.instrument_id] = instrument
return instrument
def create_observable_counter(
self,
name,
callbacks=None,
unit="",
description="",
) -> APIObservableCounter:
status = self._register_instrument(
name, _ObservableCounter, unit, description
)
if status.conflict:
# FIXME #2558 go through all views here and check if this
# instrument registration conflict can be fixed. If it can be, do
# not log the following warning.
self._log_instrument_registration_conflict(
name,
APIObservableCounter.__name__,
unit,
description,
status,
)
if status.already_registered:
with self._instrument_id_instrument_lock:
return self._instrument_id_instrument[status.instrument_id]
instrument = _ObservableCounter(
name,
self._instrumentation_scope,
self._measurement_consumer,
callbacks,
unit,
description,
)
self._measurement_consumer.register_asynchronous_instrument(instrument)
with self._instrument_id_instrument_lock:
self._instrument_id_instrument[status.instrument_id] = instrument
return instrument
def create_histogram(
self,
name: str,
unit: str = "",
description: str = "",
*,
explicit_bucket_boundaries_advisory: Optional[Sequence[float]] = None,
) -> APIHistogram:
if explicit_bucket_boundaries_advisory is not None:
invalid_advisory = False
if isinstance(explicit_bucket_boundaries_advisory, Sequence):
try:
invalid_advisory = not (
all(
isinstance(e, (float, int))
for e in explicit_bucket_boundaries_advisory
)
)
except (KeyError, TypeError):
invalid_advisory = True
else:
invalid_advisory = True
if invalid_advisory:
explicit_bucket_boundaries_advisory = None
_logger.warning(
"explicit_bucket_boundaries_advisory must be a sequence of numbers"
)
status = self._register_instrument(
name,
_Histogram,
unit,
description,
explicit_bucket_boundaries_advisory,
)
if status.conflict:
# FIXME #2558 go through all views here and check if this
# instrument registration conflict can be fixed. If it can be, do
# not log the following warning.
self._log_instrument_registration_conflict(
name,
APIHistogram.__name__,
unit,
description,
status,
)
if status.already_registered:
with self._instrument_id_instrument_lock:
return self._instrument_id_instrument[status.instrument_id]
instrument = _Histogram(
name,
self._instrumentation_scope,
self._measurement_consumer,
unit,
description,
explicit_bucket_boundaries_advisory,
)
with self._instrument_id_instrument_lock:
self._instrument_id_instrument[status.instrument_id] = instrument
return instrument
def create_gauge(self, name, unit="", description="") -> APIGauge:
status = self._register_instrument(name, _Gauge, unit, description)
if status.conflict:
# FIXME #2558 go through all views here and check if this
# instrument registration conflict can be fixed. If it can be, do
# not log the following warning.
self._log_instrument_registration_conflict(
name,
APIGauge.__name__,
unit,
description,
status,
)
if status.already_registered:
with self._instrument_id_instrument_lock:
return self._instrument_id_instrument[status.instrument_id]
instrument = _Gauge(
name,
self._instrumentation_scope,
self._measurement_consumer,
unit,
description,
)
with self._instrument_id_instrument_lock:
self._instrument_id_instrument[status.instrument_id] = instrument
return instrument
def create_observable_gauge(
self, name, callbacks=None, unit="", description=""
) -> APIObservableGauge:
status = self._register_instrument(
name, _ObservableGauge, unit, description
)
if status.conflict:
# FIXME #2558 go through all views here and check if this
# instrument registration conflict can be fixed. If it can be, do
# not log the following warning.
self._log_instrument_registration_conflict(
name,
APIObservableGauge.__name__,
unit,
description,
status,
)
if status.already_registered:
with self._instrument_id_instrument_lock:
return self._instrument_id_instrument[status.instrument_id]
instrument = _ObservableGauge(
name,
self._instrumentation_scope,
self._measurement_consumer,
callbacks,
unit,
description,
)
self._measurement_consumer.register_asynchronous_instrument(instrument)
with self._instrument_id_instrument_lock:
self._instrument_id_instrument[status.instrument_id] = instrument
return instrument
def create_observable_up_down_counter(
self, name, callbacks=None, unit="", description=""
) -> APIObservableUpDownCounter:
status = self._register_instrument(
name, _ObservableUpDownCounter, unit, description
)
if status.conflict:
# FIXME #2558 go through all views here and check if this
# instrument registration conflict can be fixed. If it can be, do
# not log the following warning.
self._log_instrument_registration_conflict(
name,
APIObservableUpDownCounter.__name__,
unit,
description,
status,
)
if status.already_registered:
with self._instrument_id_instrument_lock:
return self._instrument_id_instrument[status.instrument_id]
instrument = _ObservableUpDownCounter(
name,
self._instrumentation_scope,
self._measurement_consumer,
callbacks,
unit,
description,
)
self._measurement_consumer.register_asynchronous_instrument(instrument)
with self._instrument_id_instrument_lock:
self._instrument_id_instrument[status.instrument_id] = instrument
return instrument
def _get_exemplar_filter(exemplar_filter: str) -> ExemplarFilter:
if exemplar_filter == "trace_based":
return TraceBasedExemplarFilter()
if exemplar_filter == "always_on":
return AlwaysOnExemplarFilter()
if exemplar_filter == "always_off":
return AlwaysOffExemplarFilter()
msg = f"Unknown exemplar filter '{exemplar_filter}'."
raise ValueError(msg)
class MeterProvider(APIMeterProvider):
r"""See `opentelemetry.metrics.MeterProvider`.
Args:
metric_readers: Register metric readers to collect metrics from the SDK
on demand. Each :class:`opentelemetry.sdk.metrics.export.MetricReader` is
completely independent and will collect separate streams of
metrics. TODO: reference ``PeriodicExportingMetricReader`` usage with push
exporters here.
resource: The resource representing what the metrics emitted from the SDK pertain to.
shutdown_on_exit: If true, registers an `atexit` handler to call
`MeterProvider.shutdown`
views: The views to configure the metric output the SDK
By default, instruments which do not match any :class:`opentelemetry.sdk.metrics.view.View` (or if no :class:`opentelemetry.sdk.metrics.view.View`\ s
are provided) will report metrics with the default aggregation for the
instrument's kind. To disable instruments by default, configure a match-all
:class:`opentelemetry.sdk.metrics.view.View` with `DropAggregation` and then create :class:`opentelemetry.sdk.metrics.view.View`\ s to re-enable
individual instruments:
.. code-block:: python
:caption: Disable default views
MeterProvider(
views=[
View(instrument_name="*", aggregation=DropAggregation()),
View(instrument_name="mycounter"),
],
# ...
)
"""
_all_metric_readers_lock = Lock()
_all_metric_readers = weakref.WeakSet()
def __init__(
self,
metric_readers: Sequence[
"opentelemetry.sdk.metrics.export.MetricReader"
] = (),
resource: Optional[Resource] = None,
exemplar_filter: Optional[ExemplarFilter] = None,
shutdown_on_exit: bool = True,
views: Sequence["opentelemetry.sdk.metrics.view.View"] = (),
):
self._lock = Lock()
self._meter_lock = Lock()
self._atexit_handler = None
if resource is None:
resource = Resource.create({})
self._sdk_config = SdkConfiguration(
exemplar_filter=(
exemplar_filter
or _get_exemplar_filter(
environ.get(OTEL_METRICS_EXEMPLAR_FILTER, "trace_based")
)
),
resource=resource,
metric_readers=metric_readers,
views=views,
)
self._measurement_consumer = SynchronousMeasurementConsumer(
sdk_config=self._sdk_config
)
disabled = environ.get(OTEL_SDK_DISABLED, "")
self._disabled = disabled.lower().strip() == "true"
if shutdown_on_exit:
self._atexit_handler = register(self.shutdown)
self._meters = {}
self._shutdown_once = Once()
self._shutdown = False
for metric_reader in self._sdk_config.metric_readers:
with self._all_metric_readers_lock:
if metric_reader in self._all_metric_readers:
# pylint: disable=broad-exception-raised
raise Exception(
f"MetricReader {metric_reader} has been registered "
"already in other MeterProvider instance"
)
self._all_metric_readers.add(metric_reader)
metric_reader._set_collect_callback(
self._measurement_consumer.collect
)
def force_flush(self, timeout_millis: float = 10_000) -> bool:
deadline_ns = time_ns() + timeout_millis * 10**6
metric_reader_error = {}
for metric_reader in self._sdk_config.metric_readers:
current_ts = time_ns()
try:
if current_ts >= deadline_ns:
raise MetricsTimeoutError(
"Timed out while flushing metric readers"
)
metric_reader.force_flush(
timeout_millis=(deadline_ns - current_ts) / 10**6
)
# pylint: disable=broad-exception-caught
except Exception as error:
metric_reader_error[metric_reader] = error
if metric_reader_error:
metric_reader_error_string = "\n".join(
[
f"{metric_reader.__class__.__name__}: {repr(error)}"
for metric_reader, error in metric_reader_error.items()
]
)
# pylint: disable=broad-exception-raised
raise Exception(
"MeterProvider.force_flush failed because the following "
"metric readers failed during collect:\n"
f"{metric_reader_error_string}"
)
return True
def shutdown(self, timeout_millis: float = 30_000):
deadline_ns = time_ns() + timeout_millis * 10**6
def _shutdown():
self._shutdown = True
did_shutdown = self._shutdown_once.do_once(_shutdown)
if not did_shutdown:
_logger.warning("shutdown can only be called once")
return
metric_reader_error = {}
for metric_reader in self._sdk_config.metric_readers:
current_ts = time_ns()
try:
if current_ts >= deadline_ns:
# pylint: disable=broad-exception-raised
raise Exception(
"Didn't get to execute, deadline already exceeded"
)
metric_reader.shutdown(
timeout_millis=(deadline_ns - current_ts) / 10**6
)
# pylint: disable=broad-exception-caught
except Exception as error:
metric_reader_error[metric_reader] = error
if self._atexit_handler is not None:
unregister(self._atexit_handler)
self._atexit_handler = None
if metric_reader_error:
metric_reader_error_string = "\n".join(
[
f"{metric_reader.__class__.__name__}: {repr(error)}"
for metric_reader, error in metric_reader_error.items()
]
)
# pylint: disable=broad-exception-raised
raise Exception(
(
"MeterProvider.shutdown failed because the following "
"metric readers failed during shutdown:\n"
f"{metric_reader_error_string}"
)
)
def get_meter(
self,
name: str,
version: Optional[str] = None,
schema_url: Optional[str] = None,
attributes: Optional[Attributes] = None,
) -> Meter:
if self._disabled:
return NoOpMeter(name, version=version, schema_url=schema_url)
if self._shutdown:
_logger.warning(
"A shutdown `MeterProvider` can not provide a `Meter`"
)
return NoOpMeter(name, version=version, schema_url=schema_url)
if not name:
_logger.warning("Meter name cannot be None or empty.")
return NoOpMeter(name, version=version, schema_url=schema_url)
info = InstrumentationScope(name, version, schema_url, attributes)
with self._meter_lock:
if not self._meters.get(info):
# FIXME #2558 pass SDKConfig object to meter so that the meter
# has access to views.
self._meters[info] = Meter(
info,
self._measurement_consumer,
)
return self._meters[info]

View File

@@ -0,0 +1,153 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from logging import getLogger
from threading import Lock
from time import time_ns
from typing import Dict, List, Optional, Sequence
from opentelemetry.metrics import Instrument
from opentelemetry.sdk.metrics._internal.aggregation import (
Aggregation,
DefaultAggregation,
_Aggregation,
_SumAggregation,
)
from opentelemetry.sdk.metrics._internal.export import AggregationTemporality
from opentelemetry.sdk.metrics._internal.measurement import Measurement
from opentelemetry.sdk.metrics._internal.point import DataPointT
from opentelemetry.sdk.metrics._internal.view import View
_logger = getLogger(__name__)
class _ViewInstrumentMatch:
def __init__(
self,
view: View,
instrument: Instrument,
instrument_class_aggregation: Dict[type, Aggregation],
):
self._view = view
self._instrument = instrument
self._attributes_aggregation: Dict[frozenset, _Aggregation] = {}
self._lock = Lock()
self._instrument_class_aggregation = instrument_class_aggregation
self._name = self._view._name or self._instrument.name
self._description = (
self._view._description or self._instrument.description
)
if not isinstance(self._view._aggregation, DefaultAggregation):
self._aggregation = self._view._aggregation._create_aggregation(
self._instrument,
None,
self._view._exemplar_reservoir_factory,
0,
)
else:
self._aggregation = self._instrument_class_aggregation[
self._instrument.__class__
]._create_aggregation(
self._instrument,
None,
self._view._exemplar_reservoir_factory,
0,
)
def conflicts(self, other: "_ViewInstrumentMatch") -> bool:
# pylint: disable=protected-access
result = (
self._name == other._name
and self._instrument.unit == other._instrument.unit
# The aggregation class is being used here instead of data point
# type since they are functionally equivalent.
and self._aggregation.__class__ == other._aggregation.__class__
)
if isinstance(self._aggregation, _SumAggregation):
result = (
result
and self._aggregation._instrument_is_monotonic
== other._aggregation._instrument_is_monotonic
and self._aggregation._instrument_aggregation_temporality
== other._aggregation._instrument_aggregation_temporality
)
return result
# pylint: disable=protected-access
def consume_measurement(
self, measurement: Measurement, should_sample_exemplar: bool = True
) -> None:
if self._view._attribute_keys is not None:
attributes = {}
for key, value in (measurement.attributes or {}).items():
if key in self._view._attribute_keys:
attributes[key] = value
elif measurement.attributes is not None:
attributes = measurement.attributes
else:
attributes = {}
aggr_key = frozenset(attributes.items())
if aggr_key not in self._attributes_aggregation:
with self._lock:
if aggr_key not in self._attributes_aggregation:
if not isinstance(
self._view._aggregation, DefaultAggregation
):
aggregation = (
self._view._aggregation._create_aggregation(
self._instrument,
attributes,
self._view._exemplar_reservoir_factory,
time_ns(),
)
)
else:
aggregation = self._instrument_class_aggregation[
self._instrument.__class__
]._create_aggregation(
self._instrument,
attributes,
self._view._exemplar_reservoir_factory,
time_ns(),
)
self._attributes_aggregation[aggr_key] = aggregation
self._attributes_aggregation[aggr_key].aggregate(
measurement, should_sample_exemplar
)
def collect(
self,
collection_aggregation_temporality: AggregationTemporality,
collection_start_nanos: int,
) -> Optional[Sequence[DataPointT]]:
data_points: List[DataPointT] = []
with self._lock:
for aggregation in self._attributes_aggregation.values():
data_point = aggregation.collect(
collection_aggregation_temporality, collection_start_nanos
)
if data_point is not None:
data_points.append(data_point)
# Returning here None instead of an empty list because the caller
# does not consume a sequence and to be consistent with the rest of
# collect methods that also return None.
return data_points or None

View File

@@ -0,0 +1,17 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class MetricsTimeoutError(Exception):
"""Raised when a metrics function times out"""

View File

@@ -0,0 +1,39 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .exemplar import Exemplar
from .exemplar_filter import (
AlwaysOffExemplarFilter,
AlwaysOnExemplarFilter,
ExemplarFilter,
TraceBasedExemplarFilter,
)
from .exemplar_reservoir import (
AlignedHistogramBucketExemplarReservoir,
ExemplarReservoir,
ExemplarReservoirBuilder,
SimpleFixedSizeExemplarReservoir,
)
__all__ = [
"Exemplar",
"ExemplarFilter",
"AlwaysOffExemplarFilter",
"AlwaysOnExemplarFilter",
"TraceBasedExemplarFilter",
"AlignedHistogramBucketExemplarReservoir",
"ExemplarReservoir",
"ExemplarReservoirBuilder",
"SimpleFixedSizeExemplarReservoir",
]

View File

@@ -0,0 +1,50 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
from typing import Optional, Union
from opentelemetry.util.types import Attributes
@dataclasses.dataclass(frozen=True)
class Exemplar:
"""A representation of an exemplar, which is a sample input measurement.
Exemplars also hold information about the environment when the measurement
was recorded, for example the span and trace ID of the active span when the
exemplar was recorded.
Attributes
trace_id: (optional) The trace associated with a recording
span_id: (optional) The span associated with a recording
time_unix_nano: The time of the observation
value: The recorded value
filtered_attributes: A set of filtered attributes which provide additional insight into the Context when the observation was made.
References:
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/data-model.md#exemplars
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#exemplar
"""
# TODO Fix doc - if using valid Google `Attributes:` key, the attributes are duplicated
# one will come from napoleon extension and the other from autodoc extension. This
# will raise an sphinx error of duplicated object description
# See https://github.com/sphinx-doc/sphinx/issues/8664
filtered_attributes: Attributes
value: Union[int, float]
time_unix_nano: int
span_id: Optional[int] = None
trace_id: Optional[int] = None

View File

@@ -0,0 +1,134 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
from typing import Union
from opentelemetry import trace
from opentelemetry.context import Context
from opentelemetry.trace.span import INVALID_SPAN
from opentelemetry.util.types import Attributes
class ExemplarFilter(ABC):
"""``ExemplarFilter`` determines which measurements are eligible for becoming an
``Exemplar``.
Exemplar filters are used to filter measurements before attempting to store them
in a reservoir.
Reference:
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#exemplarfilter
"""
@abstractmethod
def should_sample(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> bool:
"""Returns whether or not a reservoir should attempt to filter a measurement.
Args:
value: The value of the measurement
timestamp: A timestamp that best represents when the measurement was taken
attributes: The complete set of measurement attributes
context: The Context of the measurement
"""
raise NotImplementedError(
"ExemplarFilter.should_sample is not implemented"
)
class AlwaysOnExemplarFilter(ExemplarFilter):
"""An ExemplarFilter which makes all measurements eligible for being an Exemplar.
Reference:
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#alwayson
"""
def should_sample(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> bool:
"""Returns whether or not a reservoir should attempt to filter a measurement.
Args:
value: The value of the measurement
timestamp: A timestamp that best represents when the measurement was taken
attributes: The complete set of measurement attributes
context: The Context of the measurement
"""
return True
class AlwaysOffExemplarFilter(ExemplarFilter):
"""An ExemplarFilter which makes no measurements eligible for being an Exemplar.
Using this ExemplarFilter is as good as disabling Exemplar feature.
Reference:
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#alwaysoff
"""
def should_sample(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> bool:
"""Returns whether or not a reservoir should attempt to filter a measurement.
Args:
value: The value of the measurement
timestamp: A timestamp that best represents when the measurement was taken
attributes: The complete set of measurement attributes
context: The Context of the measurement
"""
return False
class TraceBasedExemplarFilter(ExemplarFilter):
"""An ExemplarFilter which makes those measurements eligible for being an Exemplar,
which are recorded in the context of a sampled parent span.
Reference:
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#tracebased
"""
def should_sample(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> bool:
"""Returns whether or not a reservoir should attempt to filter a measurement.
Args:
value: The value of the measurement
timestamp: A timestamp that best represents when the measurement was taken
attributes: The complete set of measurement attributes
context: The Context of the measurement
"""
span = trace.get_current_span(context)
if span == INVALID_SPAN:
return False
return span.get_span_context().trace_flags.sampled

View File

@@ -0,0 +1,332 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
from collections import defaultdict
from random import randrange
from typing import (
Any,
Callable,
Dict,
List,
Mapping,
Optional,
Sequence,
Union,
)
from opentelemetry import trace
from opentelemetry.context import Context
from opentelemetry.trace.span import INVALID_SPAN
from opentelemetry.util.types import Attributes
from .exemplar import Exemplar
class ExemplarReservoir(ABC):
"""ExemplarReservoir provide a method to offer measurements to the reservoir
and another to collect accumulated Exemplars.
Note:
The constructor MUST accept ``**kwargs`` that may be set from aggregation
parameters.
Reference:
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#exemplarreservoir
"""
@abstractmethod
def offer(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> None:
"""Offers a measurement to be sampled.
Args:
value: Measured value
time_unix_nano: Measurement instant
attributes: Measurement attributes
context: Measurement context
"""
raise NotImplementedError("ExemplarReservoir.offer is not implemented")
@abstractmethod
def collect(self, point_attributes: Attributes) -> List[Exemplar]:
"""Returns accumulated Exemplars and also resets the reservoir for the next
sampling period
Args:
point_attributes: The attributes associated with metric point.
Returns:
a list of ``opentelemetry.sdk.metrics._internal.exemplar.exemplar.Exemplar`` s. Returned
exemplars contain the attributes that were filtered out by the aggregator,
but recorded alongside the original measurement.
"""
raise NotImplementedError(
"ExemplarReservoir.collect is not implemented"
)
class ExemplarBucket:
def __init__(self) -> None:
self.__value: Union[int, float] = 0
self.__attributes: Attributes = None
self.__time_unix_nano: int = 0
self.__span_id: Optional[int] = None
self.__trace_id: Optional[int] = None
self.__offered: bool = False
def offer(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> None:
"""Offers a measurement to be sampled.
Args:
value: Measured value
time_unix_nano: Measurement instant
attributes: Measurement attributes
context: Measurement context
"""
self.__value = value
self.__time_unix_nano = time_unix_nano
self.__attributes = attributes
span = trace.get_current_span(context)
if span != INVALID_SPAN:
span_context = span.get_span_context()
self.__span_id = span_context.span_id
self.__trace_id = span_context.trace_id
self.__offered = True
def collect(self, point_attributes: Attributes) -> Optional[Exemplar]:
"""May return an Exemplar and resets the bucket for the next sampling period."""
if not self.__offered:
return None
# filters out attributes from the measurement that are already included in the metric data point
# See the specification for more details:
# https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#exemplar
filtered_attributes = (
{
k: v
for k, v in self.__attributes.items()
if k not in point_attributes
}
if self.__attributes
else None
)
exemplar = Exemplar(
filtered_attributes,
self.__value,
self.__time_unix_nano,
self.__span_id,
self.__trace_id,
)
self.__reset()
return exemplar
def __reset(self) -> None:
"""Reset the bucket state after a collection cycle."""
self.__value = 0
self.__attributes = {}
self.__time_unix_nano = 0
self.__span_id = None
self.__trace_id = None
self.__offered = False
class BucketIndexError(ValueError):
"""An exception raised when the bucket index cannot be found."""
class FixedSizeExemplarReservoirABC(ExemplarReservoir):
"""Abstract class for a reservoir with fixed size."""
def __init__(self, size: int, **kwargs) -> None:
super().__init__(**kwargs)
self._size: int = size
self._reservoir_storage: Mapping[int, ExemplarBucket] = defaultdict(
ExemplarBucket
)
def collect(self, point_attributes: Attributes) -> List[Exemplar]:
"""Returns accumulated Exemplars and also resets the reservoir for the next
sampling period
Args:
point_attributes: The attributes associated with metric point.
Returns:
a list of ``opentelemetry.sdk.metrics._internal.exemplar.exemplar.Exemplar`` s. Returned
exemplars contain the attributes that were filtered out by the aggregator,
but recorded alongside the original measurement.
"""
exemplars = [
e
for e in (
bucket.collect(point_attributes)
for _, bucket in sorted(self._reservoir_storage.items())
)
if e is not None
]
self._reset()
return exemplars
def offer(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> None:
"""Offers a measurement to be sampled.
Args:
value: Measured value
time_unix_nano: Measurement instant
attributes: Measurement attributes
context: Measurement context
"""
try:
index = self._find_bucket_index(
value, time_unix_nano, attributes, context
)
self._reservoir_storage[index].offer(
value, time_unix_nano, attributes, context
)
except BucketIndexError:
# Ignore invalid bucket index
pass
@abstractmethod
def _find_bucket_index(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> int:
"""Determines the bucket index for the given measurement.
It should be implemented by subclasses based on specific strategies.
Args:
value: Measured value
time_unix_nano: Measurement instant
attributes: Measurement attributes
context: Measurement context
Returns:
The bucket index
Raises:
BucketIndexError: If no bucket index can be found.
"""
def _reset(self) -> None:
"""Reset the reservoir by resetting any stateful logic after a collection cycle."""
class SimpleFixedSizeExemplarReservoir(FixedSizeExemplarReservoirABC):
"""This reservoir uses an uniformly-weighted sampling algorithm based on the number
of samples the reservoir has seen so far to determine if the offered measurements
should be sampled.
Reference:
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#simplefixedsizeexemplarreservoir
"""
def __init__(self, size: int = 1, **kwargs) -> None:
super().__init__(size, **kwargs)
self._measurements_seen: int = 0
def _reset(self) -> None:
super()._reset()
self._measurements_seen = 0
def _find_bucket_index(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> int:
self._measurements_seen += 1
if self._measurements_seen < self._size:
return self._measurements_seen - 1
index = randrange(0, self._measurements_seen)
if index < self._size:
return index
raise BucketIndexError("Unable to find the bucket index.")
class AlignedHistogramBucketExemplarReservoir(FixedSizeExemplarReservoirABC):
"""This Exemplar reservoir takes a configuration parameter that is the
configuration of a Histogram. This implementation keeps the last seen measurement
that falls within a histogram bucket.
Reference:
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#alignedhistogrambucketexemplarreservoir
"""
def __init__(self, boundaries: Sequence[float], **kwargs) -> None:
super().__init__(len(boundaries) + 1, **kwargs)
self._boundaries: Sequence[float] = boundaries
def offer(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> None:
"""Offers a measurement to be sampled."""
index = self._find_bucket_index(
value, time_unix_nano, attributes, context
)
self._reservoir_storage[index].offer(
value, time_unix_nano, attributes, context
)
def _find_bucket_index(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> int:
for index, boundary in enumerate(self._boundaries):
if value <= boundary:
return index
return len(self._boundaries)
ExemplarReservoirBuilder = Callable[[Dict[str, Any]], ExemplarReservoir]
ExemplarReservoirBuilder.__doc__ = """ExemplarReservoir builder.
It may receive the Aggregation parameters it is bounded to; e.g.
the _ExplicitBucketHistogramAggregation will provide the boundaries.
"""

View File

@@ -0,0 +1,190 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from math import ceil, log2
class Buckets:
# No method of this class is protected by locks because instances of this
# class are only used in methods that are protected by locks themselves.
def __init__(self):
self._counts = [0]
# The term index refers to the number of the exponential histogram bucket
# used to determine its boundaries. The lower boundary of a bucket is
# determined by base ** index and the upper boundary of a bucket is
# determined by base ** (index + 1). index values are signedto account
# for values less than or equal to 1.
# self._index_* will all have values equal to a certain index that is
# determined by the corresponding mapping _map_to_index function and
# the value of the index depends on the value passed to _map_to_index.
# Index of the 0th position in self._counts: self._counts[0] is the
# count in the bucket with index self.__index_base.
self.__index_base = 0
# self.__index_start is the smallest index value represented in
# self._counts.
self.__index_start = 0
# self.__index_start is the largest index value represented in
# self._counts.
self.__index_end = 0
@property
def index_start(self) -> int:
return self.__index_start
@index_start.setter
def index_start(self, value: int) -> None:
self.__index_start = value
@property
def index_end(self) -> int:
return self.__index_end
@index_end.setter
def index_end(self, value: int) -> None:
self.__index_end = value
@property
def index_base(self) -> int:
return self.__index_base
@index_base.setter
def index_base(self, value: int) -> None:
self.__index_base = value
@property
def counts(self):
return self._counts
def get_offset_counts(self):
bias = self.__index_base - self.__index_start
return self._counts[-bias:] + self._counts[:-bias]
def grow(self, needed: int, max_size: int) -> None:
size = len(self._counts)
bias = self.__index_base - self.__index_start
old_positive_limit = size - bias
# 2 ** ceil(log2(needed)) finds the smallest power of two that is larger
# or equal than needed:
# 2 ** ceil(log2(1)) == 1
# 2 ** ceil(log2(2)) == 2
# 2 ** ceil(log2(3)) == 4
# 2 ** ceil(log2(4)) == 4
# 2 ** ceil(log2(5)) == 8
# 2 ** ceil(log2(6)) == 8
# 2 ** ceil(log2(7)) == 8
# 2 ** ceil(log2(8)) == 8
new_size = min(2 ** ceil(log2(needed)), max_size)
new_positive_limit = new_size - bias
tmp = [0] * new_size
tmp[new_positive_limit:] = self._counts[old_positive_limit:]
tmp[0:old_positive_limit] = self._counts[0:old_positive_limit]
self._counts = tmp
@property
def offset(self) -> int:
return self.__index_start
def __len__(self) -> int:
if len(self._counts) == 0:
return 0
if self.__index_end == self.__index_start and self[0] == 0:
return 0
return self.__index_end - self.__index_start + 1
def __getitem__(self, key: int) -> int:
bias = self.__index_base - self.__index_start
if key < bias:
key += len(self._counts)
key -= bias
return self._counts[key]
def downscale(self, amount: int) -> None:
"""
Rotates, then collapses 2 ** amount to 1 buckets.
"""
bias = self.__index_base - self.__index_start
if bias != 0:
self.__index_base = self.__index_start
# [0, 1, 2, 3, 4] Original backing array
self._counts = self._counts[::-1]
# [4, 3, 2, 1, 0]
self._counts = (
self._counts[:bias][::-1] + self._counts[bias:][::-1]
)
# [3, 4, 0, 1, 2] This is a rotation of the backing array.
size = 1 + self.__index_end - self.__index_start
each = 1 << amount
inpos = 0
outpos = 0
pos = self.__index_start
while pos <= self.__index_end:
mod = pos % each
if mod < 0:
mod += each
index = mod
while index < each and inpos < size:
if outpos != inpos:
self._counts[outpos] += self._counts[inpos]
self._counts[inpos] = 0
inpos += 1
pos += 1
index += 1
outpos += 1
self.__index_start >>= amount
self.__index_end >>= amount
self.__index_base = self.__index_start
def increment_bucket(self, bucket_index: int, increment: int = 1) -> None:
self._counts[bucket_index] += increment
def copy_empty(self) -> "Buckets":
copy = Buckets()
# pylint: disable=no-member
# pylint: disable=protected-access
# pylint: disable=attribute-defined-outside-init
# pylint: disable=invalid-name
copy._Buckets__index_base = self._Buckets__index_base
copy._Buckets__index_start = self._Buckets__index_start
copy._Buckets__index_end = self._Buckets__index_end
copy._counts = [0 for _ in self._counts]
return copy

View File

@@ -0,0 +1,98 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
class Mapping(ABC):
"""
Parent class for `LogarithmMapping` and `ExponentialMapping`.
"""
# pylint: disable=no-member
def __new__(cls, scale: int):
with cls._mappings_lock:
# cls._mappings and cls._mappings_lock are implemented in each of
# the child classes as a dictionary and a lock, respectively. They
# are not instantiated here because that would lead to both child
# classes having the same instance of cls._mappings and
# cls._mappings_lock.
if scale not in cls._mappings:
cls._mappings[scale] = super().__new__(cls)
cls._mappings[scale]._init(scale)
return cls._mappings[scale]
@abstractmethod
def _init(self, scale: int) -> None:
# pylint: disable=attribute-defined-outside-init
if scale > self._get_max_scale():
# pylint: disable=broad-exception-raised
raise Exception(f"scale is larger than {self._max_scale}")
if scale < self._get_min_scale():
# pylint: disable=broad-exception-raised
raise Exception(f"scale is smaller than {self._min_scale}")
# The size of the exponential histogram buckets is determined by a
# parameter known as scale, larger values of scale will produce smaller
# buckets. Bucket boundaries of the exponential histogram are located
# at integer powers of the base, where:
#
# base = 2 ** (2 ** (-scale))
# https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/data-model.md#all-scales-use-the-logarithm-function
self._scale = scale
@abstractmethod
def _get_min_scale(self) -> int:
"""
Return the smallest possible value for the mapping scale
"""
@abstractmethod
def _get_max_scale(self) -> int:
"""
Return the largest possible value for the mapping scale
"""
@abstractmethod
def map_to_index(self, value: float) -> int:
"""
Maps positive floating point values to indexes corresponding to
`Mapping.scale`. Implementations are not expected to handle zeros,
+inf, NaN, or negative values.
"""
@abstractmethod
def get_lower_boundary(self, index: int) -> float:
"""
Returns the lower boundary of a given bucket index. The index is
expected to map onto a range that is at least partially inside the
range of normal floating point values. If the corresponding
bucket's upper boundary is less than or equal to 2 ** -1022,
:class:`~opentelemetry.sdk.metrics.MappingUnderflowError`
will be raised. If the corresponding bucket's lower boundary is greater
than ``sys.float_info.max``,
:class:`~opentelemetry.sdk.metrics.MappingOverflowError`
will be raised.
"""
@property
def scale(self) -> int:
"""
Returns the parameter that controls the resolution of this mapping.
See: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/datamodel.md#exponential-scale
"""
return self._scale

View File

@@ -0,0 +1,26 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class MappingUnderflowError(Exception):
"""
Raised when computing the lower boundary of an index that maps into a
denormal floating point value.
"""
class MappingOverflowError(Exception):
"""
Raised when computing the lower boundary of an index that maps into +inf.
"""

View File

@@ -0,0 +1,141 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from math import ldexp
from threading import Lock
from opentelemetry.sdk.metrics._internal.exponential_histogram.mapping import (
Mapping,
)
from opentelemetry.sdk.metrics._internal.exponential_histogram.mapping.errors import (
MappingOverflowError,
MappingUnderflowError,
)
from opentelemetry.sdk.metrics._internal.exponential_histogram.mapping.ieee_754 import (
MANTISSA_WIDTH,
MAX_NORMAL_EXPONENT,
MIN_NORMAL_EXPONENT,
MIN_NORMAL_VALUE,
get_ieee_754_exponent,
get_ieee_754_mantissa,
)
class ExponentMapping(Mapping):
# Reference implementation here:
# https://github.com/open-telemetry/opentelemetry-go/blob/0e6f9c29c10d6078e8131418e1d1d166c7195d61/sdk/metric/aggregator/exponential/mapping/exponent/exponent.go
_mappings = {}
_mappings_lock = Lock()
_min_scale = -10
_max_scale = 0
def _get_min_scale(self):
# _min_scale defines the point at which the exponential mapping
# function becomes useless for 64-bit floats. With scale -10, ignoring
# subnormal values, bucket indices range from -1 to 1.
return -10
def _get_max_scale(self):
# _max_scale is the largest scale supported by exponential mapping. Use
# a logarithm mapping for larger scales.
return 0
def _init(self, scale: int):
# pylint: disable=attribute-defined-outside-init
super()._init(scale)
# self._min_normal_lower_boundary_index is the largest index such that
# base ** index < MIN_NORMAL_VALUE and
# base ** (index + 1) >= MIN_NORMAL_VALUE. An exponential histogram
# bucket with this index covers the range
# (base ** index, base (index + 1)], including MIN_NORMAL_VALUE. This
# is the smallest valid index that contains at least one normal value.
index = MIN_NORMAL_EXPONENT >> -self._scale
if -self._scale < 2:
# For scales -1 and 0, the maximum value 2 ** -1022 is a
# power-of-two multiple, meaning base ** index == MIN_NORMAL_VALUE.
# Subtracting 1 so that base ** (index + 1) == MIN_NORMAL_VALUE.
index -= 1
self._min_normal_lower_boundary_index = index
# self._max_normal_lower_boundary_index is the index such that
# base**index equals the greatest representable lower boundary. An
# exponential histogram bucket with this index covers the range
# ((2 ** 1024) / base, 2 ** 1024], which includes opentelemetry.sdk.
# metrics._internal.exponential_histogram.ieee_754.MAX_NORMAL_VALUE.
# This bucket is incomplete, since the upper boundary cannot be
# represented. One greater than this index corresponds with the bucket
# containing values > 2 ** 1024.
self._max_normal_lower_boundary_index = (
MAX_NORMAL_EXPONENT >> -self._scale
)
def map_to_index(self, value: float) -> int:
if value < MIN_NORMAL_VALUE:
return self._min_normal_lower_boundary_index
exponent = get_ieee_754_exponent(value)
# Positive integers are represented in binary as having an infinite
# amount of leading zeroes, for example 2 is represented as ...00010.
# A negative integer -x is represented in binary as the complement of
# (x - 1). For example, -4 is represented as the complement of 4 - 1
# == 3. 3 is represented as ...00011. Its compliment is ...11100, the
# binary representation of -4.
# get_ieee_754_mantissa(value) gets the positive integer made up
# from the rightmost MANTISSA_WIDTH bits (the mantissa) of the IEEE
# 754 representation of value. If value is an exact power of 2, all
# these MANTISSA_WIDTH bits would be all zeroes, and when 1 is
# subtracted the resulting value is -1. The binary representation of
# -1 is ...111, so when these bits are right shifted MANTISSA_WIDTH
# places, the resulting value for correction is -1. If value is not an
# exact power of 2, at least one of the rightmost MANTISSA_WIDTH
# bits would be 1 (even for values whose decimal part is 0, like 5.0
# since the IEEE 754 of such number is too the product of a power of 2
# (defined in the exponent part of the IEEE 754 representation) and the
# value defined in the mantissa). Having at least one of the rightmost
# MANTISSA_WIDTH bit being 1 means that get_ieee_754(value) will
# always be greater or equal to 1, and when 1 is subtracted, the
# result will be greater or equal to 0, whose representation in binary
# will be of at most MANTISSA_WIDTH ones that have an infinite
# amount of leading zeroes. When those MANTISSA_WIDTH bits are
# shifted to the right MANTISSA_WIDTH places, the resulting value
# will be 0.
# In summary, correction will be -1 if value is a power of 2, 0 if not.
# FIXME Document why we can assume value will not be 0, inf, or NaN.
correction = (get_ieee_754_mantissa(value) - 1) >> MANTISSA_WIDTH
return (exponent + correction) >> -self._scale
def get_lower_boundary(self, index: int) -> float:
if index < self._min_normal_lower_boundary_index:
raise MappingUnderflowError()
if index > self._max_normal_lower_boundary_index:
raise MappingOverflowError()
return ldexp(1, index << -self._scale)
@property
def scale(self) -> int:
return self._scale

View File

@@ -0,0 +1,175 @@
# IEEE 754 Explained
IEEE 754 is a standard that defines a way to represent certain mathematical
objects using binary numbers.
## Binary Number Fields
The binary numbers used in IEEE 754 can have different lengths, the length that
is interesting for the purposes of this project is 64 bits. These binary
numbers are made up of 3 contiguous fields of bits, from left to right:
1. 1 sign bit
2. 11 exponent bits
3. 52 mantissa bits
Depending on the values these fields have, the represented mathematical object
can be one of:
* Floating point number
* Zero
* NaN
* Infinite
## Floating Point Numbers
IEEE 754 represents a floating point number $f$ using an exponential
notation with 4 components: $sign$, $mantissa$, $base$ and $exponent$:
$$f = sign \times mantissa \times base ^ {exponent}$$
There are two possible representations of floating point numbers:
_normal_ and _denormal_, which have different valid values for
their $mantissa$ and $exponent$ fields.
### Binary Representation
$sign$, $mantissa$, and $exponent$ are represented in binary, the
representation of each component has certain details explained next.
$base$ is always $2$ and it is not represented in binary.
#### Sign
$sign$ can have 2 values:
1. $1$ if the `sign` bit is `0`
2. $-1$ if the `sign` bit is `1`.
#### Mantissa
##### Normal Floating Point Numbers
$mantissa$ is a positive fractional number whose integer part is $1$, for example
$1.2345 \dots$. The `mantissa` bits represent only the fractional part and the
$mantissa$ value can be calculated as:
$$mantissa = 1 + \sum_{i=1}^{52} b_{i} \times 2^{-i} = 1 + \frac{b_{1}}{2^{1}} + \frac{b_{2}}{2^{2}} + \dots + \frac{b_{51}}{2^{51}} + \frac{b_{52}}{2^{52}}$$
Where $b_{i}$ is:
1. $0$ if the bit at the position `i - 1` is `0`.
2. $1$ if the bit at the position `i - 1` is `1`.
##### Denormal Floating Point Numbers
$mantissa$ is a positive fractional number whose integer part is $0$, for example
$0.12345 \dots$. The `mantissa` bits represent only the fractional part and the
$mantissa$ value can be calculated as:
$$mantissa = \sum_{i=1}^{52} b_{i} \times 2^{-i} = \frac{b_{1}}{2^{1}} + \frac{b_{2}}{2^{2}} + \dots + \frac{b_{51}}{2^{51}} + \frac{b_{52}}{2^{52}}$$
Where $b_{i}$ is:
1. $0$ if the bit at the position `i - 1` is `0`.
2. $1$ if the bit at the position `i - 1` is `1`.
#### Exponent
##### Normal Floating Point Numbers
Only the following bit sequences are allowed: `00000000001` to `11111111110`.
That is, there must be at least one `0` and one `1` in the exponent bits.
The actual value of the $exponent$ can be calculated as:
$$exponent = v - bias$$
where $v$ is the value of the binary number in the exponent bits and $bias$ is $1023$.
Considering the restrictions above, the respective minimum and maximum values for the
exponent are:
1. `00000000001` = $1$, $1 - 1023 = -1022$
2. `11111111110` = $2046$, $2046 - 1023 = 1023$
So, $exponent$ is an integer in the range $\left[-1022, 1023\right]$.
##### Denormal Floating Point Numbers
$exponent$ is always $-1022$. Nevertheless, it is always represented as `00000000000`.
### Normal and Denormal Floating Point Numbers
The smallest absolute value a normal floating point number can have is calculated
like this:
$$1 \times 1.0\dots0 \times 2^{-1022} = 2.2250738585072014 \times 10^{-308}$$
Since normal floating point numbers always have a $1$ as the integer part of the
$mantissa$, then smaller values can be achieved by using the smallest possible exponent
( $-1022$ ) and a $0$ in the integer part of the $mantissa$, but significant digits are lost.
The smallest absolute value a denormal floating point number can have is calculated
like this:
$$1 \times 2^{-52} \times 2^{-1022} = 5 \times 10^{-324}$$
## Zero
Zero is represented like this:
* Sign bit: `X`
* Exponent bits: `00000000000`
* Mantissa bits: `0000000000000000000000000000000000000000000000000000`
where `X` means `0` or `1`.
## NaN
There are 2 kinds of NaNs that are represented:
1. QNaNs (Quiet NaNs): represent the result of indeterminate operations.
2. SNaNs (Signalling NaNs): represent the result of invalid operations.
### QNaNs
QNaNs are represented like this:
* Sign bit: `X`
* Exponent bits: `11111111111`
* Mantissa bits: `1XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX`
where `X` means `0` or `1`.
### SNaNs
SNaNs are represented like this:
* Sign bit: `X`
* Exponent bits: `11111111111`
* Mantissa bits: `0XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX1`
where `X` means `0` or `1`.
## Infinite
### Positive Infinite
Positive infinite is represented like this:
* Sign bit: `0`
* Exponent bits: `11111111111`
* Mantissa bits: `0000000000000000000000000000000000000000000000000000`
where `X` means `0` or `1`.
### Negative Infinite
Negative infinite is represented like this:
* Sign bit: `1`
* Exponent bits: `11111111111`
* Mantissa bits: `0000000000000000000000000000000000000000000000000000`
where `X` means `0` or `1`.

View File

@@ -0,0 +1,117 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ctypes import c_double, c_uint64
from sys import float_info
# IEEE 754 64-bit floating point numbers use 11 bits for the exponent and 52
# bits for the mantissa.
MANTISSA_WIDTH = 52
EXPONENT_WIDTH = 11
# This mask is equivalent to 52 "1" bits (there are 13 hexadecimal 4-bit "f"s
# in the mantissa mask, 13 * 4 == 52) or 0xfffffffffffff in hexadecimal.
MANTISSA_MASK = (1 << MANTISSA_WIDTH) - 1
# There are 11 bits for the exponent, but the exponent values 0 (11 "0"
# bits) and 2047 (11 "1" bits) have special meanings so the exponent range is
# from 1 to 2046. To calculate the exponent value, 1023 (the bias) is
# subtracted from the exponent, so the exponent value range is from -1022 to
# +1023.
EXPONENT_BIAS = (2 ** (EXPONENT_WIDTH - 1)) - 1
# All the exponent mask bits are set to 1 for the 11 exponent bits.
EXPONENT_MASK = ((1 << EXPONENT_WIDTH) - 1) << MANTISSA_WIDTH
# The sign mask has the first bit set to 1 and the rest to 0.
SIGN_MASK = 1 << (EXPONENT_WIDTH + MANTISSA_WIDTH)
# For normal floating point numbers, the exponent can have a value in the
# range [-1022, 1023].
MIN_NORMAL_EXPONENT = -EXPONENT_BIAS + 1
MAX_NORMAL_EXPONENT = EXPONENT_BIAS
# The smallest possible normal value is 2.2250738585072014e-308.
# This value is the result of using the smallest possible number in the
# mantissa, 1.0000000000000000000000000000000000000000000000000000 (52 "0"s in
# the fractional part) and a single "1" in the exponent.
# Finally 1 * (2 ** -1022) = 2.2250738585072014e-308.
MIN_NORMAL_VALUE = float_info.min
# Greatest possible normal value (1.7976931348623157e+308)
# The binary representation of a float in scientific notation uses (for the
# mantissa) one bit for the integer part (which is implicit) and 52 bits for
# the fractional part. Consider a float binary 1.111. It is equal to 1 + 1/2 +
# 1/4 + 1/8. The greatest possible value in the 52-bit binary mantissa would be
# then 1.1111111111111111111111111111111111111111111111111111 (52 "1"s in the
# fractional part) whose decimal value is 1.9999999999999998. Finally,
# 1.9999999999999998 * (2 ** 1023) = 1.7976931348623157e+308.
MAX_NORMAL_VALUE = float_info.max
def get_ieee_754_exponent(value: float) -> int:
"""
Gets the exponent of the IEEE 754 representation of a float.
"""
return (
(
# This step gives the integer that corresponds to the IEEE 754
# representation of a float. For example, consider
# -MAX_NORMAL_VALUE for an example. We choose this value because
# of its binary representation which makes easy to understand the
# subsequent operations.
#
# c_uint64.from_buffer(c_double(-MAX_NORMAL_VALUE)).value == 18442240474082181119
# bin(18442240474082181119) == '0b1111111111101111111111111111111111111111111111111111111111111111'
#
# The first bit of the previous binary number is the sign bit: 1 (1 means negative, 0 means positive)
# The next 11 bits are the exponent bits: 11111111110
# The next 52 bits are the mantissa bits: 1111111111111111111111111111111111111111111111111111
#
# This step isolates the exponent bits, turning every bit outside
# of the exponent field (sign and mantissa bits) to 0.
c_uint64.from_buffer(c_double(value)).value & EXPONENT_MASK
# For the example this means:
# 18442240474082181119 & EXPONENT_MASK == 9214364837600034816
# bin(9214364837600034816) == '0b111111111100000000000000000000000000000000000000000000000000000'
# Notice that the previous binary representation does not include
# leading zeroes, so the sign bit is not included since it is a
# zero.
)
# This step moves the exponent bits to the right, removing the
# mantissa bits that were set to 0 by the previous step. This
# leaves the IEEE 754 exponent value, ready for the next step.
>> MANTISSA_WIDTH
# For the example this means:
# 9214364837600034816 >> MANTISSA_WIDTH == 2046
# bin(2046) == '0b11111111110'
# As shown above, these are the original 11 bits that correspond to the
# exponent.
# This step subtracts the exponent bias from the IEEE 754 value,
# leaving the actual exponent value.
) - EXPONENT_BIAS
# For the example this means:
# 2046 - EXPONENT_BIAS == 1023
# As mentioned in a comment above, the largest value for the exponent is
def get_ieee_754_mantissa(value: float) -> int:
return (
c_uint64.from_buffer(c_double(value)).value
# This step isolates the mantissa bits. There is no need to do any
# bit shifting as the mantissa bits are already the rightmost field
# in an IEEE 754 representation.
& MANTISSA_MASK
)

View File

@@ -0,0 +1,138 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from math import exp, floor, ldexp, log
from threading import Lock
from opentelemetry.sdk.metrics._internal.exponential_histogram.mapping import (
Mapping,
)
from opentelemetry.sdk.metrics._internal.exponential_histogram.mapping.errors import (
MappingOverflowError,
MappingUnderflowError,
)
from opentelemetry.sdk.metrics._internal.exponential_histogram.mapping.ieee_754 import (
MAX_NORMAL_EXPONENT,
MIN_NORMAL_EXPONENT,
MIN_NORMAL_VALUE,
get_ieee_754_exponent,
get_ieee_754_mantissa,
)
class LogarithmMapping(Mapping):
# Reference implementation here:
# https://github.com/open-telemetry/opentelemetry-go/blob/0e6f9c29c10d6078e8131418e1d1d166c7195d61/sdk/metric/aggregator/exponential/mapping/logarithm/logarithm.go
_mappings = {}
_mappings_lock = Lock()
_min_scale = 1
_max_scale = 20
def _get_min_scale(self):
# _min_scale ensures that ExponentMapping is used for zero and negative
# scale values.
return self._min_scale
def _get_max_scale(self):
# FIXME The Go implementation uses a value of 20 here, find out the
# right value for this implementation, more information here:
# https://github.com/lightstep/otel-launcher-go/blob/c9ca8483be067a39ab306b09060446e7fda65f35/lightstep/sdk/metric/aggregator/histogram/structure/README.md#mapping-function
# https://github.com/open-telemetry/opentelemetry-go/blob/0e6f9c29c10d6078e8131418e1d1d166c7195d61/sdk/metric/aggregator/exponential/mapping/logarithm/logarithm.go#L32-L45
return self._max_scale
def _init(self, scale: int):
# pylint: disable=attribute-defined-outside-init
super()._init(scale)
# self._scale_factor is defined as a multiplier because multiplication
# is faster than division. self._scale_factor is defined as:
# index = log(value) * self._scale_factor
# Where:
# index = log(value) / log(base)
# index = log(value) / log(2 ** (2 ** -scale))
# index = log(value) / ((2 ** -scale) * log(2))
# index = log(value) * ((1 / log(2)) * (2 ** scale))
# self._scale_factor = ((1 / log(2)) * (2 ** scale))
# self._scale_factor = (1 /log(2)) * (2 ** scale)
# self._scale_factor = ldexp(1 / log(2), scale)
# This implementation was copied from a Java prototype. See:
# https://github.com/newrelic-experimental/newrelic-sketch-java/blob/1ce245713603d61ba3a4510f6df930a5479cd3f6/src/main/java/com/newrelic/nrsketch/indexer/LogIndexer.java
# for the equations used here.
self._scale_factor = ldexp(1 / log(2), scale)
# self._min_normal_lower_boundary_index is the index such that
# base ** index == MIN_NORMAL_VALUE. An exponential histogram bucket
# with this index covers the range
# (MIN_NORMAL_VALUE, MIN_NORMAL_VALUE * base]. One less than this index
# corresponds with the bucket containing values <= MIN_NORMAL_VALUE.
self._min_normal_lower_boundary_index = (
MIN_NORMAL_EXPONENT << self._scale
)
# self._max_normal_lower_boundary_index is the index such that
# base ** index equals the greatest representable lower boundary. An
# exponential histogram bucket with this index covers the range
# ((2 ** 1024) / base, 2 ** 1024], which includes opentelemetry.sdk.
# metrics._internal.exponential_histogram.ieee_754.MAX_NORMAL_VALUE.
# This bucket is incomplete, since the upper boundary cannot be
# represented. One greater than this index corresponds with the bucket
# containing values > 2 ** 1024.
self._max_normal_lower_boundary_index = (
(MAX_NORMAL_EXPONENT + 1) << self._scale
) - 1
def map_to_index(self, value: float) -> int:
"""
Maps positive floating point values to indexes corresponding to scale.
"""
# value is subnormal
if value <= MIN_NORMAL_VALUE:
return self._min_normal_lower_boundary_index - 1
# value is an exact power of two.
if get_ieee_754_mantissa(value) == 0:
exponent = get_ieee_754_exponent(value)
return (exponent << self._scale) - 1
return min(
floor(log(value) * self._scale_factor),
self._max_normal_lower_boundary_index,
)
def get_lower_boundary(self, index: int) -> float:
if index >= self._max_normal_lower_boundary_index:
if index == self._max_normal_lower_boundary_index:
return 2 * exp(
(index - (1 << self._scale)) / self._scale_factor
)
raise MappingOverflowError()
if index <= self._min_normal_lower_boundary_index:
if index == self._min_normal_lower_boundary_index:
return MIN_NORMAL_VALUE
if index == self._min_normal_lower_boundary_index - 1:
return (
exp((index + (1 << self._scale)) / self._scale_factor) / 2
)
raise MappingUnderflowError()
return exp(index / self._scale_factor)
@property
def scale(self) -> int:
return self._scale

View File

@@ -0,0 +1,576 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import math
import os
import weakref
from abc import ABC, abstractmethod
from enum import Enum
from logging import getLogger
from os import environ, linesep
from sys import stdout
from threading import Event, Lock, RLock, Thread
from time import time_ns
from typing import IO, Callable, Iterable, Optional
from typing_extensions import final
# This kind of import is needed to avoid Sphinx errors.
import opentelemetry.sdk.metrics._internal
from opentelemetry.context import (
_SUPPRESS_INSTRUMENTATION_KEY,
attach,
detach,
set_value,
)
from opentelemetry.sdk.environment_variables import (
OTEL_METRIC_EXPORT_INTERVAL,
OTEL_METRIC_EXPORT_TIMEOUT,
)
from opentelemetry.sdk.metrics._internal.aggregation import (
AggregationTemporality,
DefaultAggregation,
)
from opentelemetry.sdk.metrics._internal.exceptions import MetricsTimeoutError
from opentelemetry.sdk.metrics._internal.instrument import (
Counter,
Gauge,
Histogram,
ObservableCounter,
ObservableGauge,
ObservableUpDownCounter,
UpDownCounter,
_Counter,
_Gauge,
_Histogram,
_ObservableCounter,
_ObservableGauge,
_ObservableUpDownCounter,
_UpDownCounter,
)
from opentelemetry.sdk.metrics._internal.point import MetricsData
from opentelemetry.util._once import Once
_logger = getLogger(__name__)
class MetricExportResult(Enum):
"""Result of exporting a metric
Can be any of the following values:"""
SUCCESS = 0
FAILURE = 1
class MetricExporter(ABC):
"""Interface for exporting metrics.
Interface to be implemented by services that want to export metrics received
in their own format.
Args:
preferred_temporality: Used by `opentelemetry.sdk.metrics.export.PeriodicExportingMetricReader` to
configure exporter level preferred temporality. See `opentelemetry.sdk.metrics.export.MetricReader` for
more details on what preferred temporality is.
preferred_aggregation: Used by `opentelemetry.sdk.metrics.export.PeriodicExportingMetricReader` to
configure exporter level preferred aggregation. See `opentelemetry.sdk.metrics.export.MetricReader` for
more details on what preferred aggregation is.
"""
def __init__(
self,
preferred_temporality: dict[type, AggregationTemporality]
| None = None,
preferred_aggregation: dict[
type, "opentelemetry.sdk.metrics.view.Aggregation"
]
| None = None,
) -> None:
self._preferred_temporality = preferred_temporality
self._preferred_aggregation = preferred_aggregation
@abstractmethod
def export(
self,
metrics_data: MetricsData,
timeout_millis: float = 10_000,
**kwargs,
) -> MetricExportResult:
"""Exports a batch of telemetry data.
Args:
metrics: The list of `opentelemetry.sdk.metrics.export.Metric` objects to be exported
Returns:
The result of the export
"""
@abstractmethod
def force_flush(self, timeout_millis: float = 10_000) -> bool:
"""
Ensure that export of any metrics currently received by the exporter
are completed as soon as possible.
"""
@abstractmethod
def shutdown(self, timeout_millis: float = 30_000, **kwargs) -> None:
"""Shuts down the exporter.
Called when the SDK is shut down.
"""
class ConsoleMetricExporter(MetricExporter):
"""Implementation of :class:`MetricExporter` that prints metrics to the
console.
This class can be used for diagnostic purposes. It prints the exported
metrics to the console STDOUT.
"""
def __init__(
self,
out: IO = stdout,
formatter: Callable[
["opentelemetry.sdk.metrics.export.MetricsData"], str
] = lambda metrics_data: metrics_data.to_json() + linesep,
preferred_temporality: dict[type, AggregationTemporality]
| None = None,
preferred_aggregation: dict[
type, "opentelemetry.sdk.metrics.view.Aggregation"
]
| None = None,
):
super().__init__(
preferred_temporality=preferred_temporality,
preferred_aggregation=preferred_aggregation,
)
self.out = out
self.formatter = formatter
def export(
self,
metrics_data: MetricsData,
timeout_millis: float = 10_000,
**kwargs,
) -> MetricExportResult:
self.out.write(self.formatter(metrics_data))
self.out.flush()
return MetricExportResult.SUCCESS
def shutdown(self, timeout_millis: float = 30_000, **kwargs) -> None:
pass
def force_flush(self, timeout_millis: float = 10_000) -> bool:
return True
class MetricReader(ABC):
# pylint: disable=too-many-branches,broad-exception-raised
"""
Base class for all metric readers
Args:
preferred_temporality: A mapping between instrument classes and
aggregation temporality. By default uses CUMULATIVE for all instrument
classes. This mapping will be used to define the default aggregation
temporality of every instrument class. If the user wants to make a
change in the default aggregation temporality of an instrument class,
it is enough to pass here a dictionary whose keys are the instrument
classes and the values are the corresponding desired aggregation
temporalities of the classes that the user wants to change, not all of
them. The classes not included in the passed dictionary will retain
their association to their default aggregation temporalities.
preferred_aggregation: A mapping between instrument classes and
aggregation instances. By default maps all instrument classes to an
instance of `DefaultAggregation`. This mapping will be used to
define the default aggregation of every instrument class. If the
user wants to make a change in the default aggregation of an
instrument class, it is enough to pass here a dictionary whose keys
are the instrument classes and the values are the corresponding
desired aggregation for the instrument classes that the user wants
to change, not necessarily all of them. The classes not included in
the passed dictionary will retain their association to their
default aggregations. The aggregation defined here will be
overridden by an aggregation defined by a view that is not
`DefaultAggregation`.
.. document protected _receive_metrics which is a intended to be overridden by subclass
.. automethod:: _receive_metrics
"""
def __init__(
self,
preferred_temporality: dict[type, AggregationTemporality]
| None = None,
preferred_aggregation: dict[
type, "opentelemetry.sdk.metrics.view.Aggregation"
]
| None = None,
) -> None:
self._collect: Callable[
[
"opentelemetry.sdk.metrics.export.MetricReader",
AggregationTemporality,
],
Iterable["opentelemetry.sdk.metrics.export.Metric"],
] = None
self._instrument_class_temporality = {
_Counter: AggregationTemporality.CUMULATIVE,
_UpDownCounter: AggregationTemporality.CUMULATIVE,
_Histogram: AggregationTemporality.CUMULATIVE,
_Gauge: AggregationTemporality.CUMULATIVE,
_ObservableCounter: AggregationTemporality.CUMULATIVE,
_ObservableUpDownCounter: AggregationTemporality.CUMULATIVE,
_ObservableGauge: AggregationTemporality.CUMULATIVE,
}
if preferred_temporality is not None:
for temporality in preferred_temporality.values():
if temporality not in (
AggregationTemporality.CUMULATIVE,
AggregationTemporality.DELTA,
):
raise Exception(
f"Invalid temporality value found {temporality}"
)
if preferred_temporality is not None:
for typ, temporality in preferred_temporality.items():
if typ is Counter:
self._instrument_class_temporality[_Counter] = temporality
elif typ is UpDownCounter:
self._instrument_class_temporality[_UpDownCounter] = (
temporality
)
elif typ is Histogram:
self._instrument_class_temporality[_Histogram] = (
temporality
)
elif typ is Gauge:
self._instrument_class_temporality[_Gauge] = temporality
elif typ is ObservableCounter:
self._instrument_class_temporality[_ObservableCounter] = (
temporality
)
elif typ is ObservableUpDownCounter:
self._instrument_class_temporality[
_ObservableUpDownCounter
] = temporality
elif typ is ObservableGauge:
self._instrument_class_temporality[_ObservableGauge] = (
temporality
)
else:
raise Exception(f"Invalid instrument class found {typ}")
self._preferred_temporality = preferred_temporality
self._instrument_class_aggregation = {
_Counter: DefaultAggregation(),
_UpDownCounter: DefaultAggregation(),
_Histogram: DefaultAggregation(),
_Gauge: DefaultAggregation(),
_ObservableCounter: DefaultAggregation(),
_ObservableUpDownCounter: DefaultAggregation(),
_ObservableGauge: DefaultAggregation(),
}
if preferred_aggregation is not None:
for typ, aggregation in preferred_aggregation.items():
if typ is Counter:
self._instrument_class_aggregation[_Counter] = aggregation
elif typ is UpDownCounter:
self._instrument_class_aggregation[_UpDownCounter] = (
aggregation
)
elif typ is Histogram:
self._instrument_class_aggregation[_Histogram] = (
aggregation
)
elif typ is Gauge:
self._instrument_class_aggregation[_Gauge] = aggregation
elif typ is ObservableCounter:
self._instrument_class_aggregation[_ObservableCounter] = (
aggregation
)
elif typ is ObservableUpDownCounter:
self._instrument_class_aggregation[
_ObservableUpDownCounter
] = aggregation
elif typ is ObservableGauge:
self._instrument_class_aggregation[_ObservableGauge] = (
aggregation
)
else:
raise Exception(f"Invalid instrument class found {typ}")
@final
def collect(self, timeout_millis: float = 10_000) -> None:
"""Collects the metrics from the internal SDK state and
invokes the `_receive_metrics` with the collection.
Args:
timeout_millis: Amount of time in milliseconds before this function
raises a timeout error.
If any of the underlying ``collect`` methods called by this method
fails by any reason (including timeout) an exception will be raised
detailing the individual errors that caused this function to fail.
"""
if self._collect is None:
_logger.warning(
"Cannot call collect on a MetricReader until it is registered on a MeterProvider"
)
return
metrics = self._collect(self, timeout_millis=timeout_millis)
if metrics is not None:
self._receive_metrics(
metrics,
timeout_millis=timeout_millis,
)
@final
def _set_collect_callback(
self,
func: Callable[
[
"opentelemetry.sdk.metrics.export.MetricReader",
AggregationTemporality,
],
Iterable["opentelemetry.sdk.metrics.export.Metric"],
],
) -> None:
"""This function is internal to the SDK. It should not be called or overridden by users"""
self._collect = func
@abstractmethod
def _receive_metrics(
self,
metrics_data: "opentelemetry.sdk.metrics.export.MetricsData",
timeout_millis: float = 10_000,
**kwargs,
) -> None:
"""Called by `MetricReader.collect` when it receives a batch of metrics"""
def force_flush(self, timeout_millis: float = 10_000) -> bool:
self.collect(timeout_millis=timeout_millis)
return True
@abstractmethod
def shutdown(self, timeout_millis: float = 30_000, **kwargs) -> None:
"""Shuts down the MetricReader. This method provides a way
for the MetricReader to do any cleanup required. A metric reader can
only be shutdown once, any subsequent calls are ignored and return
failure status.
When a `MetricReader` is registered on a
:class:`~opentelemetry.sdk.metrics.MeterProvider`,
:meth:`~opentelemetry.sdk.metrics.MeterProvider.shutdown` will invoke this
automatically.
"""
class InMemoryMetricReader(MetricReader):
"""Implementation of `MetricReader` that returns its metrics from :func:`get_metrics_data`.
This is useful for e.g. unit tests.
"""
def __init__(
self,
preferred_temporality: dict[type, AggregationTemporality]
| None = None,
preferred_aggregation: dict[
type, "opentelemetry.sdk.metrics.view.Aggregation"
]
| None = None,
) -> None:
super().__init__(
preferred_temporality=preferred_temporality,
preferred_aggregation=preferred_aggregation,
)
self._lock = RLock()
self._metrics_data: "opentelemetry.sdk.metrics.export.MetricsData" = (
None
)
def get_metrics_data(
self,
) -> Optional["opentelemetry.sdk.metrics.export.MetricsData"]:
"""Reads and returns current metrics from the SDK"""
with self._lock:
self.collect()
metrics_data = self._metrics_data
self._metrics_data = None
return metrics_data
def _receive_metrics(
self,
metrics_data: "opentelemetry.sdk.metrics.export.MetricsData",
timeout_millis: float = 10_000,
**kwargs,
) -> None:
with self._lock:
self._metrics_data = metrics_data
def shutdown(self, timeout_millis: float = 30_000, **kwargs) -> None:
pass
class PeriodicExportingMetricReader(MetricReader):
"""`PeriodicExportingMetricReader` is an implementation of `MetricReader`
that collects metrics based on a user-configurable time interval, and passes the
metrics to the configured exporter. If the time interval is set to `math.inf`, the
reader will not invoke periodic collection.
The configured exporter's :py:meth:`~MetricExporter.export` method will not be called
concurrently.
"""
def __init__(
self,
exporter: MetricExporter,
export_interval_millis: Optional[float] = None,
export_timeout_millis: Optional[float] = None,
) -> None:
# PeriodicExportingMetricReader defers to exporter for configuration
super().__init__(
preferred_temporality=exporter._preferred_temporality,
preferred_aggregation=exporter._preferred_aggregation,
)
# This lock is held whenever calling self._exporter.export() to prevent concurrent
# execution of MetricExporter.export()
# https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#exportbatch
self._export_lock = Lock()
self._exporter = exporter
if export_interval_millis is None:
try:
export_interval_millis = float(
environ.get(OTEL_METRIC_EXPORT_INTERVAL, 60000)
)
except ValueError:
_logger.warning(
"Found invalid value for export interval, using default"
)
export_interval_millis = 60000
if export_timeout_millis is None:
try:
export_timeout_millis = float(
environ.get(OTEL_METRIC_EXPORT_TIMEOUT, 30000)
)
except ValueError:
_logger.warning(
"Found invalid value for export timeout, using default"
)
export_timeout_millis = 30000
self._export_interval_millis = export_interval_millis
self._export_timeout_millis = export_timeout_millis
self._shutdown = False
self._shutdown_event = Event()
self._shutdown_once = Once()
self._daemon_thread = None
if (
self._export_interval_millis > 0
and self._export_interval_millis < math.inf
):
self._daemon_thread = Thread(
name="OtelPeriodicExportingMetricReader",
target=self._ticker,
daemon=True,
)
self._daemon_thread.start()
if hasattr(os, "register_at_fork"):
weak_at_fork = weakref.WeakMethod(self._at_fork_reinit)
os.register_at_fork(
after_in_child=lambda: weak_at_fork()() # pylint: disable=unnecessary-lambda
)
elif self._export_interval_millis <= 0:
raise ValueError(
f"interval value {self._export_interval_millis} is invalid \
and needs to be larger than zero."
)
def _at_fork_reinit(self):
self._daemon_thread = Thread(
name="OtelPeriodicExportingMetricReader",
target=self._ticker,
daemon=True,
)
self._daemon_thread.start()
def _ticker(self) -> None:
interval_secs = self._export_interval_millis / 1e3
while not self._shutdown_event.wait(interval_secs):
try:
self.collect(timeout_millis=self._export_timeout_millis)
except MetricsTimeoutError:
_logger.warning(
"Metric collection timed out. Will try again after %s seconds",
interval_secs,
exc_info=True,
)
# one last collection below before shutting down completely
try:
self.collect(timeout_millis=self._export_interval_millis)
except MetricsTimeoutError:
_logger.warning(
"Metric collection timed out.",
exc_info=True,
)
def _receive_metrics(
self,
metrics_data: MetricsData,
timeout_millis: float = 10_000,
**kwargs,
) -> None:
token = attach(set_value(_SUPPRESS_INSTRUMENTATION_KEY, True))
# pylint: disable=broad-exception-caught,invalid-name
try:
with self._export_lock:
self._exporter.export(
metrics_data, timeout_millis=timeout_millis
)
except Exception:
_logger.exception("Exception while exporting metrics")
detach(token)
def shutdown(self, timeout_millis: float = 30_000, **kwargs) -> None:
deadline_ns = time_ns() + timeout_millis * 10**6
def _shutdown():
self._shutdown = True
did_set = self._shutdown_once.do_once(_shutdown)
if not did_set:
_logger.warning("Can't shutdown multiple times")
return
self._shutdown_event.set()
if self._daemon_thread:
self._daemon_thread.join(timeout=(deadline_ns - time_ns()) / 10**9)
self._exporter.shutdown(timeout=(deadline_ns - time_ns()) / 10**6)
def force_flush(self, timeout_millis: float = 10_000) -> bool:
super().force_flush(timeout_millis=timeout_millis)
self._exporter.force_flush(timeout_millis=timeout_millis)
return True

View File

@@ -0,0 +1,334 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=too-many-ancestors, unused-import
from __future__ import annotations
from logging import getLogger
from time import time_ns
from typing import Generator, Iterable, List, Sequence, Union
# This kind of import is needed to avoid Sphinx errors.
import opentelemetry.sdk.metrics
from opentelemetry.context import Context, get_current
from opentelemetry.metrics import CallbackT
from opentelemetry.metrics import Counter as APICounter
from opentelemetry.metrics import Histogram as APIHistogram
from opentelemetry.metrics import ObservableCounter as APIObservableCounter
from opentelemetry.metrics import ObservableGauge as APIObservableGauge
from opentelemetry.metrics import (
ObservableUpDownCounter as APIObservableUpDownCounter,
)
from opentelemetry.metrics import UpDownCounter as APIUpDownCounter
from opentelemetry.metrics import _Gauge as APIGauge
from opentelemetry.metrics._internal.instrument import (
CallbackOptions,
_MetricsHistogramAdvisory,
)
from opentelemetry.sdk.metrics._internal.measurement import Measurement
from opentelemetry.sdk.util.instrumentation import InstrumentationScope
_logger = getLogger(__name__)
_ERROR_MESSAGE = (
"Expected ASCII string of maximum length 63 characters but got {}"
)
class _Synchronous:
def __init__(
self,
name: str,
instrumentation_scope: InstrumentationScope,
measurement_consumer: "opentelemetry.sdk.metrics.MeasurementConsumer",
unit: str = "",
description: str = "",
):
# pylint: disable=no-member
result = self._check_name_unit_description(name, unit, description)
if result["name"] is None:
# pylint: disable=broad-exception-raised
raise Exception(_ERROR_MESSAGE.format(name))
if result["unit"] is None:
# pylint: disable=broad-exception-raised
raise Exception(_ERROR_MESSAGE.format(unit))
name = result["name"]
unit = result["unit"]
description = result["description"]
self.name = name.lower()
self.unit = unit
self.description = description
self.instrumentation_scope = instrumentation_scope
self._measurement_consumer = measurement_consumer
super().__init__(name, unit=unit, description=description)
class _Asynchronous:
def __init__(
self,
name: str,
instrumentation_scope: InstrumentationScope,
measurement_consumer: "opentelemetry.sdk.metrics.MeasurementConsumer",
callbacks: Iterable[CallbackT] | None = None,
unit: str = "",
description: str = "",
):
# pylint: disable=no-member
result = self._check_name_unit_description(name, unit, description)
if result["name"] is None:
# pylint: disable=broad-exception-raised
raise Exception(_ERROR_MESSAGE.format(name))
if result["unit"] is None:
# pylint: disable=broad-exception-raised
raise Exception(_ERROR_MESSAGE.format(unit))
name = result["name"]
unit = result["unit"]
description = result["description"]
self.name = name.lower()
self.unit = unit
self.description = description
self.instrumentation_scope = instrumentation_scope
self._measurement_consumer = measurement_consumer
super().__init__(name, callbacks, unit=unit, description=description)
self._callbacks: List[CallbackT] = []
if callbacks is not None:
for callback in callbacks:
if isinstance(callback, Generator):
# advance generator to it's first yield
next(callback)
def inner(
options: CallbackOptions,
callback=callback,
) -> Iterable[Measurement]:
try:
return callback.send(options)
except StopIteration:
return []
self._callbacks.append(inner)
else:
self._callbacks.append(callback)
def callback(
self, callback_options: CallbackOptions
) -> Iterable[Measurement]:
for callback in self._callbacks:
try:
for api_measurement in callback(callback_options):
yield Measurement(
api_measurement.value,
time_unix_nano=time_ns(),
instrument=self,
context=api_measurement.context or get_current(),
attributes=api_measurement.attributes,
)
except Exception: # pylint: disable=broad-exception-caught
_logger.exception(
"Callback failed for instrument %s.", self.name
)
class Counter(_Synchronous, APICounter):
def __new__(cls, *args, **kwargs):
if cls is Counter:
raise TypeError("Counter must be instantiated via a meter.")
return super().__new__(cls)
def add(
self,
amount: Union[int, float],
attributes: dict[str, str] | None = None,
context: Context | None = None,
):
if amount < 0:
_logger.warning(
"Add amount must be non-negative on Counter %s.", self.name
)
return
time_unix_nano = time_ns()
self._measurement_consumer.consume_measurement(
Measurement(
amount,
time_unix_nano,
self,
context or get_current(),
attributes,
)
)
class UpDownCounter(_Synchronous, APIUpDownCounter):
def __new__(cls, *args, **kwargs):
if cls is UpDownCounter:
raise TypeError("UpDownCounter must be instantiated via a meter.")
return super().__new__(cls)
def add(
self,
amount: Union[int, float],
attributes: dict[str, str] | None = None,
context: Context | None = None,
):
time_unix_nano = time_ns()
self._measurement_consumer.consume_measurement(
Measurement(
amount,
time_unix_nano,
self,
context or get_current(),
attributes,
)
)
class ObservableCounter(_Asynchronous, APIObservableCounter):
def __new__(cls, *args, **kwargs):
if cls is ObservableCounter:
raise TypeError(
"ObservableCounter must be instantiated via a meter."
)
return super().__new__(cls)
class ObservableUpDownCounter(_Asynchronous, APIObservableUpDownCounter):
def __new__(cls, *args, **kwargs):
if cls is ObservableUpDownCounter:
raise TypeError(
"ObservableUpDownCounter must be instantiated via a meter."
)
return super().__new__(cls)
class Histogram(_Synchronous, APIHistogram):
def __init__(
self,
name: str,
instrumentation_scope: InstrumentationScope,
measurement_consumer: "opentelemetry.sdk.metrics.MeasurementConsumer",
unit: str = "",
description: str = "",
explicit_bucket_boundaries_advisory: Sequence[float] | None = None,
):
super().__init__(
name,
unit=unit,
description=description,
instrumentation_scope=instrumentation_scope,
measurement_consumer=measurement_consumer,
)
self._advisory = _MetricsHistogramAdvisory(
explicit_bucket_boundaries=explicit_bucket_boundaries_advisory
)
def __new__(cls, *args, **kwargs):
if cls is Histogram:
raise TypeError("Histogram must be instantiated via a meter.")
return super().__new__(cls)
def record(
self,
amount: Union[int, float],
attributes: dict[str, str] | None = None,
context: Context | None = None,
):
if amount < 0:
_logger.warning(
"Record amount must be non-negative on Histogram %s.",
self.name,
)
return
time_unix_nano = time_ns()
self._measurement_consumer.consume_measurement(
Measurement(
amount,
time_unix_nano,
self,
context or get_current(),
attributes,
)
)
class Gauge(_Synchronous, APIGauge):
def __new__(cls, *args, **kwargs):
if cls is Gauge:
raise TypeError("Gauge must be instantiated via a meter.")
return super().__new__(cls)
def set(
self,
amount: Union[int, float],
attributes: dict[str, str] | None = None,
context: Context | None = None,
):
time_unix_nano = time_ns()
self._measurement_consumer.consume_measurement(
Measurement(
amount,
time_unix_nano,
self,
context or get_current(),
attributes,
)
)
class ObservableGauge(_Asynchronous, APIObservableGauge):
def __new__(cls, *args, **kwargs):
if cls is ObservableGauge:
raise TypeError(
"ObservableGauge must be instantiated via a meter."
)
return super().__new__(cls)
# Below classes exist to prevent the direct instantiation
class _Counter(Counter):
pass
class _UpDownCounter(UpDownCounter):
pass
class _ObservableCounter(ObservableCounter):
pass
class _ObservableUpDownCounter(ObservableUpDownCounter):
pass
class _Histogram(Histogram):
pass
class _Gauge(Gauge):
pass
class _ObservableGauge(ObservableGauge):
pass

View File

@@ -0,0 +1,45 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Union
from opentelemetry.context import Context
from opentelemetry.metrics import Instrument
from opentelemetry.util.types import Attributes
@dataclass(frozen=True)
class Measurement:
"""
Represents a data point reported via the metrics API to the SDK.
Attributes
value: Measured value
time_unix_nano: The time the API call was made to record the Measurement
instrument: The instrument that produced this `Measurement`.
context: The active Context of the Measurement at API call time.
attributes: Measurement attributes
"""
# TODO Fix doc - if using valid Google `Attributes:` key, the attributes are duplicated
# one will come from napoleon extension and the other from autodoc extension. This
# will raise an sphinx error of duplicated object description
# See https://github.com/sphinx-doc/sphinx/issues/8664
value: Union[int, float]
time_unix_nano: int
instrument: Instrument
context: Context
attributes: Attributes = None

View File

@@ -0,0 +1,145 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=unused-import
from abc import ABC, abstractmethod
from threading import Lock
from time import time_ns
from typing import Iterable, List, Mapping, Optional
# This kind of import is needed to avoid Sphinx errors.
import opentelemetry.sdk.metrics
import opentelemetry.sdk.metrics._internal.instrument
import opentelemetry.sdk.metrics._internal.sdk_configuration
from opentelemetry.metrics._internal.instrument import CallbackOptions
from opentelemetry.sdk.metrics._internal.exceptions import MetricsTimeoutError
from opentelemetry.sdk.metrics._internal.measurement import Measurement
from opentelemetry.sdk.metrics._internal.metric_reader_storage import (
MetricReaderStorage,
)
from opentelemetry.sdk.metrics._internal.point import Metric
class MeasurementConsumer(ABC):
@abstractmethod
def consume_measurement(self, measurement: Measurement) -> None:
pass
@abstractmethod
def register_asynchronous_instrument(
self,
instrument: (
"opentelemetry.sdk.metrics._internal.instrument_Asynchronous"
),
):
pass
@abstractmethod
def collect(
self,
metric_reader: "opentelemetry.sdk.metrics.MetricReader",
timeout_millis: float = 10_000,
) -> Optional[Iterable[Metric]]:
pass
class SynchronousMeasurementConsumer(MeasurementConsumer):
def __init__(
self,
sdk_config: "opentelemetry.sdk.metrics._internal.SdkConfiguration",
) -> None:
self._lock = Lock()
self._sdk_config = sdk_config
# should never be mutated
self._reader_storages: Mapping[
"opentelemetry.sdk.metrics.MetricReader", MetricReaderStorage
] = {
reader: MetricReaderStorage(
sdk_config,
reader._instrument_class_temporality,
reader._instrument_class_aggregation,
)
for reader in sdk_config.metric_readers
}
self._async_instruments: List[
"opentelemetry.sdk.metrics._internal.instrument._Asynchronous"
] = []
def consume_measurement(self, measurement: Measurement) -> None:
should_sample_exemplar = (
self._sdk_config.exemplar_filter.should_sample(
measurement.value,
measurement.time_unix_nano,
measurement.attributes,
measurement.context,
)
)
for reader_storage in self._reader_storages.values():
reader_storage.consume_measurement(
measurement, should_sample_exemplar
)
def register_asynchronous_instrument(
self,
instrument: (
"opentelemetry.sdk.metrics._internal.instrument._Asynchronous"
),
) -> None:
with self._lock:
self._async_instruments.append(instrument)
def collect(
self,
metric_reader: "opentelemetry.sdk.metrics.MetricReader",
timeout_millis: float = 10_000,
) -> Optional[Iterable[Metric]]:
with self._lock:
metric_reader_storage = self._reader_storages[metric_reader]
# for now, just use the defaults
callback_options = CallbackOptions()
deadline_ns = time_ns() + (timeout_millis * 1e6)
default_timeout_ns = 10000 * 1e6
for async_instrument in self._async_instruments:
remaining_time = deadline_ns - time_ns()
if remaining_time < default_timeout_ns:
callback_options = CallbackOptions(
timeout_millis=remaining_time / 1e6
)
measurements = async_instrument.callback(callback_options)
if time_ns() >= deadline_ns:
raise MetricsTimeoutError(
"Timed out while executing callback"
)
for measurement in measurements:
should_sample_exemplar = (
self._sdk_config.exemplar_filter.should_sample(
measurement.value,
measurement.time_unix_nano,
measurement.attributes,
measurement.context,
)
)
metric_reader_storage.consume_measurement(
measurement, should_sample_exemplar
)
result = self._reader_storages[metric_reader].collect()
return result

View File

@@ -0,0 +1,315 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from logging import getLogger
from threading import RLock
from time import time_ns
from typing import Dict, List, Optional
from opentelemetry.metrics import (
Asynchronous,
Counter,
Instrument,
ObservableCounter,
)
from opentelemetry.sdk.metrics._internal._view_instrument_match import (
_ViewInstrumentMatch,
)
from opentelemetry.sdk.metrics._internal.aggregation import (
Aggregation,
ExplicitBucketHistogramAggregation,
_DropAggregation,
_ExplicitBucketHistogramAggregation,
_ExponentialBucketHistogramAggregation,
_LastValueAggregation,
_SumAggregation,
)
from opentelemetry.sdk.metrics._internal.export import AggregationTemporality
from opentelemetry.sdk.metrics._internal.measurement import Measurement
from opentelemetry.sdk.metrics._internal.point import (
ExponentialHistogram,
Gauge,
Histogram,
Metric,
MetricsData,
ResourceMetrics,
ScopeMetrics,
Sum,
)
from opentelemetry.sdk.metrics._internal.sdk_configuration import (
SdkConfiguration,
)
from opentelemetry.sdk.metrics._internal.view import View
from opentelemetry.sdk.util.instrumentation import InstrumentationScope
_logger = getLogger(__name__)
_DEFAULT_VIEW = View(instrument_name="")
class MetricReaderStorage:
"""The SDK's storage for a given reader"""
def __init__(
self,
sdk_config: SdkConfiguration,
instrument_class_temporality: Dict[type, AggregationTemporality],
instrument_class_aggregation: Dict[type, Aggregation],
) -> None:
self._lock = RLock()
self._sdk_config = sdk_config
self._instrument_view_instrument_matches: Dict[
Instrument, List[_ViewInstrumentMatch]
] = {}
self._instrument_class_temporality = instrument_class_temporality
self._instrument_class_aggregation = instrument_class_aggregation
def _get_or_init_view_instrument_match(
self, instrument: Instrument
) -> List[_ViewInstrumentMatch]:
# Optimistically get the relevant views for the given instrument. Once set for a given
# instrument, the mapping will never change
if instrument in self._instrument_view_instrument_matches:
return self._instrument_view_instrument_matches[instrument]
with self._lock:
# double check if it was set before we held the lock
if instrument in self._instrument_view_instrument_matches:
return self._instrument_view_instrument_matches[instrument]
# not present, hold the lock and add a new mapping
view_instrument_matches = []
self._handle_view_instrument_match(
instrument, view_instrument_matches
)
# if no view targeted the instrument, use the default
if not view_instrument_matches:
view_instrument_matches.append(
_ViewInstrumentMatch(
view=_DEFAULT_VIEW,
instrument=instrument,
instrument_class_aggregation=(
self._instrument_class_aggregation
),
)
)
self._instrument_view_instrument_matches[instrument] = (
view_instrument_matches
)
return view_instrument_matches
def consume_measurement(
self, measurement: Measurement, should_sample_exemplar: bool = True
) -> None:
for view_instrument_match in self._get_or_init_view_instrument_match(
measurement.instrument
):
view_instrument_match.consume_measurement(
measurement, should_sample_exemplar
)
def collect(self) -> Optional[MetricsData]:
# Use a list instead of yielding to prevent a slow reader from holding
# SDK locks
# While holding the lock, new _ViewInstrumentMatch can't be added from
# another thread (so we are sure we collect all existing view).
# However, instruments can still send measurements that will make it
# into the individual aggregations; collection will acquire those locks
# iteratively to keep locking as fine-grained as possible. One side
# effect is that end times can be slightly skewed among the metric
# streams produced by the SDK, but we still align the output timestamps
# for a single instrument.
collection_start_nanos = time_ns()
with self._lock:
instrumentation_scope_scope_metrics: Dict[
InstrumentationScope, ScopeMetrics
] = {}
for (
instrument,
view_instrument_matches,
) in self._instrument_view_instrument_matches.items():
aggregation_temporality = self._instrument_class_temporality[
instrument.__class__
]
metrics: List[Metric] = []
for view_instrument_match in view_instrument_matches:
data_points = view_instrument_match.collect(
aggregation_temporality, collection_start_nanos
)
if data_points is None:
continue
if isinstance(
# pylint: disable=protected-access
view_instrument_match._aggregation,
_SumAggregation,
):
data = Sum(
aggregation_temporality=aggregation_temporality,
data_points=data_points,
is_monotonic=isinstance(
instrument, (Counter, ObservableCounter)
),
)
elif isinstance(
# pylint: disable=protected-access
view_instrument_match._aggregation,
_LastValueAggregation,
):
data = Gauge(data_points=data_points)
elif isinstance(
# pylint: disable=protected-access
view_instrument_match._aggregation,
_ExplicitBucketHistogramAggregation,
):
data = Histogram(
data_points=data_points,
aggregation_temporality=aggregation_temporality,
)
elif isinstance(
# pylint: disable=protected-access
view_instrument_match._aggregation,
_DropAggregation,
):
continue
elif isinstance(
# pylint: disable=protected-access
view_instrument_match._aggregation,
_ExponentialBucketHistogramAggregation,
):
data = ExponentialHistogram(
data_points=data_points,
aggregation_temporality=aggregation_temporality,
)
metrics.append(
Metric(
# pylint: disable=protected-access
# pylint: disable=possibly-used-before-assignment
name=view_instrument_match._name,
description=view_instrument_match._description,
unit=view_instrument_match._instrument.unit,
data=data,
)
)
if metrics:
if instrument.instrumentation_scope not in (
instrumentation_scope_scope_metrics
):
instrumentation_scope_scope_metrics[
instrument.instrumentation_scope
] = ScopeMetrics(
scope=instrument.instrumentation_scope,
metrics=metrics,
schema_url=instrument.instrumentation_scope.schema_url,
)
else:
instrumentation_scope_scope_metrics[
instrument.instrumentation_scope
].metrics.extend(metrics)
if instrumentation_scope_scope_metrics:
return MetricsData(
resource_metrics=[
ResourceMetrics(
resource=self._sdk_config.resource,
scope_metrics=list(
instrumentation_scope_scope_metrics.values()
),
schema_url=self._sdk_config.resource.schema_url,
)
]
)
return None
def _handle_view_instrument_match(
self,
instrument: Instrument,
view_instrument_matches: List["_ViewInstrumentMatch"],
) -> None:
for view in self._sdk_config.views:
# pylint: disable=protected-access
if not view._match(instrument):
continue
if not self._check_view_instrument_compatibility(view, instrument):
continue
new_view_instrument_match = _ViewInstrumentMatch(
view=view,
instrument=instrument,
instrument_class_aggregation=(
self._instrument_class_aggregation
),
)
for (
existing_view_instrument_matches
) in self._instrument_view_instrument_matches.values():
for (
existing_view_instrument_match
) in existing_view_instrument_matches:
if existing_view_instrument_match.conflicts(
new_view_instrument_match
):
_logger.warning(
"Views %s and %s will cause conflicting "
"metrics identities",
existing_view_instrument_match._view,
new_view_instrument_match._view,
)
view_instrument_matches.append(new_view_instrument_match)
@staticmethod
def _check_view_instrument_compatibility(
view: View, instrument: Instrument
) -> bool:
"""
Checks if a view and an instrument are compatible.
Returns `true` if they are compatible and a `_ViewInstrumentMatch`
object should be created, `false` otherwise.
"""
result = True
# pylint: disable=protected-access
if isinstance(instrument, Asynchronous) and isinstance(
view._aggregation, ExplicitBucketHistogramAggregation
):
_logger.warning(
"View %s and instrument %s will produce "
"semantic errors when matched, the view "
"has not been applied.",
view,
instrument,
)
result = False
return result

View File

@@ -0,0 +1,277 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=unused-import
from dataclasses import asdict, dataclass, field
from json import dumps, loads
from typing import Optional, Sequence, Union
# This kind of import is needed to avoid Sphinx errors.
import opentelemetry.sdk.metrics._internal
from opentelemetry.sdk.metrics._internal.exemplar import Exemplar
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.util.instrumentation import InstrumentationScope
from opentelemetry.util.types import Attributes
@dataclass(frozen=True)
class NumberDataPoint:
"""Single data point in a timeseries that describes the time-varying scalar
value of a metric.
"""
attributes: Attributes
start_time_unix_nano: int
time_unix_nano: int
value: Union[int, float]
exemplars: Sequence[Exemplar] = field(default_factory=list)
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(asdict(self), indent=indent)
@dataclass(frozen=True)
class HistogramDataPoint:
"""Single data point in a timeseries that describes the time-varying scalar
value of a metric.
"""
attributes: Attributes
start_time_unix_nano: int
time_unix_nano: int
count: int
sum: Union[int, float]
bucket_counts: Sequence[int]
explicit_bounds: Sequence[float]
min: float
max: float
exemplars: Sequence[Exemplar] = field(default_factory=list)
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(asdict(self), indent=indent)
@dataclass(frozen=True)
class Buckets:
offset: int
bucket_counts: Sequence[int]
@dataclass(frozen=True)
class ExponentialHistogramDataPoint:
"""Single data point in a timeseries whose boundaries are defined by an
exponential function. This timeseries describes the time-varying scalar
value of a metric.
"""
attributes: Attributes
start_time_unix_nano: int
time_unix_nano: int
count: int
sum: Union[int, float]
scale: int
zero_count: int
positive: Buckets
negative: Buckets
flags: int
min: float
max: float
exemplars: Sequence[Exemplar] = field(default_factory=list)
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(asdict(self), indent=indent)
@dataclass(frozen=True)
class ExponentialHistogram:
"""Represents the type of a metric that is calculated by aggregating as an
ExponentialHistogram of all reported measurements over a time interval.
"""
data_points: Sequence[ExponentialHistogramDataPoint]
aggregation_temporality: (
"opentelemetry.sdk.metrics.export.AggregationTemporality"
)
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(
{
"data_points": [
loads(data_point.to_json(indent=indent))
for data_point in self.data_points
],
"aggregation_temporality": self.aggregation_temporality,
},
indent=indent,
)
@dataclass(frozen=True)
class Sum:
"""Represents the type of a scalar metric that is calculated as a sum of
all reported measurements over a time interval."""
data_points: Sequence[NumberDataPoint]
aggregation_temporality: (
"opentelemetry.sdk.metrics.export.AggregationTemporality"
)
is_monotonic: bool
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(
{
"data_points": [
loads(data_point.to_json(indent=indent))
for data_point in self.data_points
],
"aggregation_temporality": self.aggregation_temporality,
"is_monotonic": self.is_monotonic,
},
indent=indent,
)
@dataclass(frozen=True)
class Gauge:
"""Represents the type of a scalar metric that always exports the current
value for every data point. It should be used for an unknown
aggregation."""
data_points: Sequence[NumberDataPoint]
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(
{
"data_points": [
loads(data_point.to_json(indent=indent))
for data_point in self.data_points
],
},
indent=indent,
)
@dataclass(frozen=True)
class Histogram:
"""Represents the type of a metric that is calculated by aggregating as a
histogram of all reported measurements over a time interval."""
data_points: Sequence[HistogramDataPoint]
aggregation_temporality: (
"opentelemetry.sdk.metrics.export.AggregationTemporality"
)
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(
{
"data_points": [
loads(data_point.to_json(indent=indent))
for data_point in self.data_points
],
"aggregation_temporality": self.aggregation_temporality,
},
indent=indent,
)
# pylint: disable=invalid-name
DataT = Union[Sum, Gauge, Histogram, ExponentialHistogram]
DataPointT = Union[
NumberDataPoint, HistogramDataPoint, ExponentialHistogramDataPoint
]
@dataclass(frozen=True)
class Metric:
"""Represents a metric point in the OpenTelemetry data model to be
exported."""
name: str
description: Optional[str]
unit: Optional[str]
data: DataT
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(
{
"name": self.name,
"description": self.description or "",
"unit": self.unit or "",
"data": loads(self.data.to_json(indent=indent)),
},
indent=indent,
)
@dataclass(frozen=True)
class ScopeMetrics:
"""A collection of Metrics produced by a scope"""
scope: InstrumentationScope
metrics: Sequence[Metric]
schema_url: str
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(
{
"scope": loads(self.scope.to_json(indent=indent)),
"metrics": [
loads(metric.to_json(indent=indent))
for metric in self.metrics
],
"schema_url": self.schema_url,
},
indent=indent,
)
@dataclass(frozen=True)
class ResourceMetrics:
"""A collection of ScopeMetrics from a Resource"""
resource: Resource
scope_metrics: Sequence[ScopeMetrics]
schema_url: str
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(
{
"resource": loads(self.resource.to_json(indent=indent)),
"scope_metrics": [
loads(scope_metrics.to_json(indent=indent))
for scope_metrics in self.scope_metrics
],
"schema_url": self.schema_url,
},
indent=indent,
)
@dataclass(frozen=True)
class MetricsData:
"""An array of ResourceMetrics"""
resource_metrics: Sequence[ResourceMetrics]
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(
{
"resource_metrics": [
loads(resource_metrics.to_json(indent=indent))
for resource_metrics in self.resource_metrics
]
},
indent=indent,
)

View File

@@ -0,0 +1,30 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=unused-import
from dataclasses import dataclass
from typing import Sequence
# This kind of import is needed to avoid Sphinx errors.
import opentelemetry.sdk.metrics
import opentelemetry.sdk.resources
@dataclass
class SdkConfiguration:
exemplar_filter: "opentelemetry.sdk.metrics.ExemplarFilter"
resource: "opentelemetry.sdk.resources.Resource"
metric_readers: Sequence["opentelemetry.sdk.metrics.MetricReader"]
views: Sequence["opentelemetry.sdk.metrics.View"]

View File

@@ -0,0 +1,195 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from fnmatch import fnmatch
from logging import getLogger
from typing import Callable, Optional, Set, Type
from opentelemetry.metrics import Instrument
from opentelemetry.sdk.metrics._internal.aggregation import (
Aggregation,
DefaultAggregation,
_Aggregation,
_ExplicitBucketHistogramAggregation,
_ExponentialBucketHistogramAggregation,
)
from opentelemetry.sdk.metrics._internal.exemplar import (
AlignedHistogramBucketExemplarReservoir,
ExemplarReservoirBuilder,
SimpleFixedSizeExemplarReservoir,
)
_logger = getLogger(__name__)
def _default_reservoir_factory(
aggregation_type: Type[_Aggregation],
) -> ExemplarReservoirBuilder:
"""Default reservoir factory per aggregation."""
if issubclass(aggregation_type, _ExplicitBucketHistogramAggregation):
return AlignedHistogramBucketExemplarReservoir
if issubclass(aggregation_type, _ExponentialBucketHistogramAggregation):
return SimpleFixedSizeExemplarReservoir
return SimpleFixedSizeExemplarReservoir
class View:
"""
A `View` configuration parameters can be used for the following
purposes:
1. Match instruments: When an instrument matches a view, measurements
received by that instrument will be processed.
2. Customize metric streams: A metric stream is identified by a match
between a view and an instrument and a set of attributes. The metric
stream can be customized by certain attributes of the corresponding view.
The attributes documented next serve one of the previous two purposes.
Args:
instrument_type: This is an instrument matching attribute: the class the
instrument must be to match the view.
instrument_name: This is an instrument matching attribute: the name the
instrument must have to match the view. Wild card characters are supported. Wild
card characters should not be used with this attribute if the view has also a
``name`` defined.
meter_name: This is an instrument matching attribute: the name the
instrument meter must have to match the view.
meter_version: This is an instrument matching attribute: the version
the instrument meter must have to match the view.
meter_schema_url: This is an instrument matching attribute: the schema
URL the instrument meter must have to match the view.
name: This is a metric stream customizing attribute: the name of the
metric stream. If `None`, the name of the instrument will be used.
description: This is a metric stream customizing attribute: the
description of the metric stream. If `None`, the description of the instrument will
be used.
attribute_keys: This is a metric stream customizing attribute: this is
a set of attribute keys. If not `None` then only the measurement attributes that
are in ``attribute_keys`` will be used to identify the metric stream.
aggregation: This is a metric stream customizing attribute: the
aggregation instance to use when data is aggregated for the
corresponding metrics stream. If `None` an instance of
`DefaultAggregation` will be used.
exemplar_reservoir_factory: This is a metric stream customizing attribute:
the exemplar reservoir factory
instrument_unit: This is an instrument matching attribute: the unit the
instrument must have to match the view.
This class is not intended to be subclassed by the user.
"""
_default_aggregation = DefaultAggregation()
def __init__(
self,
instrument_type: Optional[Type[Instrument]] = None,
instrument_name: Optional[str] = None,
meter_name: Optional[str] = None,
meter_version: Optional[str] = None,
meter_schema_url: Optional[str] = None,
name: Optional[str] = None,
description: Optional[str] = None,
attribute_keys: Optional[Set[str]] = None,
aggregation: Optional[Aggregation] = None,
exemplar_reservoir_factory: Optional[
Callable[[Type[_Aggregation]], ExemplarReservoirBuilder]
] = None,
instrument_unit: Optional[str] = None,
):
if (
instrument_type
is instrument_name
is instrument_unit
is meter_name
is meter_version
is meter_schema_url
is None
):
# pylint: disable=broad-exception-raised
raise Exception(
"Some instrument selection "
f"criteria must be provided for View {name}"
)
if (
name is not None
and instrument_name is not None
and ("*" in instrument_name or "?" in instrument_name)
):
# pylint: disable=broad-exception-raised
raise Exception(
f"View {name} declared with wildcard "
"characters in instrument_name"
)
# _name, _description, _aggregation, _exemplar_reservoir_factory and
# _attribute_keys will be accessed when instantiating a _ViewInstrumentMatch.
self._name = name
self._instrument_type = instrument_type
self._instrument_name = instrument_name
self._instrument_unit = instrument_unit
self._meter_name = meter_name
self._meter_version = meter_version
self._meter_schema_url = meter_schema_url
self._description = description
self._attribute_keys = attribute_keys
self._aggregation = aggregation or self._default_aggregation
self._exemplar_reservoir_factory = (
exemplar_reservoir_factory or _default_reservoir_factory
)
# pylint: disable=too-many-return-statements
# pylint: disable=too-many-branches
def _match(self, instrument: Instrument) -> bool:
if self._instrument_type is not None:
if not isinstance(instrument, self._instrument_type):
return False
if self._instrument_name is not None:
if not fnmatch(instrument.name, self._instrument_name):
return False
if self._instrument_unit is not None:
if not fnmatch(instrument.unit, self._instrument_unit):
return False
if self._meter_name is not None:
if instrument.instrumentation_scope.name != self._meter_name:
return False
if self._meter_version is not None:
if instrument.instrumentation_scope.version != self._meter_version:
return False
if self._meter_schema_url is not None:
if (
instrument.instrumentation_scope.schema_url
!= self._meter_schema_url
):
return False
return True