structure saas with tools

This commit is contained in:
Davidson Gomes
2025-04-25 15:30:54 -03:00
commit 1aef473937
16434 changed files with 6584257 additions and 0 deletions

View File

@@ -0,0 +1,18 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The OpenTelemetry SDK package is an implementation of the OpenTelemetry
API
"""

View File

@@ -0,0 +1,481 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
OpenTelemetry SDK Configurator for Easy Instrumentation with Distros
"""
from __future__ import annotations
import logging
import os
from abc import ABC, abstractmethod
from os import environ
from typing import Callable, Sequence, Type, Union
from typing_extensions import Literal
from opentelemetry._events import set_event_logger_provider
from opentelemetry._logs import set_logger_provider
from opentelemetry.environment_variables import (
OTEL_LOGS_EXPORTER,
OTEL_METRICS_EXPORTER,
OTEL_PYTHON_ID_GENERATOR,
OTEL_TRACES_EXPORTER,
)
from opentelemetry.metrics import set_meter_provider
from opentelemetry.sdk._events import EventLoggerProvider
from opentelemetry.sdk._logs import LoggerProvider, LoggingHandler
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor, LogExporter
from opentelemetry.sdk.environment_variables import (
_OTEL_PYTHON_LOGGING_AUTO_INSTRUMENTATION_ENABLED,
OTEL_EXPORTER_OTLP_LOGS_PROTOCOL,
OTEL_EXPORTER_OTLP_METRICS_PROTOCOL,
OTEL_EXPORTER_OTLP_PROTOCOL,
OTEL_EXPORTER_OTLP_TRACES_PROTOCOL,
OTEL_TRACES_SAMPLER,
OTEL_TRACES_SAMPLER_ARG,
)
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import (
MetricExporter,
MetricReader,
PeriodicExportingMetricReader,
)
from opentelemetry.sdk.resources import Attributes, Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor, SpanExporter
from opentelemetry.sdk.trace.id_generator import IdGenerator
from opentelemetry.sdk.trace.sampling import Sampler
from opentelemetry.semconv.resource import ResourceAttributes
from opentelemetry.trace import set_tracer_provider
from opentelemetry.util._importlib_metadata import entry_points
_EXPORTER_OTLP = "otlp"
_EXPORTER_OTLP_PROTO_GRPC = "otlp_proto_grpc"
_EXPORTER_OTLP_PROTO_HTTP = "otlp_proto_http"
_EXPORTER_BY_OTLP_PROTOCOL = {
"grpc": _EXPORTER_OTLP_PROTO_GRPC,
"http/protobuf": _EXPORTER_OTLP_PROTO_HTTP,
}
_EXPORTER_ENV_BY_SIGNAL_TYPE = {
"traces": OTEL_TRACES_EXPORTER,
"metrics": OTEL_METRICS_EXPORTER,
"logs": OTEL_LOGS_EXPORTER,
}
_PROTOCOL_ENV_BY_SIGNAL_TYPE = {
"traces": OTEL_EXPORTER_OTLP_TRACES_PROTOCOL,
"metrics": OTEL_EXPORTER_OTLP_METRICS_PROTOCOL,
"logs": OTEL_EXPORTER_OTLP_LOGS_PROTOCOL,
}
_RANDOM_ID_GENERATOR = "random"
_DEFAULT_ID_GENERATOR = _RANDOM_ID_GENERATOR
_OTEL_SAMPLER_ENTRY_POINT_GROUP = "opentelemetry_traces_sampler"
_logger = logging.getLogger(__name__)
def _import_config_components(
selected_components: list[str], entry_point_name: str
) -> Sequence[tuple[str, object]]:
component_implementations = []
for selected_component in selected_components:
try:
component_implementations.append(
(
selected_component,
next(
iter(
entry_points(
group=entry_point_name, name=selected_component
)
)
).load(),
)
)
except KeyError:
raise RuntimeError(
f"Requested entry point '{entry_point_name}' not found"
)
except StopIteration:
raise RuntimeError(
f"Requested component '{selected_component}' not found in "
f"entry point '{entry_point_name}'"
)
return component_implementations
def _get_sampler() -> str | None:
return environ.get(OTEL_TRACES_SAMPLER, None)
def _get_id_generator() -> str:
return environ.get(OTEL_PYTHON_ID_GENERATOR, _DEFAULT_ID_GENERATOR)
def _get_exporter_entry_point(
exporter_name: str, signal_type: Literal["traces", "metrics", "logs"]
):
if exporter_name not in (
_EXPORTER_OTLP,
_EXPORTER_OTLP_PROTO_GRPC,
_EXPORTER_OTLP_PROTO_HTTP,
):
return exporter_name
# Checking env vars for OTLP protocol (grpc/http).
otlp_protocol = environ.get(
_PROTOCOL_ENV_BY_SIGNAL_TYPE[signal_type]
) or environ.get(OTEL_EXPORTER_OTLP_PROTOCOL)
if not otlp_protocol:
if exporter_name == _EXPORTER_OTLP:
return _EXPORTER_OTLP_PROTO_GRPC
return exporter_name
otlp_protocol = otlp_protocol.strip()
if exporter_name == _EXPORTER_OTLP:
if otlp_protocol not in _EXPORTER_BY_OTLP_PROTOCOL:
# Invalid value was set by the env var
raise RuntimeError(
f"Unsupported OTLP protocol '{otlp_protocol}' is configured"
)
return _EXPORTER_BY_OTLP_PROTOCOL[otlp_protocol]
# grpc/http already specified by exporter_name, only add a warning in case
# of a conflict.
exporter_name_by_env = _EXPORTER_BY_OTLP_PROTOCOL.get(otlp_protocol)
if exporter_name_by_env and exporter_name != exporter_name_by_env:
_logger.warning(
"Conflicting values for %s OTLP exporter protocol, using '%s'",
signal_type,
exporter_name,
)
return exporter_name
def _get_exporter_names(
signal_type: Literal["traces", "metrics", "logs"],
) -> Sequence[str]:
names = environ.get(_EXPORTER_ENV_BY_SIGNAL_TYPE.get(signal_type, ""))
if not names or names.lower().strip() == "none":
return []
return [
_get_exporter_entry_point(_exporter.strip(), signal_type)
for _exporter in names.split(",")
]
def _init_tracing(
exporters: dict[str, Type[SpanExporter]],
id_generator: IdGenerator | None = None,
sampler: Sampler | None = None,
resource: Resource | None = None,
):
provider = TracerProvider(
id_generator=id_generator,
sampler=sampler,
resource=resource,
)
set_tracer_provider(provider)
for _, exporter_class in exporters.items():
exporter_args = {}
provider.add_span_processor(
BatchSpanProcessor(exporter_class(**exporter_args))
)
def _init_metrics(
exporters_or_readers: dict[
str, Union[Type[MetricExporter], Type[MetricReader]]
],
resource: Resource | None = None,
):
metric_readers = []
for _, exporter_or_reader_class in exporters_or_readers.items():
exporter_args = {}
if issubclass(exporter_or_reader_class, MetricReader):
metric_readers.append(exporter_or_reader_class(**exporter_args))
else:
metric_readers.append(
PeriodicExportingMetricReader(
exporter_or_reader_class(**exporter_args)
)
)
provider = MeterProvider(resource=resource, metric_readers=metric_readers)
set_meter_provider(provider)
def _init_logging(
exporters: dict[str, Type[LogExporter]],
resource: Resource | None = None,
setup_logging_handler: bool = True,
):
provider = LoggerProvider(resource=resource)
set_logger_provider(provider)
for _, exporter_class in exporters.items():
exporter_args = {}
provider.add_log_record_processor(
BatchLogRecordProcessor(exporter_class(**exporter_args))
)
event_logger_provider = EventLoggerProvider(logger_provider=provider)
set_event_logger_provider(event_logger_provider)
if setup_logging_handler:
_patch_basic_config()
# Add OTel handler
handler = LoggingHandler(
level=logging.NOTSET, logger_provider=provider
)
logging.getLogger().addHandler(handler)
def _patch_basic_config():
original_basic_config = logging.basicConfig
def patched_basic_config(*args, **kwargs):
root = logging.getLogger()
has_only_otel = len(root.handlers) == 1 and isinstance(
root.handlers[0], LoggingHandler
)
if has_only_otel:
otel_handler = root.handlers.pop()
original_basic_config(*args, **kwargs)
root.addHandler(otel_handler)
else:
original_basic_config(*args, **kwargs)
logging.basicConfig = patched_basic_config
def _import_exporters(
trace_exporter_names: Sequence[str],
metric_exporter_names: Sequence[str],
log_exporter_names: Sequence[str],
) -> tuple[
dict[str, Type[SpanExporter]],
dict[str, Union[Type[MetricExporter], Type[MetricReader]]],
dict[str, Type[LogExporter]],
]:
trace_exporters = {}
metric_exporters = {}
log_exporters = {}
for (
exporter_name,
exporter_impl,
) in _import_config_components(
trace_exporter_names, "opentelemetry_traces_exporter"
):
if issubclass(exporter_impl, SpanExporter):
trace_exporters[exporter_name] = exporter_impl
else:
raise RuntimeError(f"{exporter_name} is not a trace exporter")
for (
exporter_name,
exporter_impl,
) in _import_config_components(
metric_exporter_names, "opentelemetry_metrics_exporter"
):
# The metric exporter components may be push MetricExporter or pull exporters which
# subclass MetricReader directly
if issubclass(exporter_impl, (MetricExporter, MetricReader)):
metric_exporters[exporter_name] = exporter_impl
else:
raise RuntimeError(f"{exporter_name} is not a metric exporter")
for (
exporter_name,
exporter_impl,
) in _import_config_components(
log_exporter_names, "opentelemetry_logs_exporter"
):
if issubclass(exporter_impl, LogExporter):
log_exporters[exporter_name] = exporter_impl
else:
raise RuntimeError(f"{exporter_name} is not a log exporter")
return trace_exporters, metric_exporters, log_exporters
def _import_sampler_factory(sampler_name: str) -> Callable[[str], Sampler]:
_, sampler_impl = _import_config_components(
[sampler_name.strip()], _OTEL_SAMPLER_ENTRY_POINT_GROUP
)[0]
return sampler_impl
def _import_sampler(sampler_name: str) -> Sampler | None:
if not sampler_name:
return None
try:
sampler_factory = _import_sampler_factory(sampler_name)
arg = None
if sampler_name in ("traceidratio", "parentbased_traceidratio"):
try:
rate = float(os.getenv(OTEL_TRACES_SAMPLER_ARG))
except (ValueError, TypeError):
_logger.warning(
"Could not convert TRACES_SAMPLER_ARG to float. Using default value 1.0."
)
rate = 1.0
arg = rate
else:
arg = os.getenv(OTEL_TRACES_SAMPLER_ARG)
sampler = sampler_factory(arg)
if not isinstance(sampler, Sampler):
message = f"Sampler factory, {sampler_factory}, produced output, {sampler}, which is not a Sampler."
_logger.warning(message)
raise ValueError(message)
return sampler
except Exception as exc: # pylint: disable=broad-exception-caught
_logger.warning(
"Using default sampler. Failed to initialize sampler, %s: %s",
sampler_name,
exc,
)
return None
def _import_id_generator(id_generator_name: str) -> IdGenerator:
id_generator_name, id_generator_impl = _import_config_components(
[id_generator_name.strip()], "opentelemetry_id_generator"
)[0]
if issubclass(id_generator_impl, IdGenerator):
return id_generator_impl()
raise RuntimeError(f"{id_generator_name} is not an IdGenerator")
def _initialize_components(
auto_instrumentation_version: str | None = None,
trace_exporter_names: list[str] | None = None,
metric_exporter_names: list[str] | None = None,
log_exporter_names: list[str] | None = None,
sampler: Sampler | None = None,
resource_attributes: Attributes | None = None,
id_generator: IdGenerator | None = None,
setup_logging_handler: bool | None = None,
):
if trace_exporter_names is None:
trace_exporter_names = []
if metric_exporter_names is None:
metric_exporter_names = []
if log_exporter_names is None:
log_exporter_names = []
span_exporters, metric_exporters, log_exporters = _import_exporters(
trace_exporter_names + _get_exporter_names("traces"),
metric_exporter_names + _get_exporter_names("metrics"),
log_exporter_names + _get_exporter_names("logs"),
)
if sampler is None:
sampler_name = _get_sampler()
sampler = _import_sampler(sampler_name)
if id_generator is None:
id_generator_name = _get_id_generator()
id_generator = _import_id_generator(id_generator_name)
if resource_attributes is None:
resource_attributes = {}
# populate version if using auto-instrumentation
if auto_instrumentation_version:
resource_attributes[ResourceAttributes.TELEMETRY_AUTO_VERSION] = (
auto_instrumentation_version
)
# if env var OTEL_RESOURCE_ATTRIBUTES is given, it will read the service_name
# from the env variable else defaults to "unknown_service"
resource = Resource.create(resource_attributes)
_init_tracing(
exporters=span_exporters,
id_generator=id_generator,
sampler=sampler,
resource=resource,
)
_init_metrics(metric_exporters, resource)
if setup_logging_handler is None:
setup_logging_handler = (
os.getenv(
_OTEL_PYTHON_LOGGING_AUTO_INSTRUMENTATION_ENABLED, "false"
)
.strip()
.lower()
== "true"
)
_init_logging(log_exporters, resource, setup_logging_handler)
class _BaseConfigurator(ABC):
"""An ABC for configurators
Configurators are used to configure
SDKs (i.e. TracerProvider, MeterProvider, Processors...)
to reduce the amount of manual configuration required.
"""
_instance = None
_is_instrumented = False
def __new__(cls, *args, **kwargs):
if cls._instance is None:
cls._instance = object.__new__(cls, *args, **kwargs)
return cls._instance
@abstractmethod
def _configure(self, **kwargs):
"""Configure the SDK"""
def configure(self, **kwargs):
"""Configure the SDK"""
self._configure(**kwargs)
class _OTelSDKConfigurator(_BaseConfigurator):
"""A basic Configurator by OTel Python for initializing OTel SDK components
Initializes several crucial OTel SDK components (i.e. TracerProvider,
MeterProvider, Processors...) according to a default implementation. Other
Configurators can subclass and slightly alter this initialization.
NOTE: This class should not be instantiated nor should it become an entry
point on the `opentelemetry-sdk` package. Instead, distros should subclass
this Configurator and enhance it as needed.
"""
def _configure(self, **kwargs):
_initialize_components(**kwargs)

View File

@@ -0,0 +1,89 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from time import time_ns
from typing import Optional
from opentelemetry import trace
from opentelemetry._events import Event
from opentelemetry._events import EventLogger as APIEventLogger
from opentelemetry._events import EventLoggerProvider as APIEventLoggerProvider
from opentelemetry._logs import NoOpLogger, SeverityNumber, get_logger_provider
from opentelemetry.sdk._logs import Logger, LoggerProvider, LogRecord
from opentelemetry.util.types import Attributes
_logger = logging.getLogger(__name__)
class EventLogger(APIEventLogger):
def __init__(
self,
logger_provider: LoggerProvider,
name: str,
version: Optional[str] = None,
schema_url: Optional[str] = None,
attributes: Optional[Attributes] = None,
):
super().__init__(
name=name,
version=version,
schema_url=schema_url,
attributes=attributes,
)
self._logger: Logger = logger_provider.get_logger(
name, version, schema_url, attributes
)
def emit(self, event: Event) -> None:
if isinstance(self._logger, NoOpLogger):
# Do nothing if SDK is disabled
return
span_context = trace.get_current_span().get_span_context()
log_record = LogRecord(
timestamp=event.timestamp or time_ns(),
observed_timestamp=None,
trace_id=event.trace_id or span_context.trace_id,
span_id=event.span_id or span_context.span_id,
trace_flags=event.trace_flags or span_context.trace_flags,
severity_text=None,
severity_number=event.severity_number or SeverityNumber.INFO,
body=event.body,
resource=getattr(self._logger, "resource", None),
attributes=event.attributes,
)
self._logger.emit(log_record)
class EventLoggerProvider(APIEventLoggerProvider):
def __init__(self, logger_provider: Optional[LoggerProvider] = None):
self._logger_provider = logger_provider or get_logger_provider()
def get_event_logger(
self,
name: str,
version: Optional[str] = None,
schema_url: Optional[str] = None,
attributes: Optional[Attributes] = None,
) -> EventLogger:
if not name:
_logger.warning("EventLogger created with invalid name: %s", name)
return EventLogger(
self._logger_provider, name, version, schema_url, attributes
)
def shutdown(self):
self._logger_provider.shutdown()
def force_flush(self, timeout_millis: int = 30000) -> bool:
self._logger_provider.force_flush(timeout_millis)

View File

@@ -0,0 +1,36 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from opentelemetry.sdk._logs._internal import (
LogData,
LogDroppedAttributesWarning,
Logger,
LoggerProvider,
LoggingHandler,
LogLimits,
LogRecord,
LogRecordProcessor,
)
__all__ = [
"LogData",
"Logger",
"LoggerProvider",
"LoggingHandler",
"LogLimits",
"LogRecord",
"LogRecordProcessor",
"LogDroppedAttributesWarning",
]

View File

@@ -0,0 +1,715 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import abc
import atexit
import concurrent.futures
import json
import logging
import threading
import traceback
import warnings
from os import environ
from threading import Lock
from time import time_ns
from typing import Any, Callable, Tuple, Union # noqa
from opentelemetry._logs import Logger as APILogger
from opentelemetry._logs import LoggerProvider as APILoggerProvider
from opentelemetry._logs import LogRecord as APILogRecord
from opentelemetry._logs import (
NoOpLogger,
SeverityNumber,
get_logger,
get_logger_provider,
std_to_otel,
)
from opentelemetry.attributes import _VALID_ANY_VALUE_TYPES, BoundedAttributes
from opentelemetry.sdk.environment_variables import (
OTEL_ATTRIBUTE_COUNT_LIMIT,
OTEL_ATTRIBUTE_VALUE_LENGTH_LIMIT,
OTEL_SDK_DISABLED,
)
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.util import ns_to_iso_str
from opentelemetry.sdk.util.instrumentation import InstrumentationScope
from opentelemetry.semconv.trace import SpanAttributes
from opentelemetry.trace import (
format_span_id,
format_trace_id,
get_current_span,
)
from opentelemetry.trace.span import TraceFlags
from opentelemetry.util.types import AnyValue, Attributes
_logger = logging.getLogger(__name__)
_DEFAULT_OTEL_ATTRIBUTE_COUNT_LIMIT = 128
_ENV_VALUE_UNSET = ""
class LogDroppedAttributesWarning(UserWarning):
"""Custom warning to indicate dropped log attributes due to limits.
This class is used to filter and handle these specific warnings separately
from other warnings, ensuring that they are only shown once without
interfering with default user warnings.
"""
warnings.simplefilter("once", LogDroppedAttributesWarning)
class LogLimits:
"""This class is based on a SpanLimits class in the Tracing module.
This class represents the limits that should be enforced on recorded data such as events, links, attributes etc.
This class does not enforce any limits itself. It only provides a way to read limits from env,
default values and from user provided arguments.
All limit arguments must be either a non-negative integer, ``None`` or ``LogLimits.UNSET``.
- All limit arguments are optional.
- If a limit argument is not set, the class will try to read its value from the corresponding
environment variable.
- If the environment variable is not set, the default value, if any, will be used.
Limit precedence:
- If a model specific limit is set, it will be used.
- Else if the corresponding global limit is set, it will be used.
- Else if the model specific limit has a default value, the default value will be used.
- Else if the global limit has a default value, the default value will be used.
Args:
max_attributes: Maximum number of attributes that can be added to a span, event, and link.
Environment variable: ``OTEL_ATTRIBUTE_COUNT_LIMIT``
Default: {_DEFAULT_OTEL_ATTRIBUTE_COUNT_LIMIT}
max_attribute_length: Maximum length an attribute value can have. Values longer than
the specified length will be truncated.
"""
UNSET = -1
def __init__(
self,
max_attributes: int | None = None,
max_attribute_length: int | None = None,
):
# attribute count
global_max_attributes = self._from_env_if_absent(
max_attributes, OTEL_ATTRIBUTE_COUNT_LIMIT
)
self.max_attributes = (
global_max_attributes
if global_max_attributes is not None
else _DEFAULT_OTEL_ATTRIBUTE_COUNT_LIMIT
)
# attribute length
self.max_attribute_length = self._from_env_if_absent(
max_attribute_length,
OTEL_ATTRIBUTE_VALUE_LENGTH_LIMIT,
)
def __repr__(self):
return f"{type(self).__name__}(max_attributes={self.max_attributes}, max_attribute_length={self.max_attribute_length})"
@classmethod
def _from_env_if_absent(
cls, value: int | None, env_var: str, default: int | None = None
) -> int | None:
if value == cls.UNSET:
return None
err_msg = "{} must be a non-negative integer but got {}"
# if no value is provided for the limit, try to load it from env
if value is None:
# return default value if env var is not set
if env_var not in environ:
return default
str_value = environ.get(env_var, "").strip().lower()
if str_value == _ENV_VALUE_UNSET:
return None
try:
value = int(str_value)
except ValueError:
raise ValueError(err_msg.format(env_var, str_value))
if value < 0:
raise ValueError(err_msg.format(env_var, value))
return value
_UnsetLogLimits = LogLimits(
max_attributes=LogLimits.UNSET,
max_attribute_length=LogLimits.UNSET,
)
class LogRecord(APILogRecord):
"""A LogRecord instance represents an event being logged.
LogRecord instances are created and emitted via `Logger`
every time something is logged. They contain all the information
pertinent to the event being logged.
"""
def __init__(
self,
timestamp: int | None = None,
observed_timestamp: int | None = None,
trace_id: int | None = None,
span_id: int | None = None,
trace_flags: TraceFlags | None = None,
severity_text: str | None = None,
severity_number: SeverityNumber | None = None,
body: AnyValue | None = None,
resource: Resource | None = None,
attributes: Attributes | None = None,
limits: LogLimits | None = _UnsetLogLimits,
):
super().__init__(
**{
"timestamp": timestamp,
"observed_timestamp": observed_timestamp,
"trace_id": trace_id,
"span_id": span_id,
"trace_flags": trace_flags,
"severity_text": severity_text,
"severity_number": severity_number,
"body": body,
"attributes": BoundedAttributes(
maxlen=limits.max_attributes,
attributes=attributes if bool(attributes) else None,
immutable=False,
max_value_len=limits.max_attribute_length,
),
}
)
self.resource = (
resource if isinstance(resource, Resource) else Resource.create({})
)
if self.dropped_attributes > 0:
warnings.warn(
"Log record attributes were dropped due to limits",
LogDroppedAttributesWarning,
stacklevel=2,
)
def __eq__(self, other: object) -> bool:
if not isinstance(other, LogRecord):
return NotImplemented
return self.__dict__ == other.__dict__
def to_json(self, indent: int | None = 4) -> str:
return json.dumps(
{
"body": self.body,
"severity_number": self.severity_number.value
if self.severity_number is not None
else None,
"severity_text": self.severity_text,
"attributes": (
dict(self.attributes) if bool(self.attributes) else None
),
"dropped_attributes": self.dropped_attributes,
"timestamp": ns_to_iso_str(self.timestamp),
"observed_timestamp": ns_to_iso_str(self.observed_timestamp),
"trace_id": (
f"0x{format_trace_id(self.trace_id)}"
if self.trace_id is not None
else ""
),
"span_id": (
f"0x{format_span_id(self.span_id)}"
if self.span_id is not None
else ""
),
"trace_flags": self.trace_flags,
"resource": json.loads(self.resource.to_json()),
},
indent=indent,
)
@property
def dropped_attributes(self) -> int:
if self.attributes:
return self.attributes.dropped
return 0
class LogData:
"""Readable LogRecord data plus associated InstrumentationLibrary."""
def __init__(
self,
log_record: LogRecord,
instrumentation_scope: InstrumentationScope,
):
self.log_record = log_record
self.instrumentation_scope = instrumentation_scope
class LogRecordProcessor(abc.ABC):
"""Interface to hook the log record emitting action.
Log processors can be registered directly using
:func:`LoggerProvider.add_log_record_processor` and they are invoked
in the same order as they were registered.
"""
@abc.abstractmethod
def emit(self, log_data: LogData):
"""Emits the `LogData`"""
@abc.abstractmethod
def shutdown(self):
"""Called when a :class:`opentelemetry.sdk._logs.Logger` is shutdown"""
@abc.abstractmethod
def force_flush(self, timeout_millis: int = 30000):
"""Export all the received logs to the configured Exporter that have not yet
been exported.
Args:
timeout_millis: The maximum amount of time to wait for logs to be
exported.
Returns:
False if the timeout is exceeded, True otherwise.
"""
# Temporary fix until https://github.com/PyCQA/pylint/issues/4098 is resolved
# pylint:disable=no-member
class SynchronousMultiLogRecordProcessor(LogRecordProcessor):
"""Implementation of class:`LogRecordProcessor` that forwards all received
events to a list of log processors sequentially.
The underlying log processors are called in sequential order as they were
added.
"""
def __init__(self):
# use a tuple to avoid race conditions when adding a new log and
# iterating through it on "emit".
self._log_record_processors = () # type: Tuple[LogRecordProcessor, ...]
self._lock = threading.Lock()
def add_log_record_processor(
self, log_record_processor: LogRecordProcessor
) -> None:
"""Adds a Logprocessor to the list of log processors handled by this instance"""
with self._lock:
self._log_record_processors += (log_record_processor,)
def emit(self, log_data: LogData) -> None:
for lp in self._log_record_processors:
lp.emit(log_data)
def shutdown(self) -> None:
"""Shutdown the log processors one by one"""
for lp in self._log_record_processors:
lp.shutdown()
def force_flush(self, timeout_millis: int = 30000) -> bool:
"""Force flush the log processors one by one
Args:
timeout_millis: The maximum amount of time to wait for logs to be
exported. If the first n log processors exceeded the timeout
then remaining log processors will not be flushed.
Returns:
True if all the log processors flushes the logs within timeout,
False otherwise.
"""
deadline_ns = time_ns() + timeout_millis * 1000000
for lp in self._log_record_processors:
current_ts = time_ns()
if current_ts >= deadline_ns:
return False
if not lp.force_flush((deadline_ns - current_ts) // 1000000):
return False
return True
class ConcurrentMultiLogRecordProcessor(LogRecordProcessor):
"""Implementation of :class:`LogRecordProcessor` that forwards all received
events to a list of log processors in parallel.
Calls to the underlying log processors are forwarded in parallel by
submitting them to a thread pool executor and waiting until each log
processor finished its work.
Args:
max_workers: The number of threads managed by the thread pool executor
and thus defining how many log processors can work in parallel.
"""
def __init__(self, max_workers: int = 2):
# use a tuple to avoid race conditions when adding a new log and
# iterating through it on "emit".
self._log_record_processors = () # type: Tuple[LogRecordProcessor, ...]
self._lock = threading.Lock()
self._executor = concurrent.futures.ThreadPoolExecutor(
max_workers=max_workers
)
def add_log_record_processor(
self, log_record_processor: LogRecordProcessor
):
with self._lock:
self._log_record_processors += (log_record_processor,)
def _submit_and_wait(
self,
func: Callable[[LogRecordProcessor], Callable[..., None]],
*args: Any,
**kwargs: Any,
):
futures = []
for lp in self._log_record_processors:
future = self._executor.submit(func(lp), *args, **kwargs)
futures.append(future)
for future in futures:
future.result()
def emit(self, log_data: LogData):
self._submit_and_wait(lambda lp: lp.emit, log_data)
def shutdown(self):
self._submit_and_wait(lambda lp: lp.shutdown)
def force_flush(self, timeout_millis: int = 30000) -> bool:
"""Force flush the log processors in parallel.
Args:
timeout_millis: The maximum amount of time to wait for logs to be
exported.
Returns:
True if all the log processors flushes the logs within timeout,
False otherwise.
"""
futures = []
for lp in self._log_record_processors:
future = self._executor.submit(lp.force_flush, timeout_millis)
futures.append(future)
done_futures, not_done_futures = concurrent.futures.wait(
futures, timeout_millis / 1e3
)
if not_done_futures:
return False
for future in done_futures:
if not future.result():
return False
return True
# skip natural LogRecord attributes
# http://docs.python.org/library/logging.html#logrecord-attributes
_RESERVED_ATTRS = frozenset(
(
"asctime",
"args",
"created",
"exc_info",
"exc_text",
"filename",
"funcName",
"getMessage",
"message",
"levelname",
"levelno",
"lineno",
"module",
"msecs",
"msg",
"name",
"pathname",
"process",
"processName",
"relativeCreated",
"stack_info",
"thread",
"threadName",
"taskName",
)
)
class LoggingHandler(logging.Handler):
"""A handler class which writes logging records, in OTLP format, to
a network destination or file. Supports signals from the `logging` module.
https://docs.python.org/3/library/logging.html
"""
def __init__(
self,
level=logging.NOTSET,
logger_provider=None,
) -> None:
super().__init__(level=level)
self._logger_provider = logger_provider or get_logger_provider()
@staticmethod
def _get_attributes(record: logging.LogRecord) -> Attributes:
attributes = {
k: v for k, v in vars(record).items() if k not in _RESERVED_ATTRS
}
# Add standard code attributes for logs.
attributes[SpanAttributes.CODE_FILEPATH] = record.pathname
attributes[SpanAttributes.CODE_FUNCTION] = record.funcName
attributes[SpanAttributes.CODE_LINENO] = record.lineno
if record.exc_info:
exctype, value, tb = record.exc_info
if exctype is not None:
attributes[SpanAttributes.EXCEPTION_TYPE] = exctype.__name__
if value is not None and value.args:
attributes[SpanAttributes.EXCEPTION_MESSAGE] = str(
value.args[0]
)
if tb is not None:
# https://github.com/open-telemetry/opentelemetry-specification/blob/9fa7c656b26647b27e485a6af7e38dc716eba98a/specification/trace/semantic_conventions/exceptions.md#stacktrace-representation
attributes[SpanAttributes.EXCEPTION_STACKTRACE] = "".join(
traceback.format_exception(*record.exc_info)
)
return attributes
def _translate(self, record: logging.LogRecord) -> LogRecord:
timestamp = int(record.created * 1e9)
observered_timestamp = time_ns()
span_context = get_current_span().get_span_context()
attributes = self._get_attributes(record)
severity_number = std_to_otel(record.levelno)
if self.formatter:
body = self.format(record)
else:
# `record.getMessage()` uses `record.msg` as a template to format
# `record.args` into. There is a special case in `record.getMessage()`
# where it will only attempt formatting if args are provided,
# otherwise, it just stringifies `record.msg`.
#
# Since the OTLP body field has a type of 'any' and the logging module
# is sometimes used in such a way that objects incorrectly end up
# set as record.msg, in those cases we would like to bypass
# `record.getMessage()` completely and set the body to the object
# itself instead of its string representation.
# For more background, see: https://github.com/open-telemetry/opentelemetry-python/pull/4216
if not record.args and not isinstance(record.msg, str):
# if record.msg is not a value we can export, cast it to string
if not isinstance(record.msg, _VALID_ANY_VALUE_TYPES):
body = str(record.msg)
else:
body = record.msg
else:
body = record.getMessage()
# related to https://github.com/open-telemetry/opentelemetry-python/issues/3548
# Severity Text = WARN as defined in https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/logs/data-model.md#displaying-severity.
level_name = (
"WARN" if record.levelname == "WARNING" else record.levelname
)
logger = get_logger(record.name, logger_provider=self._logger_provider)
return LogRecord(
timestamp=timestamp,
observed_timestamp=observered_timestamp,
trace_id=span_context.trace_id,
span_id=span_context.span_id,
trace_flags=span_context.trace_flags,
severity_text=level_name,
severity_number=severity_number,
body=body,
resource=logger.resource,
attributes=attributes,
)
def emit(self, record: logging.LogRecord) -> None:
"""
Emit a record. Skip emitting if logger is NoOp.
The record is translated to OTel format, and then sent across the pipeline.
"""
logger = get_logger(record.name, logger_provider=self._logger_provider)
if not isinstance(logger, NoOpLogger):
logger.emit(self._translate(record))
def flush(self) -> None:
"""
Flushes the logging output. Skip flushing if logging_provider has no force_flush method.
"""
if hasattr(self._logger_provider, "force_flush") and callable(
self._logger_provider.force_flush
):
self._logger_provider.force_flush()
class Logger(APILogger):
def __init__(
self,
resource: Resource,
multi_log_record_processor: Union[
SynchronousMultiLogRecordProcessor,
ConcurrentMultiLogRecordProcessor,
],
instrumentation_scope: InstrumentationScope,
):
super().__init__(
instrumentation_scope.name,
instrumentation_scope.version,
instrumentation_scope.schema_url,
instrumentation_scope.attributes,
)
self._resource = resource
self._multi_log_record_processor = multi_log_record_processor
self._instrumentation_scope = instrumentation_scope
@property
def resource(self):
return self._resource
def emit(self, record: LogRecord):
"""Emits the :class:`LogData` by associating :class:`LogRecord`
and instrumentation info.
"""
log_data = LogData(record, self._instrumentation_scope)
self._multi_log_record_processor.emit(log_data)
class LoggerProvider(APILoggerProvider):
def __init__(
self,
resource: Resource | None = None,
shutdown_on_exit: bool = True,
multi_log_record_processor: SynchronousMultiLogRecordProcessor
| ConcurrentMultiLogRecordProcessor
| None = None,
):
if resource is None:
self._resource = Resource.create({})
else:
self._resource = resource
self._multi_log_record_processor = (
multi_log_record_processor or SynchronousMultiLogRecordProcessor()
)
disabled = environ.get(OTEL_SDK_DISABLED, "")
self._disabled = disabled.lower().strip() == "true"
self._at_exit_handler = None
if shutdown_on_exit:
self._at_exit_handler = atexit.register(self.shutdown)
self._logger_cache = {}
self._logger_cache_lock = Lock()
@property
def resource(self):
return self._resource
def _get_logger_no_cache(
self,
name: str,
version: str | None = None,
schema_url: str | None = None,
attributes: Attributes | None = None,
) -> Logger:
return Logger(
self._resource,
self._multi_log_record_processor,
InstrumentationScope(
name,
version,
schema_url,
attributes,
),
)
def _get_logger_cached(
self,
name: str,
version: str | None = None,
schema_url: str | None = None,
) -> Logger:
with self._logger_cache_lock:
key = (name, version, schema_url)
if key in self._logger_cache:
return self._logger_cache[key]
self._logger_cache[key] = self._get_logger_no_cache(
name, version, schema_url
)
return self._logger_cache[key]
def get_logger(
self,
name: str,
version: str | None = None,
schema_url: str | None = None,
attributes: Attributes | None = None,
) -> Logger:
if self._disabled:
return NoOpLogger(
name,
version=version,
schema_url=schema_url,
attributes=attributes,
)
if attributes is None:
return self._get_logger_cached(name, version, schema_url)
return self._get_logger_no_cache(name, version, schema_url, attributes)
def add_log_record_processor(
self, log_record_processor: LogRecordProcessor
):
"""Registers a new :class:`LogRecordProcessor` for this `LoggerProvider` instance.
The log processors are invoked in the same order they are registered.
"""
self._multi_log_record_processor.add_log_record_processor(
log_record_processor
)
def shutdown(self):
"""Shuts down the log processors."""
self._multi_log_record_processor.shutdown()
if self._at_exit_handler is not None:
atexit.unregister(self._at_exit_handler)
self._at_exit_handler = None
def force_flush(self, timeout_millis: int = 30000) -> bool:
"""Force flush the log processors.
Args:
timeout_millis: The maximum amount of time to wait for logs to be
exported.
Returns:
True if all the log processors flushes the logs within timeout,
False otherwise.
"""
return self._multi_log_record_processor.force_flush(timeout_millis)

View File

@@ -0,0 +1,464 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import abc
import collections
import enum
import logging
import os
import sys
import threading
import weakref
from os import environ, linesep
from time import time_ns
from typing import IO, Callable, Deque, List, Optional, Sequence
from opentelemetry.context import (
_SUPPRESS_INSTRUMENTATION_KEY,
attach,
detach,
set_value,
)
from opentelemetry.sdk._logs import LogData, LogRecord, LogRecordProcessor
from opentelemetry.sdk.environment_variables import (
OTEL_BLRP_EXPORT_TIMEOUT,
OTEL_BLRP_MAX_EXPORT_BATCH_SIZE,
OTEL_BLRP_MAX_QUEUE_SIZE,
OTEL_BLRP_SCHEDULE_DELAY,
)
from opentelemetry.util._once import Once
_DEFAULT_SCHEDULE_DELAY_MILLIS = 5000
_DEFAULT_MAX_EXPORT_BATCH_SIZE = 512
_DEFAULT_EXPORT_TIMEOUT_MILLIS = 30000
_DEFAULT_MAX_QUEUE_SIZE = 2048
_ENV_VAR_INT_VALUE_ERROR_MESSAGE = (
"Unable to parse value for %s as integer. Defaulting to %s."
)
_logger = logging.getLogger(__name__)
class LogExportResult(enum.Enum):
SUCCESS = 0
FAILURE = 1
class LogExporter(abc.ABC):
"""Interface for exporting logs.
Interface to be implemented by services that want to export logs received
in their own format.
To export data this MUST be registered to the :class`opentelemetry.sdk._logs.Logger` using a
log processor.
"""
@abc.abstractmethod
def export(self, batch: Sequence[LogData]):
"""Exports a batch of logs.
Args:
batch: The list of `LogData` objects to be exported
Returns:
The result of the export
"""
@abc.abstractmethod
def shutdown(self):
"""Shuts down the exporter.
Called when the SDK is shut down.
"""
class ConsoleLogExporter(LogExporter):
"""Implementation of :class:`LogExporter` that prints log records to the
console.
This class can be used for diagnostic purposes. It prints the exported
log records to the console STDOUT.
"""
def __init__(
self,
out: IO = sys.stdout,
formatter: Callable[[LogRecord], str] = lambda record: record.to_json()
+ linesep,
):
self.out = out
self.formatter = formatter
def export(self, batch: Sequence[LogData]):
for data in batch:
self.out.write(self.formatter(data.log_record))
self.out.flush()
return LogExportResult.SUCCESS
def shutdown(self):
pass
class SimpleLogRecordProcessor(LogRecordProcessor):
"""This is an implementation of LogRecordProcessor which passes
received logs in the export-friendly LogData representation to the
configured LogExporter, as soon as they are emitted.
"""
def __init__(self, exporter: LogExporter):
self._exporter = exporter
self._shutdown = False
def emit(self, log_data: LogData):
if self._shutdown:
_logger.warning("Processor is already shutdown, ignoring call")
return
token = attach(set_value(_SUPPRESS_INSTRUMENTATION_KEY, True))
try:
self._exporter.export((log_data,))
except Exception: # pylint: disable=broad-exception-caught
_logger.exception("Exception while exporting logs.")
detach(token)
def shutdown(self):
self._shutdown = True
self._exporter.shutdown()
def force_flush(self, timeout_millis: int = 30000) -> bool: # pylint: disable=no-self-use
return True
class _FlushRequest:
__slots__ = ["event", "num_log_records"]
def __init__(self):
self.event = threading.Event()
self.num_log_records = 0
_BSP_RESET_ONCE = Once()
class BatchLogRecordProcessor(LogRecordProcessor):
"""This is an implementation of LogRecordProcessor which creates batches of
received logs in the export-friendly LogData representation and
send to the configured LogExporter, as soon as they are emitted.
`BatchLogRecordProcessor` is configurable with the following environment
variables which correspond to constructor parameters:
- :envvar:`OTEL_BLRP_SCHEDULE_DELAY`
- :envvar:`OTEL_BLRP_MAX_QUEUE_SIZE`
- :envvar:`OTEL_BLRP_MAX_EXPORT_BATCH_SIZE`
- :envvar:`OTEL_BLRP_EXPORT_TIMEOUT`
"""
_queue: Deque[LogData]
_flush_request: _FlushRequest | None
_log_records: List[LogData | None]
def __init__(
self,
exporter: LogExporter,
schedule_delay_millis: float | None = None,
max_export_batch_size: int | None = None,
export_timeout_millis: float | None = None,
max_queue_size: int | None = None,
):
if max_queue_size is None:
max_queue_size = BatchLogRecordProcessor._default_max_queue_size()
if schedule_delay_millis is None:
schedule_delay_millis = (
BatchLogRecordProcessor._default_schedule_delay_millis()
)
if max_export_batch_size is None:
max_export_batch_size = (
BatchLogRecordProcessor._default_max_export_batch_size()
)
if export_timeout_millis is None:
export_timeout_millis = (
BatchLogRecordProcessor._default_export_timeout_millis()
)
BatchLogRecordProcessor._validate_arguments(
max_queue_size, schedule_delay_millis, max_export_batch_size
)
self._exporter = exporter
self._max_queue_size = max_queue_size
self._schedule_delay_millis = schedule_delay_millis
self._max_export_batch_size = max_export_batch_size
self._export_timeout_millis = export_timeout_millis
self._queue = collections.deque([], max_queue_size)
self._worker_thread = threading.Thread(
name="OtelBatchLogRecordProcessor",
target=self.worker,
daemon=True,
)
self._condition = threading.Condition(threading.Lock())
self._shutdown = False
self._flush_request = None
self._log_records = [None] * self._max_export_batch_size
self._worker_thread.start()
if hasattr(os, "register_at_fork"):
weak_reinit = weakref.WeakMethod(self._at_fork_reinit)
os.register_at_fork(after_in_child=lambda: weak_reinit()()) # pylint: disable=unnecessary-lambda
self._pid = os.getpid()
def _at_fork_reinit(self):
self._condition = threading.Condition(threading.Lock())
self._queue.clear()
self._worker_thread = threading.Thread(
name="OtelBatchLogRecordProcessor",
target=self.worker,
daemon=True,
)
self._worker_thread.start()
self._pid = os.getpid()
def worker(self):
timeout = self._schedule_delay_millis / 1e3
flush_request: Optional[_FlushRequest] = None
while not self._shutdown:
with self._condition:
if self._shutdown:
# shutdown may have been called, avoid further processing
break
flush_request = self._get_and_unset_flush_request()
if (
len(self._queue) < self._max_export_batch_size
and flush_request is None
):
self._condition.wait(timeout)
flush_request = self._get_and_unset_flush_request()
if not self._queue:
timeout = self._schedule_delay_millis / 1e3
self._notify_flush_request_finished(flush_request)
flush_request = None
continue
if self._shutdown:
break
start_ns = time_ns()
self._export(flush_request)
end_ns = time_ns()
# subtract the duration of this export call to the next timeout
timeout = self._schedule_delay_millis / 1e3 - (
(end_ns - start_ns) / 1e9
)
self._notify_flush_request_finished(flush_request)
flush_request = None
# there might have been a new flush request while export was running
# and before the done flag switched to true
with self._condition:
shutdown_flush_request = self._get_and_unset_flush_request()
# flush the remaining logs
self._drain_queue()
self._notify_flush_request_finished(flush_request)
self._notify_flush_request_finished(shutdown_flush_request)
def _export(self, flush_request: Optional[_FlushRequest] = None):
"""Exports logs considering the given flush_request.
If flush_request is not None then logs are exported in batches
until the number of exported logs reached or exceeded the num of logs in
flush_request, otherwise exports at max max_export_batch_size logs.
"""
if flush_request is None:
self._export_batch()
return
num_log_records = flush_request.num_log_records
while self._queue:
exported = self._export_batch()
num_log_records -= exported
if num_log_records <= 0:
break
def _export_batch(self) -> int:
"""Exports at most max_export_batch_size logs and returns the number of
exported logs.
"""
idx = 0
while idx < self._max_export_batch_size and self._queue:
record = self._queue.pop()
self._log_records[idx] = record
idx += 1
token = attach(set_value(_SUPPRESS_INSTRUMENTATION_KEY, True))
try:
self._exporter.export(self._log_records[:idx]) # type: ignore
except Exception: # pylint: disable=broad-exception-caught
_logger.exception("Exception while exporting logs.")
detach(token)
for index in range(idx):
self._log_records[index] = None
return idx
def _drain_queue(self):
"""Export all elements until queue is empty.
Can only be called from the worker thread context because it invokes
`export` that is not thread safe.
"""
while self._queue:
self._export_batch()
def _get_and_unset_flush_request(self) -> Optional[_FlushRequest]:
flush_request = self._flush_request
self._flush_request = None
if flush_request is not None:
flush_request.num_log_records = len(self._queue)
return flush_request
@staticmethod
def _notify_flush_request_finished(
flush_request: Optional[_FlushRequest] = None,
):
if flush_request is not None:
flush_request.event.set()
def _get_or_create_flush_request(self) -> _FlushRequest:
if self._flush_request is None:
self._flush_request = _FlushRequest()
return self._flush_request
def emit(self, log_data: LogData) -> None:
"""Adds the `LogData` to queue and notifies the waiting threads
when size of queue reaches max_export_batch_size.
"""
if self._shutdown:
return
if self._pid != os.getpid():
_BSP_RESET_ONCE.do_once(self._at_fork_reinit)
self._queue.appendleft(log_data)
if len(self._queue) >= self._max_export_batch_size:
with self._condition:
self._condition.notify()
def shutdown(self):
self._shutdown = True
with self._condition:
self._condition.notify_all()
self._worker_thread.join()
self._exporter.shutdown()
def force_flush(self, timeout_millis: Optional[int] = None) -> bool:
if timeout_millis is None:
timeout_millis = self._export_timeout_millis
if self._shutdown:
return True
with self._condition:
flush_request = self._get_or_create_flush_request()
self._condition.notify_all()
ret = flush_request.event.wait(timeout_millis / 1e3)
if not ret:
_logger.warning("Timeout was exceeded in force_flush().")
return ret
@staticmethod
def _default_max_queue_size():
try:
return int(
environ.get(OTEL_BLRP_MAX_QUEUE_SIZE, _DEFAULT_MAX_QUEUE_SIZE)
)
except ValueError:
_logger.exception(
_ENV_VAR_INT_VALUE_ERROR_MESSAGE,
OTEL_BLRP_MAX_QUEUE_SIZE,
_DEFAULT_MAX_QUEUE_SIZE,
)
return _DEFAULT_MAX_QUEUE_SIZE
@staticmethod
def _default_schedule_delay_millis():
try:
return int(
environ.get(
OTEL_BLRP_SCHEDULE_DELAY, _DEFAULT_SCHEDULE_DELAY_MILLIS
)
)
except ValueError:
_logger.exception(
_ENV_VAR_INT_VALUE_ERROR_MESSAGE,
OTEL_BLRP_SCHEDULE_DELAY,
_DEFAULT_SCHEDULE_DELAY_MILLIS,
)
return _DEFAULT_SCHEDULE_DELAY_MILLIS
@staticmethod
def _default_max_export_batch_size():
try:
return int(
environ.get(
OTEL_BLRP_MAX_EXPORT_BATCH_SIZE,
_DEFAULT_MAX_EXPORT_BATCH_SIZE,
)
)
except ValueError:
_logger.exception(
_ENV_VAR_INT_VALUE_ERROR_MESSAGE,
OTEL_BLRP_MAX_EXPORT_BATCH_SIZE,
_DEFAULT_MAX_EXPORT_BATCH_SIZE,
)
return _DEFAULT_MAX_EXPORT_BATCH_SIZE
@staticmethod
def _default_export_timeout_millis():
try:
return int(
environ.get(
OTEL_BLRP_EXPORT_TIMEOUT, _DEFAULT_EXPORT_TIMEOUT_MILLIS
)
)
except ValueError:
_logger.exception(
_ENV_VAR_INT_VALUE_ERROR_MESSAGE,
OTEL_BLRP_EXPORT_TIMEOUT,
_DEFAULT_EXPORT_TIMEOUT_MILLIS,
)
return _DEFAULT_EXPORT_TIMEOUT_MILLIS
@staticmethod
def _validate_arguments(
max_queue_size, schedule_delay_millis, max_export_batch_size
):
if max_queue_size <= 0:
raise ValueError("max_queue_size must be a positive integer.")
if schedule_delay_millis <= 0:
raise ValueError("schedule_delay_millis must be positive.")
if max_export_batch_size <= 0:
raise ValueError(
"max_export_batch_size must be a positive integer."
)
if max_export_batch_size > max_queue_size:
raise ValueError(
"max_export_batch_size must be less than or equal to max_queue_size."
)

View File

@@ -0,0 +1,51 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import threading
import typing
from opentelemetry.sdk._logs import LogData
from opentelemetry.sdk._logs.export import LogExporter, LogExportResult
class InMemoryLogExporter(LogExporter):
"""Implementation of :class:`.LogExporter` that stores logs in memory.
This class can be used for testing purposes. It stores the exported logs
in a list in memory that can be retrieved using the
:func:`.get_finished_logs` method.
"""
def __init__(self):
self._logs = []
self._lock = threading.Lock()
self._stopped = False
def clear(self) -> None:
with self._lock:
self._logs.clear()
def get_finished_logs(self) -> typing.Tuple[LogData, ...]:
with self._lock:
return tuple(self._logs)
def export(self, batch: typing.Sequence[LogData]) -> LogExportResult:
if self._stopped:
return LogExportResult.FAILURE
with self._lock:
self._logs.extend(batch)
return LogExportResult.SUCCESS
def shutdown(self) -> None:
self._stopped = True

View File

@@ -0,0 +1,35 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from opentelemetry.sdk._logs._internal.export import (
BatchLogRecordProcessor,
ConsoleLogExporter,
LogExporter,
LogExportResult,
SimpleLogRecordProcessor,
)
# The point module is not in the export directory to avoid a circular import.
from opentelemetry.sdk._logs._internal.export.in_memory_log_exporter import (
InMemoryLogExporter,
)
__all__ = [
"BatchLogRecordProcessor",
"ConsoleLogExporter",
"LogExporter",
"LogExportResult",
"SimpleLogRecordProcessor",
"InMemoryLogExporter",
]

View File

@@ -0,0 +1,721 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
OTEL_SDK_DISABLED = "OTEL_SDK_DISABLED"
"""
.. envvar:: OTEL_SDK_DISABLED
The :envvar:`OTEL_SDK_DISABLED` environment variable disables the SDK for all signals
Default: "false"
"""
OTEL_RESOURCE_ATTRIBUTES = "OTEL_RESOURCE_ATTRIBUTES"
"""
.. envvar:: OTEL_RESOURCE_ATTRIBUTES
The :envvar:`OTEL_RESOURCE_ATTRIBUTES` environment variable allows resource
attributes to be passed to the SDK at process invocation. The attributes from
:envvar:`OTEL_RESOURCE_ATTRIBUTES` are merged with those passed to
`Resource.create`, meaning :envvar:`OTEL_RESOURCE_ATTRIBUTES` takes *lower*
priority. Attributes should be in the format ``key1=value1,key2=value2``.
Additional details are available `in the specification
<https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/resource/sdk.md#specifying-resource-information-via-an-environment-variable>`__.
.. code-block:: console
$ OTEL_RESOURCE_ATTRIBUTES="service.name=shoppingcard,will_be_overridden=foo" python - <<EOF
import pprint
from opentelemetry.sdk.resources import Resource
pprint.pprint(Resource.create({"will_be_overridden": "bar"}).attributes)
EOF
{'service.name': 'shoppingcard',
'telemetry.sdk.language': 'python',
'telemetry.sdk.name': 'opentelemetry',
'telemetry.sdk.version': '0.13.dev0',
'will_be_overridden': 'bar'}
"""
OTEL_LOG_LEVEL = "OTEL_LOG_LEVEL"
"""
.. envvar:: OTEL_LOG_LEVEL
The :envvar:`OTEL_LOG_LEVEL` environment variable sets the log level used by the SDK logger
Default: "info"
"""
OTEL_TRACES_SAMPLER = "OTEL_TRACES_SAMPLER"
"""
.. envvar:: OTEL_TRACES_SAMPLER
The :envvar:`OTEL_TRACES_SAMPLER` environment variable sets the sampler to be used for traces.
Sampling is a mechanism to control the noise introduced by OpenTelemetry by reducing the number
of traces collected and sent to the backend
Default: "parentbased_always_on"
"""
OTEL_TRACES_SAMPLER_ARG = "OTEL_TRACES_SAMPLER_ARG"
"""
.. envvar:: OTEL_TRACES_SAMPLER_ARG
The :envvar:`OTEL_TRACES_SAMPLER_ARG` environment variable will only be used if OTEL_TRACES_SAMPLER is set.
Each Sampler type defines its own expected input, if any.
Invalid or unrecognized input is ignored,
i.e. the SDK behaves as if OTEL_TRACES_SAMPLER_ARG is not set.
"""
OTEL_BLRP_SCHEDULE_DELAY = "OTEL_BLRP_SCHEDULE_DELAY"
"""
.. envvar:: OTEL_BLRP_SCHEDULE_DELAY
The :envvar:`OTEL_BLRP_SCHEDULE_DELAY` represents the delay interval between two consecutive exports of the BatchLogRecordProcessor.
Default: 5000
"""
OTEL_BLRP_EXPORT_TIMEOUT = "OTEL_BLRP_EXPORT_TIMEOUT"
"""
.. envvar:: OTEL_BLRP_EXPORT_TIMEOUT
The :envvar:`OTEL_BLRP_EXPORT_TIMEOUT` represents the maximum allowed time to export data from the BatchLogRecordProcessor.
Default: 30000
"""
OTEL_BLRP_MAX_QUEUE_SIZE = "OTEL_BLRP_MAX_QUEUE_SIZE"
"""
.. envvar:: OTEL_BLRP_MAX_QUEUE_SIZE
The :envvar:`OTEL_BLRP_MAX_QUEUE_SIZE` represents the maximum queue size for the data export of the BatchLogRecordProcessor.
Default: 2048
"""
OTEL_BLRP_MAX_EXPORT_BATCH_SIZE = "OTEL_BLRP_MAX_EXPORT_BATCH_SIZE"
"""
.. envvar:: OTEL_BLRP_MAX_EXPORT_BATCH_SIZE
The :envvar:`OTEL_BLRP_MAX_EXPORT_BATCH_SIZE` represents the maximum batch size for the data export of the BatchLogRecordProcessor.
Default: 512
"""
OTEL_BSP_SCHEDULE_DELAY = "OTEL_BSP_SCHEDULE_DELAY"
"""
.. envvar:: OTEL_BSP_SCHEDULE_DELAY
The :envvar:`OTEL_BSP_SCHEDULE_DELAY` represents the delay interval between two consecutive exports of the BatchSpanProcessor.
Default: 5000
"""
OTEL_BSP_EXPORT_TIMEOUT = "OTEL_BSP_EXPORT_TIMEOUT"
"""
.. envvar:: OTEL_BSP_EXPORT_TIMEOUT
The :envvar:`OTEL_BSP_EXPORT_TIMEOUT` represents the maximum allowed time to export data from the BatchSpanProcessor.
Default: 30000
"""
OTEL_BSP_MAX_QUEUE_SIZE = "OTEL_BSP_MAX_QUEUE_SIZE"
"""
.. envvar:: OTEL_BSP_MAX_QUEUE_SIZE
The :envvar:`OTEL_BSP_MAX_QUEUE_SIZE` represents the maximum queue size for the data export of the BatchSpanProcessor.
Default: 2048
"""
OTEL_BSP_MAX_EXPORT_BATCH_SIZE = "OTEL_BSP_MAX_EXPORT_BATCH_SIZE"
"""
.. envvar:: OTEL_BSP_MAX_EXPORT_BATCH_SIZE
The :envvar:`OTEL_BSP_MAX_EXPORT_BATCH_SIZE` represents the maximum batch size for the data export of the BatchSpanProcessor.
Default: 512
"""
OTEL_ATTRIBUTE_COUNT_LIMIT = "OTEL_ATTRIBUTE_COUNT_LIMIT"
"""
.. envvar:: OTEL_ATTRIBUTE_COUNT_LIMIT
The :envvar:`OTEL_ATTRIBUTE_COUNT_LIMIT` represents the maximum allowed attribute count for spans, events and links.
This limit is overridden by model specific limits such as OTEL_SPAN_ATTRIBUTE_COUNT_LIMIT.
Default: 128
"""
OTEL_ATTRIBUTE_VALUE_LENGTH_LIMIT = "OTEL_ATTRIBUTE_VALUE_LENGTH_LIMIT"
"""
.. envvar:: OTEL_ATTRIBUTE_VALUE_LENGTH_LIMIT
The :envvar:`OTEL_ATTRIBUTE_VALUE_LENGTH_LIMIT` represents the maximum allowed attribute length.
"""
OTEL_EVENT_ATTRIBUTE_COUNT_LIMIT = "OTEL_EVENT_ATTRIBUTE_COUNT_LIMIT"
"""
.. envvar:: OTEL_EVENT_ATTRIBUTE_COUNT_LIMIT
The :envvar:`OTEL_EVENT_ATTRIBUTE_COUNT_LIMIT` represents the maximum allowed event attribute count.
Default: 128
"""
OTEL_LINK_ATTRIBUTE_COUNT_LIMIT = "OTEL_LINK_ATTRIBUTE_COUNT_LIMIT"
"""
.. envvar:: OTEL_LINK_ATTRIBUTE_COUNT_LIMIT
The :envvar:`OTEL_LINK_ATTRIBUTE_COUNT_LIMIT` represents the maximum allowed link attribute count.
Default: 128
"""
OTEL_SPAN_ATTRIBUTE_COUNT_LIMIT = "OTEL_SPAN_ATTRIBUTE_COUNT_LIMIT"
"""
.. envvar:: OTEL_SPAN_ATTRIBUTE_COUNT_LIMIT
The :envvar:`OTEL_SPAN_ATTRIBUTE_COUNT_LIMIT` represents the maximum allowed span attribute count.
Default: 128
"""
OTEL_SPAN_ATTRIBUTE_VALUE_LENGTH_LIMIT = (
"OTEL_SPAN_ATTRIBUTE_VALUE_LENGTH_LIMIT"
)
"""
.. envvar:: OTEL_SPAN_ATTRIBUTE_VALUE_LENGTH_LIMIT
The :envvar:`OTEL_SPAN_ATTRIBUTE_VALUE_LENGTH_LIMIT` represents the maximum allowed length
span attribute values can have. This takes precedence over :envvar:`OTEL_ATTRIBUTE_VALUE_LENGTH_LIMIT`.
"""
OTEL_SPAN_EVENT_COUNT_LIMIT = "OTEL_SPAN_EVENT_COUNT_LIMIT"
"""
.. envvar:: OTEL_SPAN_EVENT_COUNT_LIMIT
The :envvar:`OTEL_SPAN_EVENT_COUNT_LIMIT` represents the maximum allowed span event count.
Default: 128
"""
OTEL_SPAN_LINK_COUNT_LIMIT = "OTEL_SPAN_LINK_COUNT_LIMIT"
"""
.. envvar:: OTEL_SPAN_LINK_COUNT_LIMIT
The :envvar:`OTEL_SPAN_LINK_COUNT_LIMIT` represents the maximum allowed span link count.
Default: 128
"""
OTEL_EXPORTER_JAEGER_AGENT_HOST = "OTEL_EXPORTER_JAEGER_AGENT_HOST"
"""
.. envvar:: OTEL_EXPORTER_JAEGER_AGENT_HOST
The :envvar:`OTEL_EXPORTER_JAEGER_AGENT_HOST` represents the hostname for the Jaeger agent.
Default: "localhost"
"""
OTEL_EXPORTER_JAEGER_AGENT_PORT = "OTEL_EXPORTER_JAEGER_AGENT_PORT"
"""
.. envvar:: OTEL_EXPORTER_JAEGER_AGENT_PORT
The :envvar:`OTEL_EXPORTER_JAEGER_AGENT_PORT` represents the port for the Jaeger agent.
Default: 6831
"""
OTEL_EXPORTER_JAEGER_ENDPOINT = "OTEL_EXPORTER_JAEGER_ENDPOINT"
"""
.. envvar:: OTEL_EXPORTER_JAEGER_ENDPOINT
The :envvar:`OTEL_EXPORTER_JAEGER_ENDPOINT` represents the HTTP endpoint for Jaeger traces.
Default: "http://localhost:14250"
"""
OTEL_EXPORTER_JAEGER_USER = "OTEL_EXPORTER_JAEGER_USER"
"""
.. envvar:: OTEL_EXPORTER_JAEGER_USER
The :envvar:`OTEL_EXPORTER_JAEGER_USER` represents the username to be used for HTTP basic authentication.
"""
OTEL_EXPORTER_JAEGER_PASSWORD = "OTEL_EXPORTER_JAEGER_PASSWORD"
"""
.. envvar:: OTEL_EXPORTER_JAEGER_PASSWORD
The :envvar:`OTEL_EXPORTER_JAEGER_PASSWORD` represents the password to be used for HTTP basic authentication.
"""
OTEL_EXPORTER_JAEGER_TIMEOUT = "OTEL_EXPORTER_JAEGER_TIMEOUT"
"""
.. envvar:: OTEL_EXPORTER_JAEGER_TIMEOUT
Maximum time the Jaeger exporter will wait for each batch export.
Default: 10
"""
OTEL_EXPORTER_ZIPKIN_ENDPOINT = "OTEL_EXPORTER_ZIPKIN_ENDPOINT"
"""
.. envvar:: OTEL_EXPORTER_ZIPKIN_ENDPOINT
Zipkin collector endpoint to which the exporter will send data. This may
include a path (e.g. ``http://example.com:9411/api/v2/spans``).
"""
OTEL_EXPORTER_ZIPKIN_TIMEOUT = "OTEL_EXPORTER_ZIPKIN_TIMEOUT"
"""
.. envvar:: OTEL_EXPORTER_ZIPKIN_TIMEOUT
Maximum time (in seconds) the Zipkin exporter will wait for each batch export.
Default: 10
"""
OTEL_EXPORTER_OTLP_PROTOCOL = "OTEL_EXPORTER_OTLP_PROTOCOL"
"""
.. envvar:: OTEL_EXPORTER_OTLP_PROTOCOL
The :envvar:`OTEL_EXPORTER_OTLP_PROTOCOL` represents the transport protocol for the
OTLP exporter.
"""
OTEL_EXPORTER_OTLP_TRACES_PROTOCOL = "OTEL_EXPORTER_OTLP_TRACES_PROTOCOL"
"""
.. envvar:: OTEL_EXPORTER_OTLP_TRACES_PROTOCOL
The :envvar:`OTEL_EXPORTER_OTLP_TRACES_PROTOCOL` represents the transport protocol for spans.
"""
OTEL_EXPORTER_OTLP_METRICS_PROTOCOL = "OTEL_EXPORTER_OTLP_METRICS_PROTOCOL"
"""
.. envvar:: OTEL_EXPORTER_OTLP_METRICS_PROTOCOL
The :envvar:`OTEL_EXPORTER_OTLP_METRICS_PROTOCOL` represents the transport protocol for metrics.
"""
OTEL_EXPORTER_OTLP_LOGS_PROTOCOL = "OTEL_EXPORTER_OTLP_LOGS_PROTOCOL"
"""
.. envvar:: OTEL_EXPORTER_OTLP_LOGS_PROTOCOL
The :envvar:`OTEL_EXPORTER_OTLP_LOGS_PROTOCOL` represents the transport protocol for logs.
"""
OTEL_EXPORTER_OTLP_CERTIFICATE = "OTEL_EXPORTER_OTLP_CERTIFICATE"
"""
.. envvar:: OTEL_EXPORTER_OTLP_CERTIFICATE
The :envvar:`OTEL_EXPORTER_OTLP_CERTIFICATE` stores the path to the certificate file for
TLS credentials of gRPC client. Should only be used for a secure connection.
"""
OTEL_EXPORTER_OTLP_HEADERS = "OTEL_EXPORTER_OTLP_HEADERS"
"""
.. envvar:: OTEL_EXPORTER_OTLP_HEADERS
The :envvar:`OTEL_EXPORTER_OTLP_HEADERS` contains the key-value pairs to be used as headers
associated with gRPC or HTTP requests.
"""
OTEL_EXPORTER_OTLP_COMPRESSION = "OTEL_EXPORTER_OTLP_COMPRESSION"
"""
.. envvar:: OTEL_EXPORTER_OTLP_COMPRESSION
Specifies a gRPC compression method to be used in the OTLP exporters.
Possible values are:
- ``gzip`` corresponding to `grpc.Compression.Gzip`.
- ``deflate`` corresponding to `grpc.Compression.Deflate`.
If no ``OTEL_EXPORTER_OTLP_*COMPRESSION`` environment variable is present or
``compression`` argument passed to the exporter, the default
`grpc.Compression.NoCompression` will be used. Additional details are
available `in the specification
<https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/protocol/exporter.md#opentelemetry-protocol-exporter>`__.
"""
OTEL_EXPORTER_OTLP_TIMEOUT = "OTEL_EXPORTER_OTLP_TIMEOUT"
"""
.. envvar:: OTEL_EXPORTER_OTLP_TIMEOUT
The :envvar:`OTEL_EXPORTER_OTLP_TIMEOUT` is the maximum time the OTLP exporter will wait for each batch export.
Default: 10
"""
OTEL_EXPORTER_OTLP_ENDPOINT = "OTEL_EXPORTER_OTLP_ENDPOINT"
"""
.. envvar:: OTEL_EXPORTER_OTLP_ENDPOINT
The :envvar:`OTEL_EXPORTER_OTLP_ENDPOINT` target to which the exporter is going to send spans or metrics.
The endpoint MUST be a valid URL host, and MAY contain a scheme (http or https), port and path.
A scheme of https indicates a secure connection and takes precedence over the insecure configuration setting.
Default: "http://localhost:4317"
"""
OTEL_EXPORTER_OTLP_INSECURE = "OTEL_EXPORTER_OTLP_INSECURE"
"""
.. envvar:: OTEL_EXPORTER_OTLP_INSECURE
The :envvar:`OTEL_EXPORTER_OTLP_INSECURE` represents whether to enable client transport security for gRPC requests.
A scheme of https takes precedence over this configuration setting.
Default: False
"""
OTEL_EXPORTER_OTLP_TRACES_INSECURE = "OTEL_EXPORTER_OTLP_TRACES_INSECURE"
"""
.. envvar:: OTEL_EXPORTER_OTLP_TRACES_INSECURE
The :envvar:`OTEL_EXPORTER_OTLP_TRACES_INSECURE` represents whether to enable client transport security
for gRPC requests for spans. A scheme of https takes precedence over the this configuration setting.
Default: False
"""
OTEL_EXPORTER_OTLP_TRACES_ENDPOINT = "OTEL_EXPORTER_OTLP_TRACES_ENDPOINT"
"""
.. envvar:: OTEL_EXPORTER_OTLP_TRACES_ENDPOINT
The :envvar:`OTEL_EXPORTER_OTLP_TRACES_ENDPOINT` target to which the span exporter is going to send spans.
The endpoint MUST be a valid URL host, and MAY contain a scheme (http or https), port and path.
A scheme of https indicates a secure connection and takes precedence over this configuration setting.
"""
OTEL_EXPORTER_OTLP_METRICS_ENDPOINT = "OTEL_EXPORTER_OTLP_METRICS_ENDPOINT"
"""
.. envvar:: OTEL_EXPORTER_OTLP_METRICS_ENDPOINT
The :envvar:`OTEL_EXPORTER_OTLP_METRICS_ENDPOINT` target to which the metrics exporter is going to send metrics.
The endpoint MUST be a valid URL host, and MAY contain a scheme (http or https), port and path.
A scheme of https indicates a secure connection and takes precedence over this configuration setting.
"""
OTEL_EXPORTER_OTLP_LOGS_ENDPOINT = "OTEL_EXPORTER_OTLP_LOGS_ENDPOINT"
"""
.. envvar:: OTEL_EXPORTER_OTLP_LOGS_ENDPOINT
The :envvar:`OTEL_EXPORTER_OTLP_LOGS_ENDPOINT` target to which the log exporter is going to send logs.
The endpoint MUST be a valid URL host, and MAY contain a scheme (http or https), port and path.
A scheme of https indicates a secure connection and takes precedence over this configuration setting.
"""
OTEL_EXPORTER_OTLP_TRACES_CERTIFICATE = "OTEL_EXPORTER_OTLP_TRACES_CERTIFICATE"
"""
.. envvar:: OTEL_EXPORTER_OTLP_TRACES_CERTIFICATE
The :envvar:`OTEL_EXPORTER_OTLP_TRACES_CERTIFICATE` stores the path to the certificate file for
TLS credentials of gRPC client for traces. Should only be used for a secure connection for tracing.
"""
OTEL_EXPORTER_OTLP_METRICS_CERTIFICATE = (
"OTEL_EXPORTER_OTLP_METRICS_CERTIFICATE"
)
"""
.. envvar:: OTEL_EXPORTER_OTLP_METRICS_CERTIFICATE
The :envvar:`OTEL_EXPORTER_OTLP_METRICS_CERTIFICATE` stores the path to the certificate file for
TLS credentials of gRPC client for metrics. Should only be used for a secure connection for exporting metrics.
"""
OTEL_EXPORTER_OTLP_CLIENT_KEY = "OTEL_EXPORTER_OTLP_CLIENT_KEY"
"""
.. envvar:: OTEL_EXPORTER_OTLP_CLIENT_KEY
The :envvar:`OTEL_EXPORTER_OTLP_CLIENT_KEY` stores the path to the client private key to use
in mTLS communication in PEM format.
"""
OTEL_EXPORTER_OTLP_TRACES_CLIENT_KEY = "OTEL_EXPORTER_OTLP_TRACES_CLIENT_KEY"
"""
.. envvar:: OTEL_EXPORTER_OTLP_TRACES_CLIENT_KEY
The :envvar:`OTEL_EXPORTER_OTLP_TRACES_CLIENT_KEY` stores the path to the client private key to use
in mTLS communication in PEM format for traces.
"""
OTEL_EXPORTER_OTLP_METRICS_CLIENT_KEY = "OTEL_EXPORTER_OTLP_METRICS_CLIENT_KEY"
"""
.. envvar:: OTEL_EXPORTER_OTLP_METRICS_CLIENT_KEY
The :envvar:`OTEL_EXPORTER_OTLP_METRICS_CLIENT_KEY` stores the path to the client private key to use
in mTLS communication in PEM format for metrics.
"""
OTEL_EXPORTER_OTLP_LOGS_CLIENT_KEY = "OTEL_EXPORTER_OTLP_LOGS_CLIENT_KEY"
"""
.. envvar:: OTEL_EXPORTER_OTLP_LOGS_CLIENT_KEY
The :envvar:`OTEL_EXPORTER_OTLP_LOGS_CLIENT_KEY` stores the path to the client private key to use
in mTLS communication in PEM format for logs.
"""
OTEL_EXPORTER_OTLP_CLIENT_CERTIFICATE = "OTEL_EXPORTER_OTLP_CLIENT_CERTIFICATE"
"""
.. envvar:: OTEL_EXPORTER_OTLP_CLIENT_CERTIFICATE
The :envvar:`OTEL_EXPORTER_OTLP_CLIENT_CERTIFICATE` stores the path to the client certificate/chain trust for
clients private key to use in mTLS communication in PEM format.
"""
OTEL_EXPORTER_OTLP_TRACES_CLIENT_CERTIFICATE = (
"OTEL_EXPORTER_OTLP_TRACES_CLIENT_CERTIFICATE"
)
"""
.. envvar:: OTEL_EXPORTER_OTLP_TRACES_CLIENT_CERTIFICATE
The :envvar:`OTEL_EXPORTER_OTLP_TRACES_CLIENT_CERTIFICATE` stores the path to the client certificate/chain trust for
clients private key to use in mTLS communication in PEM format for traces.
"""
OTEL_EXPORTER_OTLP_METRICS_CLIENT_CERTIFICATE = (
"OTEL_EXPORTER_OTLP_METRICS_CLIENT_CERTIFICATE"
)
"""
.. envvar:: OTEL_EXPORTER_OTLP_METRICS_CLIENT_CERTIFICATE
The :envvar:`OTEL_EXPORTER_OTLP_METRICS_CLIENT_CERTIFICATE` stores the path to the client certificate/chain trust for
clients private key to use in mTLS communication in PEM format for metrics.
"""
OTEL_EXPORTER_OTLP_LOGS_CLIENT_CERTIFICATE = (
"OTEL_EXPORTER_OTLP_LOGS_CLIENT_CERTIFICATE"
)
"""
.. envvar:: OTEL_EXPORTER_OTLP_LOGS_CLIENT_CERTIFICATE
The :envvar:`OTEL_EXPORTER_OTLP_LOGS_CLIENT_CERTIFICATE` stores the path to the client certificate/chain trust for
clients private key to use in mTLS communication in PEM format for logs.
"""
OTEL_EXPORTER_OTLP_TRACES_HEADERS = "OTEL_EXPORTER_OTLP_TRACES_HEADERS"
"""
.. envvar:: OTEL_EXPORTER_OTLP_TRACES_HEADERS
The :envvar:`OTEL_EXPORTER_OTLP_TRACES_HEADERS` contains the key-value pairs to be used as headers for spans
associated with gRPC or HTTP requests.
"""
OTEL_EXPORTER_OTLP_METRICS_HEADERS = "OTEL_EXPORTER_OTLP_METRICS_HEADERS"
"""
.. envvar:: OTEL_EXPORTER_OTLP_METRICS_HEADERS
The :envvar:`OTEL_EXPORTER_OTLP_METRICS_HEADERS` contains the key-value pairs to be used as headers for metrics
associated with gRPC or HTTP requests.
"""
OTEL_EXPORTER_OTLP_LOGS_HEADERS = "OTEL_EXPORTER_OTLP_LOGS_HEADERS"
"""
.. envvar:: OTEL_EXPORTER_OTLP_LOGS_HEADERS
The :envvar:`OTEL_EXPORTER_OTLP_LOGS_HEADERS` contains the key-value pairs to be used as headers for logs
associated with gRPC or HTTP requests.
"""
OTEL_EXPORTER_OTLP_TRACES_COMPRESSION = "OTEL_EXPORTER_OTLP_TRACES_COMPRESSION"
"""
.. envvar:: OTEL_EXPORTER_OTLP_TRACES_COMPRESSION
Same as :envvar:`OTEL_EXPORTER_OTLP_COMPRESSION` but only for the span
exporter. If both are present, this takes higher precedence.
"""
OTEL_EXPORTER_OTLP_METRICS_COMPRESSION = (
"OTEL_EXPORTER_OTLP_METRICS_COMPRESSION"
)
"""
.. envvar:: OTEL_EXPORTER_OTLP_METRICS_COMPRESSION
Same as :envvar:`OTEL_EXPORTER_OTLP_COMPRESSION` but only for the metric
exporter. If both are present, this takes higher precedence.
"""
OTEL_EXPORTER_OTLP_LOGS_COMPRESSION = "OTEL_EXPORTER_OTLP_LOGS_COMPRESSION"
"""
.. envvar:: OTEL_EXPORTER_OTLP_LOGS_COMPRESSION
Same as :envvar:`OTEL_EXPORTER_OTLP_COMPRESSION` but only for the log
exporter. If both are present, this takes higher precedence.
"""
OTEL_EXPORTER_OTLP_TRACES_TIMEOUT = "OTEL_EXPORTER_OTLP_TRACES_TIMEOUT"
"""
.. envvar:: OTEL_EXPORTER_OTLP_TRACES_TIMEOUT
The :envvar:`OTEL_EXPORTER_OTLP_TRACES_TIMEOUT` is the maximum time the OTLP exporter will
wait for each batch export for spans.
"""
OTEL_EXPORTER_OTLP_METRICS_TIMEOUT = "OTEL_EXPORTER_OTLP_METRICS_TIMEOUT"
"""
.. envvar:: OTEL_EXPORTER_OTLP_METRICS_TIMEOUT
The :envvar:`OTEL_EXPORTER_OTLP_METRICS_TIMEOUT` is the maximum time the OTLP exporter will
wait for each batch export for metrics.
"""
OTEL_EXPORTER_OTLP_METRICS_INSECURE = "OTEL_EXPORTER_OTLP_METRICS_INSECURE"
"""
.. envvar:: OTEL_EXPORTER_OTLP_METRICS_INSECURE
The :envvar:`OTEL_EXPORTER_OTLP_METRICS_INSECURE` represents whether to enable client transport security
for gRPC requests for metrics. A scheme of https takes precedence over the this configuration setting.
Default: False
"""
OTEL_EXPORTER_OTLP_LOGS_INSECURE = "OTEL_EXPORTER_OTLP_LOGS_INSECURE"
"""
.. envvar:: OTEL_EXPORTER_OTLP_LOGS_INSECURE
The :envvar:`OTEL_EXPORTER_OTLP_LOGS_INSECURE` represents whether to enable client transport security
for gRPC requests for logs. A scheme of https takes precedence over the this configuration setting.
Default: False
"""
OTEL_EXPORTER_OTLP_LOGS_CERTIFICATE = "OTEL_EXPORTER_OTLP_LOGS_CERTIFICATE"
"""
.. envvar:: OTEL_EXPORTER_OTLP_LOGS_CERTIFICATE
The :envvar:`OTEL_EXPORTER_OTLP_LOGS_CERTIFICATE` stores the path to the certificate file for
TLS credentials of gRPC client for logs. Should only be used for a secure connection for logs.
"""
OTEL_EXPORTER_OTLP_LOGS_TIMEOUT = "OTEL_EXPORTER_OTLP_LOGS_TIMEOUT"
"""
.. envvar:: OTEL_EXPORTER_OTLP_LOGS_TIMEOUT
The :envvar:`OTEL_EXPORTER_OTLP_LOGS_TIMEOUT` is the maximum time the OTLP exporter will
wait for each batch export for logs.
"""
OTEL_EXPORTER_JAEGER_CERTIFICATE = "OTEL_EXPORTER_JAEGER_CERTIFICATE"
"""
.. envvar:: OTEL_EXPORTER_JAEGER_CERTIFICATE
The :envvar:`OTEL_EXPORTER_JAEGER_CERTIFICATE` stores the path to the certificate file for
TLS credentials of gRPC client for Jaeger. Should only be used for a secure connection with Jaeger.
"""
OTEL_EXPORTER_JAEGER_AGENT_SPLIT_OVERSIZED_BATCHES = (
"OTEL_EXPORTER_JAEGER_AGENT_SPLIT_OVERSIZED_BATCHES"
)
"""
.. envvar:: OTEL_EXPORTER_JAEGER_AGENT_SPLIT_OVERSIZED_BATCHES
The :envvar:`OTEL_EXPORTER_JAEGER_AGENT_SPLIT_OVERSIZED_BATCHES` is a boolean flag to determine whether
to split a large span batch to admire the udp packet size limit.
"""
OTEL_SERVICE_NAME = "OTEL_SERVICE_NAME"
"""
.. envvar:: OTEL_SERVICE_NAME
Convenience environment variable for setting the service name resource attribute.
The following two environment variables have the same effect
.. code-block:: console
OTEL_SERVICE_NAME=my-python-service
OTEL_RESOURCE_ATTRIBUTES=service.name=my-python-service
If both are set, :envvar:`OTEL_SERVICE_NAME` takes precedence.
"""
_OTEL_PYTHON_LOGGING_AUTO_INSTRUMENTATION_ENABLED = (
"OTEL_PYTHON_LOGGING_AUTO_INSTRUMENTATION_ENABLED"
)
"""
.. envvar:: OTEL_PYTHON_LOGGING_AUTO_INSTRUMENTATION_ENABLED
The :envvar:`OTEL_PYTHON_LOGGING_AUTO_INSTRUMENTATION_ENABLED` environment variable allows users to
enable/disable the auto instrumentation for the python logging module.
Default: False
Note: Logs SDK and its related settings are experimental.
"""
OTEL_EXPORTER_OTLP_METRICS_TEMPORALITY_PREFERENCE = (
"OTEL_EXPORTER_OTLP_METRICS_TEMPORALITY_PREFERENCE"
)
"""
.. envvar:: OTEL_EXPORTER_OTLP_METRICS_TEMPORALITY_PREFERENCE
The :envvar:`OTEL_EXPORTER_OTLP_METRICS_TEMPORALITY_PREFERENCE` environment
variable allows users to set the default aggregation temporality policy to use
on the basis of instrument kind. The valid (case-insensitive) values are:
``CUMULATIVE``: Use ``CUMULATIVE`` aggregation temporality for all instrument kinds.
``DELTA``: Use ``DELTA`` aggregation temporality for ``Counter``, ``Asynchronous Counter`` and ``Histogram``.
Use ``CUMULATIVE`` aggregation temporality for ``UpDownCounter`` and ``Asynchronous UpDownCounter``.
``LOWMEMORY``: Use ``DELTA`` aggregation temporality for ``Counter`` and ``Histogram``.
Use ``CUMULATIVE`` aggregation temporality for ``UpDownCounter``, ``AsynchronousCounter`` and ``Asynchronous UpDownCounter``.
"""
OTEL_EXPORTER_JAEGER_GRPC_INSECURE = "OTEL_EXPORTER_JAEGER_GRPC_INSECURE"
"""
.. envvar:: OTEL_EXPORTER_JAEGER_GRPC_INSECURE
The :envvar:`OTEL_EXPORTER_JAEGER_GRPC_INSECURE` is a boolean flag to True if collector has no encryption or authentication.
"""
OTEL_METRIC_EXPORT_INTERVAL = "OTEL_METRIC_EXPORT_INTERVAL"
"""
.. envvar:: OTEL_METRIC_EXPORT_INTERVAL
The :envvar:`OTEL_METRIC_EXPORT_INTERVAL` is the time interval (in milliseconds) between the start of two export attempts.
"""
OTEL_METRIC_EXPORT_TIMEOUT = "OTEL_METRIC_EXPORT_TIMEOUT"
"""
.. envvar:: OTEL_METRIC_EXPORT_TIMEOUT
The :envvar:`OTEL_METRIC_EXPORT_TIMEOUT` is the maximum allowed time (in milliseconds) to export data.
"""
OTEL_METRICS_EXEMPLAR_FILTER = "OTEL_METRICS_EXEMPLAR_FILTER"
"""
.. envvar:: OTEL_METRICS_EXEMPLAR_FILTER
The :envvar:`OTEL_METRICS_EXEMPLAR_FILTER` is the filter for which measurements can become Exemplars.
"""
OTEL_EXPORTER_OTLP_METRICS_DEFAULT_HISTOGRAM_AGGREGATION = (
"OTEL_EXPORTER_OTLP_METRICS_DEFAULT_HISTOGRAM_AGGREGATION"
)
"""
.. envvar:: OTEL_EXPORTER_OTLP_METRICS_DEFAULT_HISTOGRAM_AGGREGATION
The :envvar:`OTEL_EXPORTER_OTLP_METRICS_DEFAULT_HISTOGRAM_AGGREGATION` is the default aggregation to use for histogram instruments.
"""
OTEL_EXPERIMENTAL_RESOURCE_DETECTORS = "OTEL_EXPERIMENTAL_RESOURCE_DETECTORS"
"""
.. envvar:: OTEL_EXPERIMENTAL_RESOURCE_DETECTORS
The :envvar:`OTEL_EXPERIMENTAL_RESOURCE_DETECTORS` is a comma-separated string
of names of resource detectors. These names must be the same as the names of
entry points for the ```opentelemetry_resource_detector``` entry point. This is an
experimental feature and the name of this variable and its behavior can change
in a non-backwards compatible way.
"""
OTEL_EXPORTER_PROMETHEUS_HOST = "OTEL_EXPORTER_PROMETHEUS_HOST"
"""
.. envvar:: OTEL_EXPORTER_PROMETHEUS_HOST
The :envvar:`OTEL_EXPORTER_PROMETHEUS_HOST` environment variable configures the host used by
the Prometheus exporter.
Default: "localhost"
This is an experimental environment variable and the name of this variable and its behavior can
change in a non-backwards compatible way.
"""
OTEL_EXPORTER_PROMETHEUS_PORT = "OTEL_EXPORTER_PROMETHEUS_PORT"
"""
.. envvar:: OTEL_EXPORTER_PROMETHEUS_PORT
The :envvar:`OTEL_EXPORTER_PROMETHEUS_PORT` environment variable configures the port used by
the Prometheus exporter.
Default: 9464
This is an experimental environment variable and the name of this variable and its behavior can
change in a non-backwards compatible way.
"""

View File

@@ -0,0 +1,142 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Global Error Handler
This module provides a global error handler and an interface that allows
error handlers to be registered with the global error handler via entry points.
A default error handler is also provided.
To use this feature, users can create an error handler that is registered
using the ``opentelemetry_error_handler`` entry point. A class is to be
registered in this entry point, this class must inherit from the
``opentelemetry.sdk.error_handler.ErrorHandler`` class and implement the
corresponding ``handle`` method. This method will receive the exception object
that is to be handled. The error handler class should also inherit from the
exception classes it wants to handle. For example, this would be an error
handler that handles ``ZeroDivisionError``:
.. code:: python
from opentelemetry.sdk.error_handler import ErrorHandler
from logging import getLogger
logger = getLogger(__name__)
class ErrorHandler0(ErrorHandler, ZeroDivisionError):
def _handle(self, error: Exception, *args, **kwargs):
logger.exception("ErrorHandler0 handling a ZeroDivisionError")
To use the global error handler, just instantiate it as a context manager where
you want exceptions to be handled:
.. code:: python
from opentelemetry.sdk.error_handler import GlobalErrorHandler
with GlobalErrorHandler():
1 / 0
If the class of the exception raised in the scope of the ``GlobalErrorHandler``
object is not parent of any registered error handler, then the default error
handler will handle the exception. This default error handler will only log the
exception to standard logging, the exception won't be raised any further.
"""
from abc import ABC, abstractmethod
from logging import getLogger
from opentelemetry.util._importlib_metadata import entry_points
logger = getLogger(__name__)
class ErrorHandler(ABC):
@abstractmethod
def _handle(self, error: Exception, *args, **kwargs):
"""
Handle an exception
"""
class _DefaultErrorHandler(ErrorHandler):
"""
Default error handler
This error handler just logs the exception using standard logging.
"""
# pylint: disable=useless-return
def _handle(self, error: Exception, *args, **kwargs):
logger.exception("Error handled by default error handler: ")
return None
class GlobalErrorHandler:
"""
Global error handler
This is a singleton class that can be instantiated anywhere to get the
global error handler. This object provides a handle method that receives
an exception object that will be handled by the registered error handlers.
"""
_instance = None
def __new__(cls) -> "GlobalErrorHandler":
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __enter__(self):
pass
# pylint: disable=no-self-use
def __exit__(self, exc_type, exc_value, traceback):
if exc_value is None:
return None
plugin_handled = False
error_handler_entry_points = entry_points(
group="opentelemetry_error_handler"
)
for error_handler_entry_point in error_handler_entry_points:
error_handler_class = error_handler_entry_point.load()
if issubclass(error_handler_class, exc_value.__class__):
try:
error_handler_class()._handle(exc_value)
plugin_handled = True
# pylint: disable=broad-exception-caught
except Exception as error_handling_error:
logger.exception(
"%s error while handling error %s by error handler %s",
error_handling_error.__class__.__name__,
exc_value.__class__.__name__,
error_handler_class.__name__,
)
if not plugin_handled:
_DefaultErrorHandler()._handle(exc_value)
return True

View File

@@ -0,0 +1,57 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from opentelemetry.sdk.metrics._internal import Meter, MeterProvider
from opentelemetry.sdk.metrics._internal.exceptions import MetricsTimeoutError
from opentelemetry.sdk.metrics._internal.exemplar import (
AlignedHistogramBucketExemplarReservoir,
AlwaysOffExemplarFilter,
AlwaysOnExemplarFilter,
Exemplar,
ExemplarFilter,
ExemplarReservoir,
SimpleFixedSizeExemplarReservoir,
TraceBasedExemplarFilter,
)
from opentelemetry.sdk.metrics._internal.instrument import (
Counter,
Histogram,
ObservableCounter,
ObservableGauge,
ObservableUpDownCounter,
UpDownCounter,
)
from opentelemetry.sdk.metrics._internal.instrument import Gauge as _Gauge
__all__ = [
"AlignedHistogramBucketExemplarReservoir",
"AlwaysOnExemplarFilter",
"AlwaysOffExemplarFilter",
"Exemplar",
"ExemplarFilter",
"ExemplarReservoir",
"Meter",
"MeterProvider",
"MetricsTimeoutError",
"Counter",
"Histogram",
"_Gauge",
"ObservableCounter",
"ObservableGauge",
"ObservableUpDownCounter",
"SimpleFixedSizeExemplarReservoir",
"UpDownCounter",
"TraceBasedExemplarFilter",
]

View File

@@ -0,0 +1,582 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import weakref
from atexit import register, unregister
from logging import getLogger
from os import environ
from threading import Lock
from time import time_ns
from typing import Optional, Sequence
# This kind of import is needed to avoid Sphinx errors.
import opentelemetry.sdk.metrics
from opentelemetry.metrics import Counter as APICounter
from opentelemetry.metrics import Histogram as APIHistogram
from opentelemetry.metrics import Meter as APIMeter
from opentelemetry.metrics import MeterProvider as APIMeterProvider
from opentelemetry.metrics import NoOpMeter
from opentelemetry.metrics import ObservableCounter as APIObservableCounter
from opentelemetry.metrics import ObservableGauge as APIObservableGauge
from opentelemetry.metrics import (
ObservableUpDownCounter as APIObservableUpDownCounter,
)
from opentelemetry.metrics import UpDownCounter as APIUpDownCounter
from opentelemetry.metrics import _Gauge as APIGauge
from opentelemetry.sdk.environment_variables import (
OTEL_METRICS_EXEMPLAR_FILTER,
OTEL_SDK_DISABLED,
)
from opentelemetry.sdk.metrics._internal.exceptions import MetricsTimeoutError
from opentelemetry.sdk.metrics._internal.exemplar import (
AlwaysOffExemplarFilter,
AlwaysOnExemplarFilter,
ExemplarFilter,
TraceBasedExemplarFilter,
)
from opentelemetry.sdk.metrics._internal.instrument import (
_Counter,
_Gauge,
_Histogram,
_ObservableCounter,
_ObservableGauge,
_ObservableUpDownCounter,
_UpDownCounter,
)
from opentelemetry.sdk.metrics._internal.measurement_consumer import (
MeasurementConsumer,
SynchronousMeasurementConsumer,
)
from opentelemetry.sdk.metrics._internal.sdk_configuration import (
SdkConfiguration,
)
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.util.instrumentation import InstrumentationScope
from opentelemetry.util._once import Once
from opentelemetry.util.types import (
Attributes,
)
_logger = getLogger(__name__)
class Meter(APIMeter):
"""See `opentelemetry.metrics.Meter`."""
def __init__(
self,
instrumentation_scope: InstrumentationScope,
measurement_consumer: MeasurementConsumer,
):
super().__init__(
name=instrumentation_scope.name,
version=instrumentation_scope.version,
schema_url=instrumentation_scope.schema_url,
)
self._instrumentation_scope = instrumentation_scope
self._measurement_consumer = measurement_consumer
self._instrument_id_instrument = {}
self._instrument_id_instrument_lock = Lock()
def create_counter(self, name, unit="", description="") -> APICounter:
status = self._register_instrument(name, _Counter, unit, description)
if status.conflict:
# FIXME #2558 go through all views here and check if this
# instrument registration conflict can be fixed. If it can be, do
# not log the following warning.
self._log_instrument_registration_conflict(
name,
APICounter.__name__,
unit,
description,
status,
)
if status.already_registered:
with self._instrument_id_instrument_lock:
return self._instrument_id_instrument[status.instrument_id]
instrument = _Counter(
name,
self._instrumentation_scope,
self._measurement_consumer,
unit,
description,
)
with self._instrument_id_instrument_lock:
self._instrument_id_instrument[status.instrument_id] = instrument
return instrument
def create_up_down_counter(
self, name, unit="", description=""
) -> APIUpDownCounter:
status = self._register_instrument(
name, _UpDownCounter, unit, description
)
if status.conflict:
# FIXME #2558 go through all views here and check if this
# instrument registration conflict can be fixed. If it can be, do
# not log the following warning.
self._log_instrument_registration_conflict(
name,
APIUpDownCounter.__name__,
unit,
description,
status,
)
if status.already_registered:
with self._instrument_id_instrument_lock:
return self._instrument_id_instrument[status.instrument_id]
instrument = _UpDownCounter(
name,
self._instrumentation_scope,
self._measurement_consumer,
unit,
description,
)
with self._instrument_id_instrument_lock:
self._instrument_id_instrument[status.instrument_id] = instrument
return instrument
def create_observable_counter(
self,
name,
callbacks=None,
unit="",
description="",
) -> APIObservableCounter:
status = self._register_instrument(
name, _ObservableCounter, unit, description
)
if status.conflict:
# FIXME #2558 go through all views here and check if this
# instrument registration conflict can be fixed. If it can be, do
# not log the following warning.
self._log_instrument_registration_conflict(
name,
APIObservableCounter.__name__,
unit,
description,
status,
)
if status.already_registered:
with self._instrument_id_instrument_lock:
return self._instrument_id_instrument[status.instrument_id]
instrument = _ObservableCounter(
name,
self._instrumentation_scope,
self._measurement_consumer,
callbacks,
unit,
description,
)
self._measurement_consumer.register_asynchronous_instrument(instrument)
with self._instrument_id_instrument_lock:
self._instrument_id_instrument[status.instrument_id] = instrument
return instrument
def create_histogram(
self,
name: str,
unit: str = "",
description: str = "",
*,
explicit_bucket_boundaries_advisory: Optional[Sequence[float]] = None,
) -> APIHistogram:
if explicit_bucket_boundaries_advisory is not None:
invalid_advisory = False
if isinstance(explicit_bucket_boundaries_advisory, Sequence):
try:
invalid_advisory = not (
all(
isinstance(e, (float, int))
for e in explicit_bucket_boundaries_advisory
)
)
except (KeyError, TypeError):
invalid_advisory = True
else:
invalid_advisory = True
if invalid_advisory:
explicit_bucket_boundaries_advisory = None
_logger.warning(
"explicit_bucket_boundaries_advisory must be a sequence of numbers"
)
status = self._register_instrument(
name,
_Histogram,
unit,
description,
explicit_bucket_boundaries_advisory,
)
if status.conflict:
# FIXME #2558 go through all views here and check if this
# instrument registration conflict can be fixed. If it can be, do
# not log the following warning.
self._log_instrument_registration_conflict(
name,
APIHistogram.__name__,
unit,
description,
status,
)
if status.already_registered:
with self._instrument_id_instrument_lock:
return self._instrument_id_instrument[status.instrument_id]
instrument = _Histogram(
name,
self._instrumentation_scope,
self._measurement_consumer,
unit,
description,
explicit_bucket_boundaries_advisory,
)
with self._instrument_id_instrument_lock:
self._instrument_id_instrument[status.instrument_id] = instrument
return instrument
def create_gauge(self, name, unit="", description="") -> APIGauge:
status = self._register_instrument(name, _Gauge, unit, description)
if status.conflict:
# FIXME #2558 go through all views here and check if this
# instrument registration conflict can be fixed. If it can be, do
# not log the following warning.
self._log_instrument_registration_conflict(
name,
APIGauge.__name__,
unit,
description,
status,
)
if status.already_registered:
with self._instrument_id_instrument_lock:
return self._instrument_id_instrument[status.instrument_id]
instrument = _Gauge(
name,
self._instrumentation_scope,
self._measurement_consumer,
unit,
description,
)
with self._instrument_id_instrument_lock:
self._instrument_id_instrument[status.instrument_id] = instrument
return instrument
def create_observable_gauge(
self, name, callbacks=None, unit="", description=""
) -> APIObservableGauge:
status = self._register_instrument(
name, _ObservableGauge, unit, description
)
if status.conflict:
# FIXME #2558 go through all views here and check if this
# instrument registration conflict can be fixed. If it can be, do
# not log the following warning.
self._log_instrument_registration_conflict(
name,
APIObservableGauge.__name__,
unit,
description,
status,
)
if status.already_registered:
with self._instrument_id_instrument_lock:
return self._instrument_id_instrument[status.instrument_id]
instrument = _ObservableGauge(
name,
self._instrumentation_scope,
self._measurement_consumer,
callbacks,
unit,
description,
)
self._measurement_consumer.register_asynchronous_instrument(instrument)
with self._instrument_id_instrument_lock:
self._instrument_id_instrument[status.instrument_id] = instrument
return instrument
def create_observable_up_down_counter(
self, name, callbacks=None, unit="", description=""
) -> APIObservableUpDownCounter:
status = self._register_instrument(
name, _ObservableUpDownCounter, unit, description
)
if status.conflict:
# FIXME #2558 go through all views here and check if this
# instrument registration conflict can be fixed. If it can be, do
# not log the following warning.
self._log_instrument_registration_conflict(
name,
APIObservableUpDownCounter.__name__,
unit,
description,
status,
)
if status.already_registered:
with self._instrument_id_instrument_lock:
return self._instrument_id_instrument[status.instrument_id]
instrument = _ObservableUpDownCounter(
name,
self._instrumentation_scope,
self._measurement_consumer,
callbacks,
unit,
description,
)
self._measurement_consumer.register_asynchronous_instrument(instrument)
with self._instrument_id_instrument_lock:
self._instrument_id_instrument[status.instrument_id] = instrument
return instrument
def _get_exemplar_filter(exemplar_filter: str) -> ExemplarFilter:
if exemplar_filter == "trace_based":
return TraceBasedExemplarFilter()
if exemplar_filter == "always_on":
return AlwaysOnExemplarFilter()
if exemplar_filter == "always_off":
return AlwaysOffExemplarFilter()
msg = f"Unknown exemplar filter '{exemplar_filter}'."
raise ValueError(msg)
class MeterProvider(APIMeterProvider):
r"""See `opentelemetry.metrics.MeterProvider`.
Args:
metric_readers: Register metric readers to collect metrics from the SDK
on demand. Each :class:`opentelemetry.sdk.metrics.export.MetricReader` is
completely independent and will collect separate streams of
metrics. TODO: reference ``PeriodicExportingMetricReader`` usage with push
exporters here.
resource: The resource representing what the metrics emitted from the SDK pertain to.
shutdown_on_exit: If true, registers an `atexit` handler to call
`MeterProvider.shutdown`
views: The views to configure the metric output the SDK
By default, instruments which do not match any :class:`opentelemetry.sdk.metrics.view.View` (or if no :class:`opentelemetry.sdk.metrics.view.View`\ s
are provided) will report metrics with the default aggregation for the
instrument's kind. To disable instruments by default, configure a match-all
:class:`opentelemetry.sdk.metrics.view.View` with `DropAggregation` and then create :class:`opentelemetry.sdk.metrics.view.View`\ s to re-enable
individual instruments:
.. code-block:: python
:caption: Disable default views
MeterProvider(
views=[
View(instrument_name="*", aggregation=DropAggregation()),
View(instrument_name="mycounter"),
],
# ...
)
"""
_all_metric_readers_lock = Lock()
_all_metric_readers = weakref.WeakSet()
def __init__(
self,
metric_readers: Sequence[
"opentelemetry.sdk.metrics.export.MetricReader"
] = (),
resource: Optional[Resource] = None,
exemplar_filter: Optional[ExemplarFilter] = None,
shutdown_on_exit: bool = True,
views: Sequence["opentelemetry.sdk.metrics.view.View"] = (),
):
self._lock = Lock()
self._meter_lock = Lock()
self._atexit_handler = None
if resource is None:
resource = Resource.create({})
self._sdk_config = SdkConfiguration(
exemplar_filter=(
exemplar_filter
or _get_exemplar_filter(
environ.get(OTEL_METRICS_EXEMPLAR_FILTER, "trace_based")
)
),
resource=resource,
metric_readers=metric_readers,
views=views,
)
self._measurement_consumer = SynchronousMeasurementConsumer(
sdk_config=self._sdk_config
)
disabled = environ.get(OTEL_SDK_DISABLED, "")
self._disabled = disabled.lower().strip() == "true"
if shutdown_on_exit:
self._atexit_handler = register(self.shutdown)
self._meters = {}
self._shutdown_once = Once()
self._shutdown = False
for metric_reader in self._sdk_config.metric_readers:
with self._all_metric_readers_lock:
if metric_reader in self._all_metric_readers:
# pylint: disable=broad-exception-raised
raise Exception(
f"MetricReader {metric_reader} has been registered "
"already in other MeterProvider instance"
)
self._all_metric_readers.add(metric_reader)
metric_reader._set_collect_callback(
self._measurement_consumer.collect
)
def force_flush(self, timeout_millis: float = 10_000) -> bool:
deadline_ns = time_ns() + timeout_millis * 10**6
metric_reader_error = {}
for metric_reader in self._sdk_config.metric_readers:
current_ts = time_ns()
try:
if current_ts >= deadline_ns:
raise MetricsTimeoutError(
"Timed out while flushing metric readers"
)
metric_reader.force_flush(
timeout_millis=(deadline_ns - current_ts) / 10**6
)
# pylint: disable=broad-exception-caught
except Exception as error:
metric_reader_error[metric_reader] = error
if metric_reader_error:
metric_reader_error_string = "\n".join(
[
f"{metric_reader.__class__.__name__}: {repr(error)}"
for metric_reader, error in metric_reader_error.items()
]
)
# pylint: disable=broad-exception-raised
raise Exception(
"MeterProvider.force_flush failed because the following "
"metric readers failed during collect:\n"
f"{metric_reader_error_string}"
)
return True
def shutdown(self, timeout_millis: float = 30_000):
deadline_ns = time_ns() + timeout_millis * 10**6
def _shutdown():
self._shutdown = True
did_shutdown = self._shutdown_once.do_once(_shutdown)
if not did_shutdown:
_logger.warning("shutdown can only be called once")
return
metric_reader_error = {}
for metric_reader in self._sdk_config.metric_readers:
current_ts = time_ns()
try:
if current_ts >= deadline_ns:
# pylint: disable=broad-exception-raised
raise Exception(
"Didn't get to execute, deadline already exceeded"
)
metric_reader.shutdown(
timeout_millis=(deadline_ns - current_ts) / 10**6
)
# pylint: disable=broad-exception-caught
except Exception as error:
metric_reader_error[metric_reader] = error
if self._atexit_handler is not None:
unregister(self._atexit_handler)
self._atexit_handler = None
if metric_reader_error:
metric_reader_error_string = "\n".join(
[
f"{metric_reader.__class__.__name__}: {repr(error)}"
for metric_reader, error in metric_reader_error.items()
]
)
# pylint: disable=broad-exception-raised
raise Exception(
(
"MeterProvider.shutdown failed because the following "
"metric readers failed during shutdown:\n"
f"{metric_reader_error_string}"
)
)
def get_meter(
self,
name: str,
version: Optional[str] = None,
schema_url: Optional[str] = None,
attributes: Optional[Attributes] = None,
) -> Meter:
if self._disabled:
return NoOpMeter(name, version=version, schema_url=schema_url)
if self._shutdown:
_logger.warning(
"A shutdown `MeterProvider` can not provide a `Meter`"
)
return NoOpMeter(name, version=version, schema_url=schema_url)
if not name:
_logger.warning("Meter name cannot be None or empty.")
return NoOpMeter(name, version=version, schema_url=schema_url)
info = InstrumentationScope(name, version, schema_url, attributes)
with self._meter_lock:
if not self._meters.get(info):
# FIXME #2558 pass SDKConfig object to meter so that the meter
# has access to views.
self._meters[info] = Meter(
info,
self._measurement_consumer,
)
return self._meters[info]

View File

@@ -0,0 +1,153 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from logging import getLogger
from threading import Lock
from time import time_ns
from typing import Dict, List, Optional, Sequence
from opentelemetry.metrics import Instrument
from opentelemetry.sdk.metrics._internal.aggregation import (
Aggregation,
DefaultAggregation,
_Aggregation,
_SumAggregation,
)
from opentelemetry.sdk.metrics._internal.export import AggregationTemporality
from opentelemetry.sdk.metrics._internal.measurement import Measurement
from opentelemetry.sdk.metrics._internal.point import DataPointT
from opentelemetry.sdk.metrics._internal.view import View
_logger = getLogger(__name__)
class _ViewInstrumentMatch:
def __init__(
self,
view: View,
instrument: Instrument,
instrument_class_aggregation: Dict[type, Aggregation],
):
self._view = view
self._instrument = instrument
self._attributes_aggregation: Dict[frozenset, _Aggregation] = {}
self._lock = Lock()
self._instrument_class_aggregation = instrument_class_aggregation
self._name = self._view._name or self._instrument.name
self._description = (
self._view._description or self._instrument.description
)
if not isinstance(self._view._aggregation, DefaultAggregation):
self._aggregation = self._view._aggregation._create_aggregation(
self._instrument,
None,
self._view._exemplar_reservoir_factory,
0,
)
else:
self._aggregation = self._instrument_class_aggregation[
self._instrument.__class__
]._create_aggregation(
self._instrument,
None,
self._view._exemplar_reservoir_factory,
0,
)
def conflicts(self, other: "_ViewInstrumentMatch") -> bool:
# pylint: disable=protected-access
result = (
self._name == other._name
and self._instrument.unit == other._instrument.unit
# The aggregation class is being used here instead of data point
# type since they are functionally equivalent.
and self._aggregation.__class__ == other._aggregation.__class__
)
if isinstance(self._aggregation, _SumAggregation):
result = (
result
and self._aggregation._instrument_is_monotonic
== other._aggregation._instrument_is_monotonic
and self._aggregation._instrument_aggregation_temporality
== other._aggregation._instrument_aggregation_temporality
)
return result
# pylint: disable=protected-access
def consume_measurement(
self, measurement: Measurement, should_sample_exemplar: bool = True
) -> None:
if self._view._attribute_keys is not None:
attributes = {}
for key, value in (measurement.attributes or {}).items():
if key in self._view._attribute_keys:
attributes[key] = value
elif measurement.attributes is not None:
attributes = measurement.attributes
else:
attributes = {}
aggr_key = frozenset(attributes.items())
if aggr_key not in self._attributes_aggregation:
with self._lock:
if aggr_key not in self._attributes_aggregation:
if not isinstance(
self._view._aggregation, DefaultAggregation
):
aggregation = (
self._view._aggregation._create_aggregation(
self._instrument,
attributes,
self._view._exemplar_reservoir_factory,
time_ns(),
)
)
else:
aggregation = self._instrument_class_aggregation[
self._instrument.__class__
]._create_aggregation(
self._instrument,
attributes,
self._view._exemplar_reservoir_factory,
time_ns(),
)
self._attributes_aggregation[aggr_key] = aggregation
self._attributes_aggregation[aggr_key].aggregate(
measurement, should_sample_exemplar
)
def collect(
self,
collection_aggregation_temporality: AggregationTemporality,
collection_start_nanos: int,
) -> Optional[Sequence[DataPointT]]:
data_points: List[DataPointT] = []
with self._lock:
for aggregation in self._attributes_aggregation.values():
data_point = aggregation.collect(
collection_aggregation_temporality, collection_start_nanos
)
if data_point is not None:
data_points.append(data_point)
# Returning here None instead of an empty list because the caller
# does not consume a sequence and to be consistent with the rest of
# collect methods that also return None.
return data_points or None

View File

@@ -0,0 +1,17 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class MetricsTimeoutError(Exception):
"""Raised when a metrics function times out"""

View File

@@ -0,0 +1,39 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .exemplar import Exemplar
from .exemplar_filter import (
AlwaysOffExemplarFilter,
AlwaysOnExemplarFilter,
ExemplarFilter,
TraceBasedExemplarFilter,
)
from .exemplar_reservoir import (
AlignedHistogramBucketExemplarReservoir,
ExemplarReservoir,
ExemplarReservoirBuilder,
SimpleFixedSizeExemplarReservoir,
)
__all__ = [
"Exemplar",
"ExemplarFilter",
"AlwaysOffExemplarFilter",
"AlwaysOnExemplarFilter",
"TraceBasedExemplarFilter",
"AlignedHistogramBucketExemplarReservoir",
"ExemplarReservoir",
"ExemplarReservoirBuilder",
"SimpleFixedSizeExemplarReservoir",
]

View File

@@ -0,0 +1,50 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
from typing import Optional, Union
from opentelemetry.util.types import Attributes
@dataclasses.dataclass(frozen=True)
class Exemplar:
"""A representation of an exemplar, which is a sample input measurement.
Exemplars also hold information about the environment when the measurement
was recorded, for example the span and trace ID of the active span when the
exemplar was recorded.
Attributes
trace_id: (optional) The trace associated with a recording
span_id: (optional) The span associated with a recording
time_unix_nano: The time of the observation
value: The recorded value
filtered_attributes: A set of filtered attributes which provide additional insight into the Context when the observation was made.
References:
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/data-model.md#exemplars
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#exemplar
"""
# TODO Fix doc - if using valid Google `Attributes:` key, the attributes are duplicated
# one will come from napoleon extension and the other from autodoc extension. This
# will raise an sphinx error of duplicated object description
# See https://github.com/sphinx-doc/sphinx/issues/8664
filtered_attributes: Attributes
value: Union[int, float]
time_unix_nano: int
span_id: Optional[int] = None
trace_id: Optional[int] = None

View File

@@ -0,0 +1,134 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
from typing import Union
from opentelemetry import trace
from opentelemetry.context import Context
from opentelemetry.trace.span import INVALID_SPAN
from opentelemetry.util.types import Attributes
class ExemplarFilter(ABC):
"""``ExemplarFilter`` determines which measurements are eligible for becoming an
``Exemplar``.
Exemplar filters are used to filter measurements before attempting to store them
in a reservoir.
Reference:
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#exemplarfilter
"""
@abstractmethod
def should_sample(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> bool:
"""Returns whether or not a reservoir should attempt to filter a measurement.
Args:
value: The value of the measurement
timestamp: A timestamp that best represents when the measurement was taken
attributes: The complete set of measurement attributes
context: The Context of the measurement
"""
raise NotImplementedError(
"ExemplarFilter.should_sample is not implemented"
)
class AlwaysOnExemplarFilter(ExemplarFilter):
"""An ExemplarFilter which makes all measurements eligible for being an Exemplar.
Reference:
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#alwayson
"""
def should_sample(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> bool:
"""Returns whether or not a reservoir should attempt to filter a measurement.
Args:
value: The value of the measurement
timestamp: A timestamp that best represents when the measurement was taken
attributes: The complete set of measurement attributes
context: The Context of the measurement
"""
return True
class AlwaysOffExemplarFilter(ExemplarFilter):
"""An ExemplarFilter which makes no measurements eligible for being an Exemplar.
Using this ExemplarFilter is as good as disabling Exemplar feature.
Reference:
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#alwaysoff
"""
def should_sample(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> bool:
"""Returns whether or not a reservoir should attempt to filter a measurement.
Args:
value: The value of the measurement
timestamp: A timestamp that best represents when the measurement was taken
attributes: The complete set of measurement attributes
context: The Context of the measurement
"""
return False
class TraceBasedExemplarFilter(ExemplarFilter):
"""An ExemplarFilter which makes those measurements eligible for being an Exemplar,
which are recorded in the context of a sampled parent span.
Reference:
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#tracebased
"""
def should_sample(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> bool:
"""Returns whether or not a reservoir should attempt to filter a measurement.
Args:
value: The value of the measurement
timestamp: A timestamp that best represents when the measurement was taken
attributes: The complete set of measurement attributes
context: The Context of the measurement
"""
span = trace.get_current_span(context)
if span == INVALID_SPAN:
return False
return span.get_span_context().trace_flags.sampled

View File

@@ -0,0 +1,332 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
from collections import defaultdict
from random import randrange
from typing import (
Any,
Callable,
Dict,
List,
Mapping,
Optional,
Sequence,
Union,
)
from opentelemetry import trace
from opentelemetry.context import Context
from opentelemetry.trace.span import INVALID_SPAN
from opentelemetry.util.types import Attributes
from .exemplar import Exemplar
class ExemplarReservoir(ABC):
"""ExemplarReservoir provide a method to offer measurements to the reservoir
and another to collect accumulated Exemplars.
Note:
The constructor MUST accept ``**kwargs`` that may be set from aggregation
parameters.
Reference:
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#exemplarreservoir
"""
@abstractmethod
def offer(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> None:
"""Offers a measurement to be sampled.
Args:
value: Measured value
time_unix_nano: Measurement instant
attributes: Measurement attributes
context: Measurement context
"""
raise NotImplementedError("ExemplarReservoir.offer is not implemented")
@abstractmethod
def collect(self, point_attributes: Attributes) -> List[Exemplar]:
"""Returns accumulated Exemplars and also resets the reservoir for the next
sampling period
Args:
point_attributes: The attributes associated with metric point.
Returns:
a list of ``opentelemetry.sdk.metrics._internal.exemplar.exemplar.Exemplar`` s. Returned
exemplars contain the attributes that were filtered out by the aggregator,
but recorded alongside the original measurement.
"""
raise NotImplementedError(
"ExemplarReservoir.collect is not implemented"
)
class ExemplarBucket:
def __init__(self) -> None:
self.__value: Union[int, float] = 0
self.__attributes: Attributes = None
self.__time_unix_nano: int = 0
self.__span_id: Optional[int] = None
self.__trace_id: Optional[int] = None
self.__offered: bool = False
def offer(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> None:
"""Offers a measurement to be sampled.
Args:
value: Measured value
time_unix_nano: Measurement instant
attributes: Measurement attributes
context: Measurement context
"""
self.__value = value
self.__time_unix_nano = time_unix_nano
self.__attributes = attributes
span = trace.get_current_span(context)
if span != INVALID_SPAN:
span_context = span.get_span_context()
self.__span_id = span_context.span_id
self.__trace_id = span_context.trace_id
self.__offered = True
def collect(self, point_attributes: Attributes) -> Optional[Exemplar]:
"""May return an Exemplar and resets the bucket for the next sampling period."""
if not self.__offered:
return None
# filters out attributes from the measurement that are already included in the metric data point
# See the specification for more details:
# https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#exemplar
filtered_attributes = (
{
k: v
for k, v in self.__attributes.items()
if k not in point_attributes
}
if self.__attributes
else None
)
exemplar = Exemplar(
filtered_attributes,
self.__value,
self.__time_unix_nano,
self.__span_id,
self.__trace_id,
)
self.__reset()
return exemplar
def __reset(self) -> None:
"""Reset the bucket state after a collection cycle."""
self.__value = 0
self.__attributes = {}
self.__time_unix_nano = 0
self.__span_id = None
self.__trace_id = None
self.__offered = False
class BucketIndexError(ValueError):
"""An exception raised when the bucket index cannot be found."""
class FixedSizeExemplarReservoirABC(ExemplarReservoir):
"""Abstract class for a reservoir with fixed size."""
def __init__(self, size: int, **kwargs) -> None:
super().__init__(**kwargs)
self._size: int = size
self._reservoir_storage: Mapping[int, ExemplarBucket] = defaultdict(
ExemplarBucket
)
def collect(self, point_attributes: Attributes) -> List[Exemplar]:
"""Returns accumulated Exemplars and also resets the reservoir for the next
sampling period
Args:
point_attributes: The attributes associated with metric point.
Returns:
a list of ``opentelemetry.sdk.metrics._internal.exemplar.exemplar.Exemplar`` s. Returned
exemplars contain the attributes that were filtered out by the aggregator,
but recorded alongside the original measurement.
"""
exemplars = [
e
for e in (
bucket.collect(point_attributes)
for _, bucket in sorted(self._reservoir_storage.items())
)
if e is not None
]
self._reset()
return exemplars
def offer(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> None:
"""Offers a measurement to be sampled.
Args:
value: Measured value
time_unix_nano: Measurement instant
attributes: Measurement attributes
context: Measurement context
"""
try:
index = self._find_bucket_index(
value, time_unix_nano, attributes, context
)
self._reservoir_storage[index].offer(
value, time_unix_nano, attributes, context
)
except BucketIndexError:
# Ignore invalid bucket index
pass
@abstractmethod
def _find_bucket_index(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> int:
"""Determines the bucket index for the given measurement.
It should be implemented by subclasses based on specific strategies.
Args:
value: Measured value
time_unix_nano: Measurement instant
attributes: Measurement attributes
context: Measurement context
Returns:
The bucket index
Raises:
BucketIndexError: If no bucket index can be found.
"""
def _reset(self) -> None:
"""Reset the reservoir by resetting any stateful logic after a collection cycle."""
class SimpleFixedSizeExemplarReservoir(FixedSizeExemplarReservoirABC):
"""This reservoir uses an uniformly-weighted sampling algorithm based on the number
of samples the reservoir has seen so far to determine if the offered measurements
should be sampled.
Reference:
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#simplefixedsizeexemplarreservoir
"""
def __init__(self, size: int = 1, **kwargs) -> None:
super().__init__(size, **kwargs)
self._measurements_seen: int = 0
def _reset(self) -> None:
super()._reset()
self._measurements_seen = 0
def _find_bucket_index(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> int:
self._measurements_seen += 1
if self._measurements_seen < self._size:
return self._measurements_seen - 1
index = randrange(0, self._measurements_seen)
if index < self._size:
return index
raise BucketIndexError("Unable to find the bucket index.")
class AlignedHistogramBucketExemplarReservoir(FixedSizeExemplarReservoirABC):
"""This Exemplar reservoir takes a configuration parameter that is the
configuration of a Histogram. This implementation keeps the last seen measurement
that falls within a histogram bucket.
Reference:
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#alignedhistogrambucketexemplarreservoir
"""
def __init__(self, boundaries: Sequence[float], **kwargs) -> None:
super().__init__(len(boundaries) + 1, **kwargs)
self._boundaries: Sequence[float] = boundaries
def offer(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> None:
"""Offers a measurement to be sampled."""
index = self._find_bucket_index(
value, time_unix_nano, attributes, context
)
self._reservoir_storage[index].offer(
value, time_unix_nano, attributes, context
)
def _find_bucket_index(
self,
value: Union[int, float],
time_unix_nano: int,
attributes: Attributes,
context: Context,
) -> int:
for index, boundary in enumerate(self._boundaries):
if value <= boundary:
return index
return len(self._boundaries)
ExemplarReservoirBuilder = Callable[[Dict[str, Any]], ExemplarReservoir]
ExemplarReservoirBuilder.__doc__ = """ExemplarReservoir builder.
It may receive the Aggregation parameters it is bounded to; e.g.
the _ExplicitBucketHistogramAggregation will provide the boundaries.
"""

View File

@@ -0,0 +1,190 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from math import ceil, log2
class Buckets:
# No method of this class is protected by locks because instances of this
# class are only used in methods that are protected by locks themselves.
def __init__(self):
self._counts = [0]
# The term index refers to the number of the exponential histogram bucket
# used to determine its boundaries. The lower boundary of a bucket is
# determined by base ** index and the upper boundary of a bucket is
# determined by base ** (index + 1). index values are signedto account
# for values less than or equal to 1.
# self._index_* will all have values equal to a certain index that is
# determined by the corresponding mapping _map_to_index function and
# the value of the index depends on the value passed to _map_to_index.
# Index of the 0th position in self._counts: self._counts[0] is the
# count in the bucket with index self.__index_base.
self.__index_base = 0
# self.__index_start is the smallest index value represented in
# self._counts.
self.__index_start = 0
# self.__index_start is the largest index value represented in
# self._counts.
self.__index_end = 0
@property
def index_start(self) -> int:
return self.__index_start
@index_start.setter
def index_start(self, value: int) -> None:
self.__index_start = value
@property
def index_end(self) -> int:
return self.__index_end
@index_end.setter
def index_end(self, value: int) -> None:
self.__index_end = value
@property
def index_base(self) -> int:
return self.__index_base
@index_base.setter
def index_base(self, value: int) -> None:
self.__index_base = value
@property
def counts(self):
return self._counts
def get_offset_counts(self):
bias = self.__index_base - self.__index_start
return self._counts[-bias:] + self._counts[:-bias]
def grow(self, needed: int, max_size: int) -> None:
size = len(self._counts)
bias = self.__index_base - self.__index_start
old_positive_limit = size - bias
# 2 ** ceil(log2(needed)) finds the smallest power of two that is larger
# or equal than needed:
# 2 ** ceil(log2(1)) == 1
# 2 ** ceil(log2(2)) == 2
# 2 ** ceil(log2(3)) == 4
# 2 ** ceil(log2(4)) == 4
# 2 ** ceil(log2(5)) == 8
# 2 ** ceil(log2(6)) == 8
# 2 ** ceil(log2(7)) == 8
# 2 ** ceil(log2(8)) == 8
new_size = min(2 ** ceil(log2(needed)), max_size)
new_positive_limit = new_size - bias
tmp = [0] * new_size
tmp[new_positive_limit:] = self._counts[old_positive_limit:]
tmp[0:old_positive_limit] = self._counts[0:old_positive_limit]
self._counts = tmp
@property
def offset(self) -> int:
return self.__index_start
def __len__(self) -> int:
if len(self._counts) == 0:
return 0
if self.__index_end == self.__index_start and self[0] == 0:
return 0
return self.__index_end - self.__index_start + 1
def __getitem__(self, key: int) -> int:
bias = self.__index_base - self.__index_start
if key < bias:
key += len(self._counts)
key -= bias
return self._counts[key]
def downscale(self, amount: int) -> None:
"""
Rotates, then collapses 2 ** amount to 1 buckets.
"""
bias = self.__index_base - self.__index_start
if bias != 0:
self.__index_base = self.__index_start
# [0, 1, 2, 3, 4] Original backing array
self._counts = self._counts[::-1]
# [4, 3, 2, 1, 0]
self._counts = (
self._counts[:bias][::-1] + self._counts[bias:][::-1]
)
# [3, 4, 0, 1, 2] This is a rotation of the backing array.
size = 1 + self.__index_end - self.__index_start
each = 1 << amount
inpos = 0
outpos = 0
pos = self.__index_start
while pos <= self.__index_end:
mod = pos % each
if mod < 0:
mod += each
index = mod
while index < each and inpos < size:
if outpos != inpos:
self._counts[outpos] += self._counts[inpos]
self._counts[inpos] = 0
inpos += 1
pos += 1
index += 1
outpos += 1
self.__index_start >>= amount
self.__index_end >>= amount
self.__index_base = self.__index_start
def increment_bucket(self, bucket_index: int, increment: int = 1) -> None:
self._counts[bucket_index] += increment
def copy_empty(self) -> "Buckets":
copy = Buckets()
# pylint: disable=no-member
# pylint: disable=protected-access
# pylint: disable=attribute-defined-outside-init
# pylint: disable=invalid-name
copy._Buckets__index_base = self._Buckets__index_base
copy._Buckets__index_start = self._Buckets__index_start
copy._Buckets__index_end = self._Buckets__index_end
copy._counts = [0 for _ in self._counts]
return copy

View File

@@ -0,0 +1,98 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
class Mapping(ABC):
"""
Parent class for `LogarithmMapping` and `ExponentialMapping`.
"""
# pylint: disable=no-member
def __new__(cls, scale: int):
with cls._mappings_lock:
# cls._mappings and cls._mappings_lock are implemented in each of
# the child classes as a dictionary and a lock, respectively. They
# are not instantiated here because that would lead to both child
# classes having the same instance of cls._mappings and
# cls._mappings_lock.
if scale not in cls._mappings:
cls._mappings[scale] = super().__new__(cls)
cls._mappings[scale]._init(scale)
return cls._mappings[scale]
@abstractmethod
def _init(self, scale: int) -> None:
# pylint: disable=attribute-defined-outside-init
if scale > self._get_max_scale():
# pylint: disable=broad-exception-raised
raise Exception(f"scale is larger than {self._max_scale}")
if scale < self._get_min_scale():
# pylint: disable=broad-exception-raised
raise Exception(f"scale is smaller than {self._min_scale}")
# The size of the exponential histogram buckets is determined by a
# parameter known as scale, larger values of scale will produce smaller
# buckets. Bucket boundaries of the exponential histogram are located
# at integer powers of the base, where:
#
# base = 2 ** (2 ** (-scale))
# https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/data-model.md#all-scales-use-the-logarithm-function
self._scale = scale
@abstractmethod
def _get_min_scale(self) -> int:
"""
Return the smallest possible value for the mapping scale
"""
@abstractmethod
def _get_max_scale(self) -> int:
"""
Return the largest possible value for the mapping scale
"""
@abstractmethod
def map_to_index(self, value: float) -> int:
"""
Maps positive floating point values to indexes corresponding to
`Mapping.scale`. Implementations are not expected to handle zeros,
+inf, NaN, or negative values.
"""
@abstractmethod
def get_lower_boundary(self, index: int) -> float:
"""
Returns the lower boundary of a given bucket index. The index is
expected to map onto a range that is at least partially inside the
range of normal floating point values. If the corresponding
bucket's upper boundary is less than or equal to 2 ** -1022,
:class:`~opentelemetry.sdk.metrics.MappingUnderflowError`
will be raised. If the corresponding bucket's lower boundary is greater
than ``sys.float_info.max``,
:class:`~opentelemetry.sdk.metrics.MappingOverflowError`
will be raised.
"""
@property
def scale(self) -> int:
"""
Returns the parameter that controls the resolution of this mapping.
See: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/datamodel.md#exponential-scale
"""
return self._scale

View File

@@ -0,0 +1,26 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class MappingUnderflowError(Exception):
"""
Raised when computing the lower boundary of an index that maps into a
denormal floating point value.
"""
class MappingOverflowError(Exception):
"""
Raised when computing the lower boundary of an index that maps into +inf.
"""

View File

@@ -0,0 +1,141 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from math import ldexp
from threading import Lock
from opentelemetry.sdk.metrics._internal.exponential_histogram.mapping import (
Mapping,
)
from opentelemetry.sdk.metrics._internal.exponential_histogram.mapping.errors import (
MappingOverflowError,
MappingUnderflowError,
)
from opentelemetry.sdk.metrics._internal.exponential_histogram.mapping.ieee_754 import (
MANTISSA_WIDTH,
MAX_NORMAL_EXPONENT,
MIN_NORMAL_EXPONENT,
MIN_NORMAL_VALUE,
get_ieee_754_exponent,
get_ieee_754_mantissa,
)
class ExponentMapping(Mapping):
# Reference implementation here:
# https://github.com/open-telemetry/opentelemetry-go/blob/0e6f9c29c10d6078e8131418e1d1d166c7195d61/sdk/metric/aggregator/exponential/mapping/exponent/exponent.go
_mappings = {}
_mappings_lock = Lock()
_min_scale = -10
_max_scale = 0
def _get_min_scale(self):
# _min_scale defines the point at which the exponential mapping
# function becomes useless for 64-bit floats. With scale -10, ignoring
# subnormal values, bucket indices range from -1 to 1.
return -10
def _get_max_scale(self):
# _max_scale is the largest scale supported by exponential mapping. Use
# a logarithm mapping for larger scales.
return 0
def _init(self, scale: int):
# pylint: disable=attribute-defined-outside-init
super()._init(scale)
# self._min_normal_lower_boundary_index is the largest index such that
# base ** index < MIN_NORMAL_VALUE and
# base ** (index + 1) >= MIN_NORMAL_VALUE. An exponential histogram
# bucket with this index covers the range
# (base ** index, base (index + 1)], including MIN_NORMAL_VALUE. This
# is the smallest valid index that contains at least one normal value.
index = MIN_NORMAL_EXPONENT >> -self._scale
if -self._scale < 2:
# For scales -1 and 0, the maximum value 2 ** -1022 is a
# power-of-two multiple, meaning base ** index == MIN_NORMAL_VALUE.
# Subtracting 1 so that base ** (index + 1) == MIN_NORMAL_VALUE.
index -= 1
self._min_normal_lower_boundary_index = index
# self._max_normal_lower_boundary_index is the index such that
# base**index equals the greatest representable lower boundary. An
# exponential histogram bucket with this index covers the range
# ((2 ** 1024) / base, 2 ** 1024], which includes opentelemetry.sdk.
# metrics._internal.exponential_histogram.ieee_754.MAX_NORMAL_VALUE.
# This bucket is incomplete, since the upper boundary cannot be
# represented. One greater than this index corresponds with the bucket
# containing values > 2 ** 1024.
self._max_normal_lower_boundary_index = (
MAX_NORMAL_EXPONENT >> -self._scale
)
def map_to_index(self, value: float) -> int:
if value < MIN_NORMAL_VALUE:
return self._min_normal_lower_boundary_index
exponent = get_ieee_754_exponent(value)
# Positive integers are represented in binary as having an infinite
# amount of leading zeroes, for example 2 is represented as ...00010.
# A negative integer -x is represented in binary as the complement of
# (x - 1). For example, -4 is represented as the complement of 4 - 1
# == 3. 3 is represented as ...00011. Its compliment is ...11100, the
# binary representation of -4.
# get_ieee_754_mantissa(value) gets the positive integer made up
# from the rightmost MANTISSA_WIDTH bits (the mantissa) of the IEEE
# 754 representation of value. If value is an exact power of 2, all
# these MANTISSA_WIDTH bits would be all zeroes, and when 1 is
# subtracted the resulting value is -1. The binary representation of
# -1 is ...111, so when these bits are right shifted MANTISSA_WIDTH
# places, the resulting value for correction is -1. If value is not an
# exact power of 2, at least one of the rightmost MANTISSA_WIDTH
# bits would be 1 (even for values whose decimal part is 0, like 5.0
# since the IEEE 754 of such number is too the product of a power of 2
# (defined in the exponent part of the IEEE 754 representation) and the
# value defined in the mantissa). Having at least one of the rightmost
# MANTISSA_WIDTH bit being 1 means that get_ieee_754(value) will
# always be greater or equal to 1, and when 1 is subtracted, the
# result will be greater or equal to 0, whose representation in binary
# will be of at most MANTISSA_WIDTH ones that have an infinite
# amount of leading zeroes. When those MANTISSA_WIDTH bits are
# shifted to the right MANTISSA_WIDTH places, the resulting value
# will be 0.
# In summary, correction will be -1 if value is a power of 2, 0 if not.
# FIXME Document why we can assume value will not be 0, inf, or NaN.
correction = (get_ieee_754_mantissa(value) - 1) >> MANTISSA_WIDTH
return (exponent + correction) >> -self._scale
def get_lower_boundary(self, index: int) -> float:
if index < self._min_normal_lower_boundary_index:
raise MappingUnderflowError()
if index > self._max_normal_lower_boundary_index:
raise MappingOverflowError()
return ldexp(1, index << -self._scale)
@property
def scale(self) -> int:
return self._scale

View File

@@ -0,0 +1,175 @@
# IEEE 754 Explained
IEEE 754 is a standard that defines a way to represent certain mathematical
objects using binary numbers.
## Binary Number Fields
The binary numbers used in IEEE 754 can have different lengths, the length that
is interesting for the purposes of this project is 64 bits. These binary
numbers are made up of 3 contiguous fields of bits, from left to right:
1. 1 sign bit
2. 11 exponent bits
3. 52 mantissa bits
Depending on the values these fields have, the represented mathematical object
can be one of:
* Floating point number
* Zero
* NaN
* Infinite
## Floating Point Numbers
IEEE 754 represents a floating point number $f$ using an exponential
notation with 4 components: $sign$, $mantissa$, $base$ and $exponent$:
$$f = sign \times mantissa \times base ^ {exponent}$$
There are two possible representations of floating point numbers:
_normal_ and _denormal_, which have different valid values for
their $mantissa$ and $exponent$ fields.
### Binary Representation
$sign$, $mantissa$, and $exponent$ are represented in binary, the
representation of each component has certain details explained next.
$base$ is always $2$ and it is not represented in binary.
#### Sign
$sign$ can have 2 values:
1. $1$ if the `sign` bit is `0`
2. $-1$ if the `sign` bit is `1`.
#### Mantissa
##### Normal Floating Point Numbers
$mantissa$ is a positive fractional number whose integer part is $1$, for example
$1.2345 \dots$. The `mantissa` bits represent only the fractional part and the
$mantissa$ value can be calculated as:
$$mantissa = 1 + \sum_{i=1}^{52} b_{i} \times 2^{-i} = 1 + \frac{b_{1}}{2^{1}} + \frac{b_{2}}{2^{2}} + \dots + \frac{b_{51}}{2^{51}} + \frac{b_{52}}{2^{52}}$$
Where $b_{i}$ is:
1. $0$ if the bit at the position `i - 1` is `0`.
2. $1$ if the bit at the position `i - 1` is `1`.
##### Denormal Floating Point Numbers
$mantissa$ is a positive fractional number whose integer part is $0$, for example
$0.12345 \dots$. The `mantissa` bits represent only the fractional part and the
$mantissa$ value can be calculated as:
$$mantissa = \sum_{i=1}^{52} b_{i} \times 2^{-i} = \frac{b_{1}}{2^{1}} + \frac{b_{2}}{2^{2}} + \dots + \frac{b_{51}}{2^{51}} + \frac{b_{52}}{2^{52}}$$
Where $b_{i}$ is:
1. $0$ if the bit at the position `i - 1` is `0`.
2. $1$ if the bit at the position `i - 1` is `1`.
#### Exponent
##### Normal Floating Point Numbers
Only the following bit sequences are allowed: `00000000001` to `11111111110`.
That is, there must be at least one `0` and one `1` in the exponent bits.
The actual value of the $exponent$ can be calculated as:
$$exponent = v - bias$$
where $v$ is the value of the binary number in the exponent bits and $bias$ is $1023$.
Considering the restrictions above, the respective minimum and maximum values for the
exponent are:
1. `00000000001` = $1$, $1 - 1023 = -1022$
2. `11111111110` = $2046$, $2046 - 1023 = 1023$
So, $exponent$ is an integer in the range $\left[-1022, 1023\right]$.
##### Denormal Floating Point Numbers
$exponent$ is always $-1022$. Nevertheless, it is always represented as `00000000000`.
### Normal and Denormal Floating Point Numbers
The smallest absolute value a normal floating point number can have is calculated
like this:
$$1 \times 1.0\dots0 \times 2^{-1022} = 2.2250738585072014 \times 10^{-308}$$
Since normal floating point numbers always have a $1$ as the integer part of the
$mantissa$, then smaller values can be achieved by using the smallest possible exponent
( $-1022$ ) and a $0$ in the integer part of the $mantissa$, but significant digits are lost.
The smallest absolute value a denormal floating point number can have is calculated
like this:
$$1 \times 2^{-52} \times 2^{-1022} = 5 \times 10^{-324}$$
## Zero
Zero is represented like this:
* Sign bit: `X`
* Exponent bits: `00000000000`
* Mantissa bits: `0000000000000000000000000000000000000000000000000000`
where `X` means `0` or `1`.
## NaN
There are 2 kinds of NaNs that are represented:
1. QNaNs (Quiet NaNs): represent the result of indeterminate operations.
2. SNaNs (Signalling NaNs): represent the result of invalid operations.
### QNaNs
QNaNs are represented like this:
* Sign bit: `X`
* Exponent bits: `11111111111`
* Mantissa bits: `1XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX`
where `X` means `0` or `1`.
### SNaNs
SNaNs are represented like this:
* Sign bit: `X`
* Exponent bits: `11111111111`
* Mantissa bits: `0XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX1`
where `X` means `0` or `1`.
## Infinite
### Positive Infinite
Positive infinite is represented like this:
* Sign bit: `0`
* Exponent bits: `11111111111`
* Mantissa bits: `0000000000000000000000000000000000000000000000000000`
where `X` means `0` or `1`.
### Negative Infinite
Negative infinite is represented like this:
* Sign bit: `1`
* Exponent bits: `11111111111`
* Mantissa bits: `0000000000000000000000000000000000000000000000000000`
where `X` means `0` or `1`.

View File

@@ -0,0 +1,117 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ctypes import c_double, c_uint64
from sys import float_info
# IEEE 754 64-bit floating point numbers use 11 bits for the exponent and 52
# bits for the mantissa.
MANTISSA_WIDTH = 52
EXPONENT_WIDTH = 11
# This mask is equivalent to 52 "1" bits (there are 13 hexadecimal 4-bit "f"s
# in the mantissa mask, 13 * 4 == 52) or 0xfffffffffffff in hexadecimal.
MANTISSA_MASK = (1 << MANTISSA_WIDTH) - 1
# There are 11 bits for the exponent, but the exponent values 0 (11 "0"
# bits) and 2047 (11 "1" bits) have special meanings so the exponent range is
# from 1 to 2046. To calculate the exponent value, 1023 (the bias) is
# subtracted from the exponent, so the exponent value range is from -1022 to
# +1023.
EXPONENT_BIAS = (2 ** (EXPONENT_WIDTH - 1)) - 1
# All the exponent mask bits are set to 1 for the 11 exponent bits.
EXPONENT_MASK = ((1 << EXPONENT_WIDTH) - 1) << MANTISSA_WIDTH
# The sign mask has the first bit set to 1 and the rest to 0.
SIGN_MASK = 1 << (EXPONENT_WIDTH + MANTISSA_WIDTH)
# For normal floating point numbers, the exponent can have a value in the
# range [-1022, 1023].
MIN_NORMAL_EXPONENT = -EXPONENT_BIAS + 1
MAX_NORMAL_EXPONENT = EXPONENT_BIAS
# The smallest possible normal value is 2.2250738585072014e-308.
# This value is the result of using the smallest possible number in the
# mantissa, 1.0000000000000000000000000000000000000000000000000000 (52 "0"s in
# the fractional part) and a single "1" in the exponent.
# Finally 1 * (2 ** -1022) = 2.2250738585072014e-308.
MIN_NORMAL_VALUE = float_info.min
# Greatest possible normal value (1.7976931348623157e+308)
# The binary representation of a float in scientific notation uses (for the
# mantissa) one bit for the integer part (which is implicit) and 52 bits for
# the fractional part. Consider a float binary 1.111. It is equal to 1 + 1/2 +
# 1/4 + 1/8. The greatest possible value in the 52-bit binary mantissa would be
# then 1.1111111111111111111111111111111111111111111111111111 (52 "1"s in the
# fractional part) whose decimal value is 1.9999999999999998. Finally,
# 1.9999999999999998 * (2 ** 1023) = 1.7976931348623157e+308.
MAX_NORMAL_VALUE = float_info.max
def get_ieee_754_exponent(value: float) -> int:
"""
Gets the exponent of the IEEE 754 representation of a float.
"""
return (
(
# This step gives the integer that corresponds to the IEEE 754
# representation of a float. For example, consider
# -MAX_NORMAL_VALUE for an example. We choose this value because
# of its binary representation which makes easy to understand the
# subsequent operations.
#
# c_uint64.from_buffer(c_double(-MAX_NORMAL_VALUE)).value == 18442240474082181119
# bin(18442240474082181119) == '0b1111111111101111111111111111111111111111111111111111111111111111'
#
# The first bit of the previous binary number is the sign bit: 1 (1 means negative, 0 means positive)
# The next 11 bits are the exponent bits: 11111111110
# The next 52 bits are the mantissa bits: 1111111111111111111111111111111111111111111111111111
#
# This step isolates the exponent bits, turning every bit outside
# of the exponent field (sign and mantissa bits) to 0.
c_uint64.from_buffer(c_double(value)).value & EXPONENT_MASK
# For the example this means:
# 18442240474082181119 & EXPONENT_MASK == 9214364837600034816
# bin(9214364837600034816) == '0b111111111100000000000000000000000000000000000000000000000000000'
# Notice that the previous binary representation does not include
# leading zeroes, so the sign bit is not included since it is a
# zero.
)
# This step moves the exponent bits to the right, removing the
# mantissa bits that were set to 0 by the previous step. This
# leaves the IEEE 754 exponent value, ready for the next step.
>> MANTISSA_WIDTH
# For the example this means:
# 9214364837600034816 >> MANTISSA_WIDTH == 2046
# bin(2046) == '0b11111111110'
# As shown above, these are the original 11 bits that correspond to the
# exponent.
# This step subtracts the exponent bias from the IEEE 754 value,
# leaving the actual exponent value.
) - EXPONENT_BIAS
# For the example this means:
# 2046 - EXPONENT_BIAS == 1023
# As mentioned in a comment above, the largest value for the exponent is
def get_ieee_754_mantissa(value: float) -> int:
return (
c_uint64.from_buffer(c_double(value)).value
# This step isolates the mantissa bits. There is no need to do any
# bit shifting as the mantissa bits are already the rightmost field
# in an IEEE 754 representation.
& MANTISSA_MASK
)

View File

@@ -0,0 +1,138 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from math import exp, floor, ldexp, log
from threading import Lock
from opentelemetry.sdk.metrics._internal.exponential_histogram.mapping import (
Mapping,
)
from opentelemetry.sdk.metrics._internal.exponential_histogram.mapping.errors import (
MappingOverflowError,
MappingUnderflowError,
)
from opentelemetry.sdk.metrics._internal.exponential_histogram.mapping.ieee_754 import (
MAX_NORMAL_EXPONENT,
MIN_NORMAL_EXPONENT,
MIN_NORMAL_VALUE,
get_ieee_754_exponent,
get_ieee_754_mantissa,
)
class LogarithmMapping(Mapping):
# Reference implementation here:
# https://github.com/open-telemetry/opentelemetry-go/blob/0e6f9c29c10d6078e8131418e1d1d166c7195d61/sdk/metric/aggregator/exponential/mapping/logarithm/logarithm.go
_mappings = {}
_mappings_lock = Lock()
_min_scale = 1
_max_scale = 20
def _get_min_scale(self):
# _min_scale ensures that ExponentMapping is used for zero and negative
# scale values.
return self._min_scale
def _get_max_scale(self):
# FIXME The Go implementation uses a value of 20 here, find out the
# right value for this implementation, more information here:
# https://github.com/lightstep/otel-launcher-go/blob/c9ca8483be067a39ab306b09060446e7fda65f35/lightstep/sdk/metric/aggregator/histogram/structure/README.md#mapping-function
# https://github.com/open-telemetry/opentelemetry-go/blob/0e6f9c29c10d6078e8131418e1d1d166c7195d61/sdk/metric/aggregator/exponential/mapping/logarithm/logarithm.go#L32-L45
return self._max_scale
def _init(self, scale: int):
# pylint: disable=attribute-defined-outside-init
super()._init(scale)
# self._scale_factor is defined as a multiplier because multiplication
# is faster than division. self._scale_factor is defined as:
# index = log(value) * self._scale_factor
# Where:
# index = log(value) / log(base)
# index = log(value) / log(2 ** (2 ** -scale))
# index = log(value) / ((2 ** -scale) * log(2))
# index = log(value) * ((1 / log(2)) * (2 ** scale))
# self._scale_factor = ((1 / log(2)) * (2 ** scale))
# self._scale_factor = (1 /log(2)) * (2 ** scale)
# self._scale_factor = ldexp(1 / log(2), scale)
# This implementation was copied from a Java prototype. See:
# https://github.com/newrelic-experimental/newrelic-sketch-java/blob/1ce245713603d61ba3a4510f6df930a5479cd3f6/src/main/java/com/newrelic/nrsketch/indexer/LogIndexer.java
# for the equations used here.
self._scale_factor = ldexp(1 / log(2), scale)
# self._min_normal_lower_boundary_index is the index such that
# base ** index == MIN_NORMAL_VALUE. An exponential histogram bucket
# with this index covers the range
# (MIN_NORMAL_VALUE, MIN_NORMAL_VALUE * base]. One less than this index
# corresponds with the bucket containing values <= MIN_NORMAL_VALUE.
self._min_normal_lower_boundary_index = (
MIN_NORMAL_EXPONENT << self._scale
)
# self._max_normal_lower_boundary_index is the index such that
# base ** index equals the greatest representable lower boundary. An
# exponential histogram bucket with this index covers the range
# ((2 ** 1024) / base, 2 ** 1024], which includes opentelemetry.sdk.
# metrics._internal.exponential_histogram.ieee_754.MAX_NORMAL_VALUE.
# This bucket is incomplete, since the upper boundary cannot be
# represented. One greater than this index corresponds with the bucket
# containing values > 2 ** 1024.
self._max_normal_lower_boundary_index = (
(MAX_NORMAL_EXPONENT + 1) << self._scale
) - 1
def map_to_index(self, value: float) -> int:
"""
Maps positive floating point values to indexes corresponding to scale.
"""
# value is subnormal
if value <= MIN_NORMAL_VALUE:
return self._min_normal_lower_boundary_index - 1
# value is an exact power of two.
if get_ieee_754_mantissa(value) == 0:
exponent = get_ieee_754_exponent(value)
return (exponent << self._scale) - 1
return min(
floor(log(value) * self._scale_factor),
self._max_normal_lower_boundary_index,
)
def get_lower_boundary(self, index: int) -> float:
if index >= self._max_normal_lower_boundary_index:
if index == self._max_normal_lower_boundary_index:
return 2 * exp(
(index - (1 << self._scale)) / self._scale_factor
)
raise MappingOverflowError()
if index <= self._min_normal_lower_boundary_index:
if index == self._min_normal_lower_boundary_index:
return MIN_NORMAL_VALUE
if index == self._min_normal_lower_boundary_index - 1:
return (
exp((index + (1 << self._scale)) / self._scale_factor) / 2
)
raise MappingUnderflowError()
return exp(index / self._scale_factor)
@property
def scale(self) -> int:
return self._scale

View File

@@ -0,0 +1,576 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import math
import os
import weakref
from abc import ABC, abstractmethod
from enum import Enum
from logging import getLogger
from os import environ, linesep
from sys import stdout
from threading import Event, Lock, RLock, Thread
from time import time_ns
from typing import IO, Callable, Iterable, Optional
from typing_extensions import final
# This kind of import is needed to avoid Sphinx errors.
import opentelemetry.sdk.metrics._internal
from opentelemetry.context import (
_SUPPRESS_INSTRUMENTATION_KEY,
attach,
detach,
set_value,
)
from opentelemetry.sdk.environment_variables import (
OTEL_METRIC_EXPORT_INTERVAL,
OTEL_METRIC_EXPORT_TIMEOUT,
)
from opentelemetry.sdk.metrics._internal.aggregation import (
AggregationTemporality,
DefaultAggregation,
)
from opentelemetry.sdk.metrics._internal.exceptions import MetricsTimeoutError
from opentelemetry.sdk.metrics._internal.instrument import (
Counter,
Gauge,
Histogram,
ObservableCounter,
ObservableGauge,
ObservableUpDownCounter,
UpDownCounter,
_Counter,
_Gauge,
_Histogram,
_ObservableCounter,
_ObservableGauge,
_ObservableUpDownCounter,
_UpDownCounter,
)
from opentelemetry.sdk.metrics._internal.point import MetricsData
from opentelemetry.util._once import Once
_logger = getLogger(__name__)
class MetricExportResult(Enum):
"""Result of exporting a metric
Can be any of the following values:"""
SUCCESS = 0
FAILURE = 1
class MetricExporter(ABC):
"""Interface for exporting metrics.
Interface to be implemented by services that want to export metrics received
in their own format.
Args:
preferred_temporality: Used by `opentelemetry.sdk.metrics.export.PeriodicExportingMetricReader` to
configure exporter level preferred temporality. See `opentelemetry.sdk.metrics.export.MetricReader` for
more details on what preferred temporality is.
preferred_aggregation: Used by `opentelemetry.sdk.metrics.export.PeriodicExportingMetricReader` to
configure exporter level preferred aggregation. See `opentelemetry.sdk.metrics.export.MetricReader` for
more details on what preferred aggregation is.
"""
def __init__(
self,
preferred_temporality: dict[type, AggregationTemporality]
| None = None,
preferred_aggregation: dict[
type, "opentelemetry.sdk.metrics.view.Aggregation"
]
| None = None,
) -> None:
self._preferred_temporality = preferred_temporality
self._preferred_aggregation = preferred_aggregation
@abstractmethod
def export(
self,
metrics_data: MetricsData,
timeout_millis: float = 10_000,
**kwargs,
) -> MetricExportResult:
"""Exports a batch of telemetry data.
Args:
metrics: The list of `opentelemetry.sdk.metrics.export.Metric` objects to be exported
Returns:
The result of the export
"""
@abstractmethod
def force_flush(self, timeout_millis: float = 10_000) -> bool:
"""
Ensure that export of any metrics currently received by the exporter
are completed as soon as possible.
"""
@abstractmethod
def shutdown(self, timeout_millis: float = 30_000, **kwargs) -> None:
"""Shuts down the exporter.
Called when the SDK is shut down.
"""
class ConsoleMetricExporter(MetricExporter):
"""Implementation of :class:`MetricExporter` that prints metrics to the
console.
This class can be used for diagnostic purposes. It prints the exported
metrics to the console STDOUT.
"""
def __init__(
self,
out: IO = stdout,
formatter: Callable[
["opentelemetry.sdk.metrics.export.MetricsData"], str
] = lambda metrics_data: metrics_data.to_json() + linesep,
preferred_temporality: dict[type, AggregationTemporality]
| None = None,
preferred_aggregation: dict[
type, "opentelemetry.sdk.metrics.view.Aggregation"
]
| None = None,
):
super().__init__(
preferred_temporality=preferred_temporality,
preferred_aggregation=preferred_aggregation,
)
self.out = out
self.formatter = formatter
def export(
self,
metrics_data: MetricsData,
timeout_millis: float = 10_000,
**kwargs,
) -> MetricExportResult:
self.out.write(self.formatter(metrics_data))
self.out.flush()
return MetricExportResult.SUCCESS
def shutdown(self, timeout_millis: float = 30_000, **kwargs) -> None:
pass
def force_flush(self, timeout_millis: float = 10_000) -> bool:
return True
class MetricReader(ABC):
# pylint: disable=too-many-branches,broad-exception-raised
"""
Base class for all metric readers
Args:
preferred_temporality: A mapping between instrument classes and
aggregation temporality. By default uses CUMULATIVE for all instrument
classes. This mapping will be used to define the default aggregation
temporality of every instrument class. If the user wants to make a
change in the default aggregation temporality of an instrument class,
it is enough to pass here a dictionary whose keys are the instrument
classes and the values are the corresponding desired aggregation
temporalities of the classes that the user wants to change, not all of
them. The classes not included in the passed dictionary will retain
their association to their default aggregation temporalities.
preferred_aggregation: A mapping between instrument classes and
aggregation instances. By default maps all instrument classes to an
instance of `DefaultAggregation`. This mapping will be used to
define the default aggregation of every instrument class. If the
user wants to make a change in the default aggregation of an
instrument class, it is enough to pass here a dictionary whose keys
are the instrument classes and the values are the corresponding
desired aggregation for the instrument classes that the user wants
to change, not necessarily all of them. The classes not included in
the passed dictionary will retain their association to their
default aggregations. The aggregation defined here will be
overridden by an aggregation defined by a view that is not
`DefaultAggregation`.
.. document protected _receive_metrics which is a intended to be overridden by subclass
.. automethod:: _receive_metrics
"""
def __init__(
self,
preferred_temporality: dict[type, AggregationTemporality]
| None = None,
preferred_aggregation: dict[
type, "opentelemetry.sdk.metrics.view.Aggregation"
]
| None = None,
) -> None:
self._collect: Callable[
[
"opentelemetry.sdk.metrics.export.MetricReader",
AggregationTemporality,
],
Iterable["opentelemetry.sdk.metrics.export.Metric"],
] = None
self._instrument_class_temporality = {
_Counter: AggregationTemporality.CUMULATIVE,
_UpDownCounter: AggregationTemporality.CUMULATIVE,
_Histogram: AggregationTemporality.CUMULATIVE,
_Gauge: AggregationTemporality.CUMULATIVE,
_ObservableCounter: AggregationTemporality.CUMULATIVE,
_ObservableUpDownCounter: AggregationTemporality.CUMULATIVE,
_ObservableGauge: AggregationTemporality.CUMULATIVE,
}
if preferred_temporality is not None:
for temporality in preferred_temporality.values():
if temporality not in (
AggregationTemporality.CUMULATIVE,
AggregationTemporality.DELTA,
):
raise Exception(
f"Invalid temporality value found {temporality}"
)
if preferred_temporality is not None:
for typ, temporality in preferred_temporality.items():
if typ is Counter:
self._instrument_class_temporality[_Counter] = temporality
elif typ is UpDownCounter:
self._instrument_class_temporality[_UpDownCounter] = (
temporality
)
elif typ is Histogram:
self._instrument_class_temporality[_Histogram] = (
temporality
)
elif typ is Gauge:
self._instrument_class_temporality[_Gauge] = temporality
elif typ is ObservableCounter:
self._instrument_class_temporality[_ObservableCounter] = (
temporality
)
elif typ is ObservableUpDownCounter:
self._instrument_class_temporality[
_ObservableUpDownCounter
] = temporality
elif typ is ObservableGauge:
self._instrument_class_temporality[_ObservableGauge] = (
temporality
)
else:
raise Exception(f"Invalid instrument class found {typ}")
self._preferred_temporality = preferred_temporality
self._instrument_class_aggregation = {
_Counter: DefaultAggregation(),
_UpDownCounter: DefaultAggregation(),
_Histogram: DefaultAggregation(),
_Gauge: DefaultAggregation(),
_ObservableCounter: DefaultAggregation(),
_ObservableUpDownCounter: DefaultAggregation(),
_ObservableGauge: DefaultAggregation(),
}
if preferred_aggregation is not None:
for typ, aggregation in preferred_aggregation.items():
if typ is Counter:
self._instrument_class_aggregation[_Counter] = aggregation
elif typ is UpDownCounter:
self._instrument_class_aggregation[_UpDownCounter] = (
aggregation
)
elif typ is Histogram:
self._instrument_class_aggregation[_Histogram] = (
aggregation
)
elif typ is Gauge:
self._instrument_class_aggregation[_Gauge] = aggregation
elif typ is ObservableCounter:
self._instrument_class_aggregation[_ObservableCounter] = (
aggregation
)
elif typ is ObservableUpDownCounter:
self._instrument_class_aggregation[
_ObservableUpDownCounter
] = aggregation
elif typ is ObservableGauge:
self._instrument_class_aggregation[_ObservableGauge] = (
aggregation
)
else:
raise Exception(f"Invalid instrument class found {typ}")
@final
def collect(self, timeout_millis: float = 10_000) -> None:
"""Collects the metrics from the internal SDK state and
invokes the `_receive_metrics` with the collection.
Args:
timeout_millis: Amount of time in milliseconds before this function
raises a timeout error.
If any of the underlying ``collect`` methods called by this method
fails by any reason (including timeout) an exception will be raised
detailing the individual errors that caused this function to fail.
"""
if self._collect is None:
_logger.warning(
"Cannot call collect on a MetricReader until it is registered on a MeterProvider"
)
return
metrics = self._collect(self, timeout_millis=timeout_millis)
if metrics is not None:
self._receive_metrics(
metrics,
timeout_millis=timeout_millis,
)
@final
def _set_collect_callback(
self,
func: Callable[
[
"opentelemetry.sdk.metrics.export.MetricReader",
AggregationTemporality,
],
Iterable["opentelemetry.sdk.metrics.export.Metric"],
],
) -> None:
"""This function is internal to the SDK. It should not be called or overridden by users"""
self._collect = func
@abstractmethod
def _receive_metrics(
self,
metrics_data: "opentelemetry.sdk.metrics.export.MetricsData",
timeout_millis: float = 10_000,
**kwargs,
) -> None:
"""Called by `MetricReader.collect` when it receives a batch of metrics"""
def force_flush(self, timeout_millis: float = 10_000) -> bool:
self.collect(timeout_millis=timeout_millis)
return True
@abstractmethod
def shutdown(self, timeout_millis: float = 30_000, **kwargs) -> None:
"""Shuts down the MetricReader. This method provides a way
for the MetricReader to do any cleanup required. A metric reader can
only be shutdown once, any subsequent calls are ignored and return
failure status.
When a `MetricReader` is registered on a
:class:`~opentelemetry.sdk.metrics.MeterProvider`,
:meth:`~opentelemetry.sdk.metrics.MeterProvider.shutdown` will invoke this
automatically.
"""
class InMemoryMetricReader(MetricReader):
"""Implementation of `MetricReader` that returns its metrics from :func:`get_metrics_data`.
This is useful for e.g. unit tests.
"""
def __init__(
self,
preferred_temporality: dict[type, AggregationTemporality]
| None = None,
preferred_aggregation: dict[
type, "opentelemetry.sdk.metrics.view.Aggregation"
]
| None = None,
) -> None:
super().__init__(
preferred_temporality=preferred_temporality,
preferred_aggregation=preferred_aggregation,
)
self._lock = RLock()
self._metrics_data: "opentelemetry.sdk.metrics.export.MetricsData" = (
None
)
def get_metrics_data(
self,
) -> Optional["opentelemetry.sdk.metrics.export.MetricsData"]:
"""Reads and returns current metrics from the SDK"""
with self._lock:
self.collect()
metrics_data = self._metrics_data
self._metrics_data = None
return metrics_data
def _receive_metrics(
self,
metrics_data: "opentelemetry.sdk.metrics.export.MetricsData",
timeout_millis: float = 10_000,
**kwargs,
) -> None:
with self._lock:
self._metrics_data = metrics_data
def shutdown(self, timeout_millis: float = 30_000, **kwargs) -> None:
pass
class PeriodicExportingMetricReader(MetricReader):
"""`PeriodicExportingMetricReader` is an implementation of `MetricReader`
that collects metrics based on a user-configurable time interval, and passes the
metrics to the configured exporter. If the time interval is set to `math.inf`, the
reader will not invoke periodic collection.
The configured exporter's :py:meth:`~MetricExporter.export` method will not be called
concurrently.
"""
def __init__(
self,
exporter: MetricExporter,
export_interval_millis: Optional[float] = None,
export_timeout_millis: Optional[float] = None,
) -> None:
# PeriodicExportingMetricReader defers to exporter for configuration
super().__init__(
preferred_temporality=exporter._preferred_temporality,
preferred_aggregation=exporter._preferred_aggregation,
)
# This lock is held whenever calling self._exporter.export() to prevent concurrent
# execution of MetricExporter.export()
# https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#exportbatch
self._export_lock = Lock()
self._exporter = exporter
if export_interval_millis is None:
try:
export_interval_millis = float(
environ.get(OTEL_METRIC_EXPORT_INTERVAL, 60000)
)
except ValueError:
_logger.warning(
"Found invalid value for export interval, using default"
)
export_interval_millis = 60000
if export_timeout_millis is None:
try:
export_timeout_millis = float(
environ.get(OTEL_METRIC_EXPORT_TIMEOUT, 30000)
)
except ValueError:
_logger.warning(
"Found invalid value for export timeout, using default"
)
export_timeout_millis = 30000
self._export_interval_millis = export_interval_millis
self._export_timeout_millis = export_timeout_millis
self._shutdown = False
self._shutdown_event = Event()
self._shutdown_once = Once()
self._daemon_thread = None
if (
self._export_interval_millis > 0
and self._export_interval_millis < math.inf
):
self._daemon_thread = Thread(
name="OtelPeriodicExportingMetricReader",
target=self._ticker,
daemon=True,
)
self._daemon_thread.start()
if hasattr(os, "register_at_fork"):
weak_at_fork = weakref.WeakMethod(self._at_fork_reinit)
os.register_at_fork(
after_in_child=lambda: weak_at_fork()() # pylint: disable=unnecessary-lambda
)
elif self._export_interval_millis <= 0:
raise ValueError(
f"interval value {self._export_interval_millis} is invalid \
and needs to be larger than zero."
)
def _at_fork_reinit(self):
self._daemon_thread = Thread(
name="OtelPeriodicExportingMetricReader",
target=self._ticker,
daemon=True,
)
self._daemon_thread.start()
def _ticker(self) -> None:
interval_secs = self._export_interval_millis / 1e3
while not self._shutdown_event.wait(interval_secs):
try:
self.collect(timeout_millis=self._export_timeout_millis)
except MetricsTimeoutError:
_logger.warning(
"Metric collection timed out. Will try again after %s seconds",
interval_secs,
exc_info=True,
)
# one last collection below before shutting down completely
try:
self.collect(timeout_millis=self._export_interval_millis)
except MetricsTimeoutError:
_logger.warning(
"Metric collection timed out.",
exc_info=True,
)
def _receive_metrics(
self,
metrics_data: MetricsData,
timeout_millis: float = 10_000,
**kwargs,
) -> None:
token = attach(set_value(_SUPPRESS_INSTRUMENTATION_KEY, True))
# pylint: disable=broad-exception-caught,invalid-name
try:
with self._export_lock:
self._exporter.export(
metrics_data, timeout_millis=timeout_millis
)
except Exception:
_logger.exception("Exception while exporting metrics")
detach(token)
def shutdown(self, timeout_millis: float = 30_000, **kwargs) -> None:
deadline_ns = time_ns() + timeout_millis * 10**6
def _shutdown():
self._shutdown = True
did_set = self._shutdown_once.do_once(_shutdown)
if not did_set:
_logger.warning("Can't shutdown multiple times")
return
self._shutdown_event.set()
if self._daemon_thread:
self._daemon_thread.join(timeout=(deadline_ns - time_ns()) / 10**9)
self._exporter.shutdown(timeout=(deadline_ns - time_ns()) / 10**6)
def force_flush(self, timeout_millis: float = 10_000) -> bool:
super().force_flush(timeout_millis=timeout_millis)
self._exporter.force_flush(timeout_millis=timeout_millis)
return True

View File

@@ -0,0 +1,334 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=too-many-ancestors, unused-import
from __future__ import annotations
from logging import getLogger
from time import time_ns
from typing import Generator, Iterable, List, Sequence, Union
# This kind of import is needed to avoid Sphinx errors.
import opentelemetry.sdk.metrics
from opentelemetry.context import Context, get_current
from opentelemetry.metrics import CallbackT
from opentelemetry.metrics import Counter as APICounter
from opentelemetry.metrics import Histogram as APIHistogram
from opentelemetry.metrics import ObservableCounter as APIObservableCounter
from opentelemetry.metrics import ObservableGauge as APIObservableGauge
from opentelemetry.metrics import (
ObservableUpDownCounter as APIObservableUpDownCounter,
)
from opentelemetry.metrics import UpDownCounter as APIUpDownCounter
from opentelemetry.metrics import _Gauge as APIGauge
from opentelemetry.metrics._internal.instrument import (
CallbackOptions,
_MetricsHistogramAdvisory,
)
from opentelemetry.sdk.metrics._internal.measurement import Measurement
from opentelemetry.sdk.util.instrumentation import InstrumentationScope
_logger = getLogger(__name__)
_ERROR_MESSAGE = (
"Expected ASCII string of maximum length 63 characters but got {}"
)
class _Synchronous:
def __init__(
self,
name: str,
instrumentation_scope: InstrumentationScope,
measurement_consumer: "opentelemetry.sdk.metrics.MeasurementConsumer",
unit: str = "",
description: str = "",
):
# pylint: disable=no-member
result = self._check_name_unit_description(name, unit, description)
if result["name"] is None:
# pylint: disable=broad-exception-raised
raise Exception(_ERROR_MESSAGE.format(name))
if result["unit"] is None:
# pylint: disable=broad-exception-raised
raise Exception(_ERROR_MESSAGE.format(unit))
name = result["name"]
unit = result["unit"]
description = result["description"]
self.name = name.lower()
self.unit = unit
self.description = description
self.instrumentation_scope = instrumentation_scope
self._measurement_consumer = measurement_consumer
super().__init__(name, unit=unit, description=description)
class _Asynchronous:
def __init__(
self,
name: str,
instrumentation_scope: InstrumentationScope,
measurement_consumer: "opentelemetry.sdk.metrics.MeasurementConsumer",
callbacks: Iterable[CallbackT] | None = None,
unit: str = "",
description: str = "",
):
# pylint: disable=no-member
result = self._check_name_unit_description(name, unit, description)
if result["name"] is None:
# pylint: disable=broad-exception-raised
raise Exception(_ERROR_MESSAGE.format(name))
if result["unit"] is None:
# pylint: disable=broad-exception-raised
raise Exception(_ERROR_MESSAGE.format(unit))
name = result["name"]
unit = result["unit"]
description = result["description"]
self.name = name.lower()
self.unit = unit
self.description = description
self.instrumentation_scope = instrumentation_scope
self._measurement_consumer = measurement_consumer
super().__init__(name, callbacks, unit=unit, description=description)
self._callbacks: List[CallbackT] = []
if callbacks is not None:
for callback in callbacks:
if isinstance(callback, Generator):
# advance generator to it's first yield
next(callback)
def inner(
options: CallbackOptions,
callback=callback,
) -> Iterable[Measurement]:
try:
return callback.send(options)
except StopIteration:
return []
self._callbacks.append(inner)
else:
self._callbacks.append(callback)
def callback(
self, callback_options: CallbackOptions
) -> Iterable[Measurement]:
for callback in self._callbacks:
try:
for api_measurement in callback(callback_options):
yield Measurement(
api_measurement.value,
time_unix_nano=time_ns(),
instrument=self,
context=api_measurement.context or get_current(),
attributes=api_measurement.attributes,
)
except Exception: # pylint: disable=broad-exception-caught
_logger.exception(
"Callback failed for instrument %s.", self.name
)
class Counter(_Synchronous, APICounter):
def __new__(cls, *args, **kwargs):
if cls is Counter:
raise TypeError("Counter must be instantiated via a meter.")
return super().__new__(cls)
def add(
self,
amount: Union[int, float],
attributes: dict[str, str] | None = None,
context: Context | None = None,
):
if amount < 0:
_logger.warning(
"Add amount must be non-negative on Counter %s.", self.name
)
return
time_unix_nano = time_ns()
self._measurement_consumer.consume_measurement(
Measurement(
amount,
time_unix_nano,
self,
context or get_current(),
attributes,
)
)
class UpDownCounter(_Synchronous, APIUpDownCounter):
def __new__(cls, *args, **kwargs):
if cls is UpDownCounter:
raise TypeError("UpDownCounter must be instantiated via a meter.")
return super().__new__(cls)
def add(
self,
amount: Union[int, float],
attributes: dict[str, str] | None = None,
context: Context | None = None,
):
time_unix_nano = time_ns()
self._measurement_consumer.consume_measurement(
Measurement(
amount,
time_unix_nano,
self,
context or get_current(),
attributes,
)
)
class ObservableCounter(_Asynchronous, APIObservableCounter):
def __new__(cls, *args, **kwargs):
if cls is ObservableCounter:
raise TypeError(
"ObservableCounter must be instantiated via a meter."
)
return super().__new__(cls)
class ObservableUpDownCounter(_Asynchronous, APIObservableUpDownCounter):
def __new__(cls, *args, **kwargs):
if cls is ObservableUpDownCounter:
raise TypeError(
"ObservableUpDownCounter must be instantiated via a meter."
)
return super().__new__(cls)
class Histogram(_Synchronous, APIHistogram):
def __init__(
self,
name: str,
instrumentation_scope: InstrumentationScope,
measurement_consumer: "opentelemetry.sdk.metrics.MeasurementConsumer",
unit: str = "",
description: str = "",
explicit_bucket_boundaries_advisory: Sequence[float] | None = None,
):
super().__init__(
name,
unit=unit,
description=description,
instrumentation_scope=instrumentation_scope,
measurement_consumer=measurement_consumer,
)
self._advisory = _MetricsHistogramAdvisory(
explicit_bucket_boundaries=explicit_bucket_boundaries_advisory
)
def __new__(cls, *args, **kwargs):
if cls is Histogram:
raise TypeError("Histogram must be instantiated via a meter.")
return super().__new__(cls)
def record(
self,
amount: Union[int, float],
attributes: dict[str, str] | None = None,
context: Context | None = None,
):
if amount < 0:
_logger.warning(
"Record amount must be non-negative on Histogram %s.",
self.name,
)
return
time_unix_nano = time_ns()
self._measurement_consumer.consume_measurement(
Measurement(
amount,
time_unix_nano,
self,
context or get_current(),
attributes,
)
)
class Gauge(_Synchronous, APIGauge):
def __new__(cls, *args, **kwargs):
if cls is Gauge:
raise TypeError("Gauge must be instantiated via a meter.")
return super().__new__(cls)
def set(
self,
amount: Union[int, float],
attributes: dict[str, str] | None = None,
context: Context | None = None,
):
time_unix_nano = time_ns()
self._measurement_consumer.consume_measurement(
Measurement(
amount,
time_unix_nano,
self,
context or get_current(),
attributes,
)
)
class ObservableGauge(_Asynchronous, APIObservableGauge):
def __new__(cls, *args, **kwargs):
if cls is ObservableGauge:
raise TypeError(
"ObservableGauge must be instantiated via a meter."
)
return super().__new__(cls)
# Below classes exist to prevent the direct instantiation
class _Counter(Counter):
pass
class _UpDownCounter(UpDownCounter):
pass
class _ObservableCounter(ObservableCounter):
pass
class _ObservableUpDownCounter(ObservableUpDownCounter):
pass
class _Histogram(Histogram):
pass
class _Gauge(Gauge):
pass
class _ObservableGauge(ObservableGauge):
pass

View File

@@ -0,0 +1,45 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Union
from opentelemetry.context import Context
from opentelemetry.metrics import Instrument
from opentelemetry.util.types import Attributes
@dataclass(frozen=True)
class Measurement:
"""
Represents a data point reported via the metrics API to the SDK.
Attributes
value: Measured value
time_unix_nano: The time the API call was made to record the Measurement
instrument: The instrument that produced this `Measurement`.
context: The active Context of the Measurement at API call time.
attributes: Measurement attributes
"""
# TODO Fix doc - if using valid Google `Attributes:` key, the attributes are duplicated
# one will come from napoleon extension and the other from autodoc extension. This
# will raise an sphinx error of duplicated object description
# See https://github.com/sphinx-doc/sphinx/issues/8664
value: Union[int, float]
time_unix_nano: int
instrument: Instrument
context: Context
attributes: Attributes = None

View File

@@ -0,0 +1,145 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=unused-import
from abc import ABC, abstractmethod
from threading import Lock
from time import time_ns
from typing import Iterable, List, Mapping, Optional
# This kind of import is needed to avoid Sphinx errors.
import opentelemetry.sdk.metrics
import opentelemetry.sdk.metrics._internal.instrument
import opentelemetry.sdk.metrics._internal.sdk_configuration
from opentelemetry.metrics._internal.instrument import CallbackOptions
from opentelemetry.sdk.metrics._internal.exceptions import MetricsTimeoutError
from opentelemetry.sdk.metrics._internal.measurement import Measurement
from opentelemetry.sdk.metrics._internal.metric_reader_storage import (
MetricReaderStorage,
)
from opentelemetry.sdk.metrics._internal.point import Metric
class MeasurementConsumer(ABC):
@abstractmethod
def consume_measurement(self, measurement: Measurement) -> None:
pass
@abstractmethod
def register_asynchronous_instrument(
self,
instrument: (
"opentelemetry.sdk.metrics._internal.instrument_Asynchronous"
),
):
pass
@abstractmethod
def collect(
self,
metric_reader: "opentelemetry.sdk.metrics.MetricReader",
timeout_millis: float = 10_000,
) -> Optional[Iterable[Metric]]:
pass
class SynchronousMeasurementConsumer(MeasurementConsumer):
def __init__(
self,
sdk_config: "opentelemetry.sdk.metrics._internal.SdkConfiguration",
) -> None:
self._lock = Lock()
self._sdk_config = sdk_config
# should never be mutated
self._reader_storages: Mapping[
"opentelemetry.sdk.metrics.MetricReader", MetricReaderStorage
] = {
reader: MetricReaderStorage(
sdk_config,
reader._instrument_class_temporality,
reader._instrument_class_aggregation,
)
for reader in sdk_config.metric_readers
}
self._async_instruments: List[
"opentelemetry.sdk.metrics._internal.instrument._Asynchronous"
] = []
def consume_measurement(self, measurement: Measurement) -> None:
should_sample_exemplar = (
self._sdk_config.exemplar_filter.should_sample(
measurement.value,
measurement.time_unix_nano,
measurement.attributes,
measurement.context,
)
)
for reader_storage in self._reader_storages.values():
reader_storage.consume_measurement(
measurement, should_sample_exemplar
)
def register_asynchronous_instrument(
self,
instrument: (
"opentelemetry.sdk.metrics._internal.instrument._Asynchronous"
),
) -> None:
with self._lock:
self._async_instruments.append(instrument)
def collect(
self,
metric_reader: "opentelemetry.sdk.metrics.MetricReader",
timeout_millis: float = 10_000,
) -> Optional[Iterable[Metric]]:
with self._lock:
metric_reader_storage = self._reader_storages[metric_reader]
# for now, just use the defaults
callback_options = CallbackOptions()
deadline_ns = time_ns() + (timeout_millis * 1e6)
default_timeout_ns = 10000 * 1e6
for async_instrument in self._async_instruments:
remaining_time = deadline_ns - time_ns()
if remaining_time < default_timeout_ns:
callback_options = CallbackOptions(
timeout_millis=remaining_time / 1e6
)
measurements = async_instrument.callback(callback_options)
if time_ns() >= deadline_ns:
raise MetricsTimeoutError(
"Timed out while executing callback"
)
for measurement in measurements:
should_sample_exemplar = (
self._sdk_config.exemplar_filter.should_sample(
measurement.value,
measurement.time_unix_nano,
measurement.attributes,
measurement.context,
)
)
metric_reader_storage.consume_measurement(
measurement, should_sample_exemplar
)
result = self._reader_storages[metric_reader].collect()
return result

View File

@@ -0,0 +1,315 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from logging import getLogger
from threading import RLock
from time import time_ns
from typing import Dict, List, Optional
from opentelemetry.metrics import (
Asynchronous,
Counter,
Instrument,
ObservableCounter,
)
from opentelemetry.sdk.metrics._internal._view_instrument_match import (
_ViewInstrumentMatch,
)
from opentelemetry.sdk.metrics._internal.aggregation import (
Aggregation,
ExplicitBucketHistogramAggregation,
_DropAggregation,
_ExplicitBucketHistogramAggregation,
_ExponentialBucketHistogramAggregation,
_LastValueAggregation,
_SumAggregation,
)
from opentelemetry.sdk.metrics._internal.export import AggregationTemporality
from opentelemetry.sdk.metrics._internal.measurement import Measurement
from opentelemetry.sdk.metrics._internal.point import (
ExponentialHistogram,
Gauge,
Histogram,
Metric,
MetricsData,
ResourceMetrics,
ScopeMetrics,
Sum,
)
from opentelemetry.sdk.metrics._internal.sdk_configuration import (
SdkConfiguration,
)
from opentelemetry.sdk.metrics._internal.view import View
from opentelemetry.sdk.util.instrumentation import InstrumentationScope
_logger = getLogger(__name__)
_DEFAULT_VIEW = View(instrument_name="")
class MetricReaderStorage:
"""The SDK's storage for a given reader"""
def __init__(
self,
sdk_config: SdkConfiguration,
instrument_class_temporality: Dict[type, AggregationTemporality],
instrument_class_aggregation: Dict[type, Aggregation],
) -> None:
self._lock = RLock()
self._sdk_config = sdk_config
self._instrument_view_instrument_matches: Dict[
Instrument, List[_ViewInstrumentMatch]
] = {}
self._instrument_class_temporality = instrument_class_temporality
self._instrument_class_aggregation = instrument_class_aggregation
def _get_or_init_view_instrument_match(
self, instrument: Instrument
) -> List[_ViewInstrumentMatch]:
# Optimistically get the relevant views for the given instrument. Once set for a given
# instrument, the mapping will never change
if instrument in self._instrument_view_instrument_matches:
return self._instrument_view_instrument_matches[instrument]
with self._lock:
# double check if it was set before we held the lock
if instrument in self._instrument_view_instrument_matches:
return self._instrument_view_instrument_matches[instrument]
# not present, hold the lock and add a new mapping
view_instrument_matches = []
self._handle_view_instrument_match(
instrument, view_instrument_matches
)
# if no view targeted the instrument, use the default
if not view_instrument_matches:
view_instrument_matches.append(
_ViewInstrumentMatch(
view=_DEFAULT_VIEW,
instrument=instrument,
instrument_class_aggregation=(
self._instrument_class_aggregation
),
)
)
self._instrument_view_instrument_matches[instrument] = (
view_instrument_matches
)
return view_instrument_matches
def consume_measurement(
self, measurement: Measurement, should_sample_exemplar: bool = True
) -> None:
for view_instrument_match in self._get_or_init_view_instrument_match(
measurement.instrument
):
view_instrument_match.consume_measurement(
measurement, should_sample_exemplar
)
def collect(self) -> Optional[MetricsData]:
# Use a list instead of yielding to prevent a slow reader from holding
# SDK locks
# While holding the lock, new _ViewInstrumentMatch can't be added from
# another thread (so we are sure we collect all existing view).
# However, instruments can still send measurements that will make it
# into the individual aggregations; collection will acquire those locks
# iteratively to keep locking as fine-grained as possible. One side
# effect is that end times can be slightly skewed among the metric
# streams produced by the SDK, but we still align the output timestamps
# for a single instrument.
collection_start_nanos = time_ns()
with self._lock:
instrumentation_scope_scope_metrics: Dict[
InstrumentationScope, ScopeMetrics
] = {}
for (
instrument,
view_instrument_matches,
) in self._instrument_view_instrument_matches.items():
aggregation_temporality = self._instrument_class_temporality[
instrument.__class__
]
metrics: List[Metric] = []
for view_instrument_match in view_instrument_matches:
data_points = view_instrument_match.collect(
aggregation_temporality, collection_start_nanos
)
if data_points is None:
continue
if isinstance(
# pylint: disable=protected-access
view_instrument_match._aggregation,
_SumAggregation,
):
data = Sum(
aggregation_temporality=aggregation_temporality,
data_points=data_points,
is_monotonic=isinstance(
instrument, (Counter, ObservableCounter)
),
)
elif isinstance(
# pylint: disable=protected-access
view_instrument_match._aggregation,
_LastValueAggregation,
):
data = Gauge(data_points=data_points)
elif isinstance(
# pylint: disable=protected-access
view_instrument_match._aggregation,
_ExplicitBucketHistogramAggregation,
):
data = Histogram(
data_points=data_points,
aggregation_temporality=aggregation_temporality,
)
elif isinstance(
# pylint: disable=protected-access
view_instrument_match._aggregation,
_DropAggregation,
):
continue
elif isinstance(
# pylint: disable=protected-access
view_instrument_match._aggregation,
_ExponentialBucketHistogramAggregation,
):
data = ExponentialHistogram(
data_points=data_points,
aggregation_temporality=aggregation_temporality,
)
metrics.append(
Metric(
# pylint: disable=protected-access
# pylint: disable=possibly-used-before-assignment
name=view_instrument_match._name,
description=view_instrument_match._description,
unit=view_instrument_match._instrument.unit,
data=data,
)
)
if metrics:
if instrument.instrumentation_scope not in (
instrumentation_scope_scope_metrics
):
instrumentation_scope_scope_metrics[
instrument.instrumentation_scope
] = ScopeMetrics(
scope=instrument.instrumentation_scope,
metrics=metrics,
schema_url=instrument.instrumentation_scope.schema_url,
)
else:
instrumentation_scope_scope_metrics[
instrument.instrumentation_scope
].metrics.extend(metrics)
if instrumentation_scope_scope_metrics:
return MetricsData(
resource_metrics=[
ResourceMetrics(
resource=self._sdk_config.resource,
scope_metrics=list(
instrumentation_scope_scope_metrics.values()
),
schema_url=self._sdk_config.resource.schema_url,
)
]
)
return None
def _handle_view_instrument_match(
self,
instrument: Instrument,
view_instrument_matches: List["_ViewInstrumentMatch"],
) -> None:
for view in self._sdk_config.views:
# pylint: disable=protected-access
if not view._match(instrument):
continue
if not self._check_view_instrument_compatibility(view, instrument):
continue
new_view_instrument_match = _ViewInstrumentMatch(
view=view,
instrument=instrument,
instrument_class_aggregation=(
self._instrument_class_aggregation
),
)
for (
existing_view_instrument_matches
) in self._instrument_view_instrument_matches.values():
for (
existing_view_instrument_match
) in existing_view_instrument_matches:
if existing_view_instrument_match.conflicts(
new_view_instrument_match
):
_logger.warning(
"Views %s and %s will cause conflicting "
"metrics identities",
existing_view_instrument_match._view,
new_view_instrument_match._view,
)
view_instrument_matches.append(new_view_instrument_match)
@staticmethod
def _check_view_instrument_compatibility(
view: View, instrument: Instrument
) -> bool:
"""
Checks if a view and an instrument are compatible.
Returns `true` if they are compatible and a `_ViewInstrumentMatch`
object should be created, `false` otherwise.
"""
result = True
# pylint: disable=protected-access
if isinstance(instrument, Asynchronous) and isinstance(
view._aggregation, ExplicitBucketHistogramAggregation
):
_logger.warning(
"View %s and instrument %s will produce "
"semantic errors when matched, the view "
"has not been applied.",
view,
instrument,
)
result = False
return result

View File

@@ -0,0 +1,277 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=unused-import
from dataclasses import asdict, dataclass, field
from json import dumps, loads
from typing import Optional, Sequence, Union
# This kind of import is needed to avoid Sphinx errors.
import opentelemetry.sdk.metrics._internal
from opentelemetry.sdk.metrics._internal.exemplar import Exemplar
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.util.instrumentation import InstrumentationScope
from opentelemetry.util.types import Attributes
@dataclass(frozen=True)
class NumberDataPoint:
"""Single data point in a timeseries that describes the time-varying scalar
value of a metric.
"""
attributes: Attributes
start_time_unix_nano: int
time_unix_nano: int
value: Union[int, float]
exemplars: Sequence[Exemplar] = field(default_factory=list)
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(asdict(self), indent=indent)
@dataclass(frozen=True)
class HistogramDataPoint:
"""Single data point in a timeseries that describes the time-varying scalar
value of a metric.
"""
attributes: Attributes
start_time_unix_nano: int
time_unix_nano: int
count: int
sum: Union[int, float]
bucket_counts: Sequence[int]
explicit_bounds: Sequence[float]
min: float
max: float
exemplars: Sequence[Exemplar] = field(default_factory=list)
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(asdict(self), indent=indent)
@dataclass(frozen=True)
class Buckets:
offset: int
bucket_counts: Sequence[int]
@dataclass(frozen=True)
class ExponentialHistogramDataPoint:
"""Single data point in a timeseries whose boundaries are defined by an
exponential function. This timeseries describes the time-varying scalar
value of a metric.
"""
attributes: Attributes
start_time_unix_nano: int
time_unix_nano: int
count: int
sum: Union[int, float]
scale: int
zero_count: int
positive: Buckets
negative: Buckets
flags: int
min: float
max: float
exemplars: Sequence[Exemplar] = field(default_factory=list)
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(asdict(self), indent=indent)
@dataclass(frozen=True)
class ExponentialHistogram:
"""Represents the type of a metric that is calculated by aggregating as an
ExponentialHistogram of all reported measurements over a time interval.
"""
data_points: Sequence[ExponentialHistogramDataPoint]
aggregation_temporality: (
"opentelemetry.sdk.metrics.export.AggregationTemporality"
)
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(
{
"data_points": [
loads(data_point.to_json(indent=indent))
for data_point in self.data_points
],
"aggregation_temporality": self.aggregation_temporality,
},
indent=indent,
)
@dataclass(frozen=True)
class Sum:
"""Represents the type of a scalar metric that is calculated as a sum of
all reported measurements over a time interval."""
data_points: Sequence[NumberDataPoint]
aggregation_temporality: (
"opentelemetry.sdk.metrics.export.AggregationTemporality"
)
is_monotonic: bool
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(
{
"data_points": [
loads(data_point.to_json(indent=indent))
for data_point in self.data_points
],
"aggregation_temporality": self.aggregation_temporality,
"is_monotonic": self.is_monotonic,
},
indent=indent,
)
@dataclass(frozen=True)
class Gauge:
"""Represents the type of a scalar metric that always exports the current
value for every data point. It should be used for an unknown
aggregation."""
data_points: Sequence[NumberDataPoint]
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(
{
"data_points": [
loads(data_point.to_json(indent=indent))
for data_point in self.data_points
],
},
indent=indent,
)
@dataclass(frozen=True)
class Histogram:
"""Represents the type of a metric that is calculated by aggregating as a
histogram of all reported measurements over a time interval."""
data_points: Sequence[HistogramDataPoint]
aggregation_temporality: (
"opentelemetry.sdk.metrics.export.AggregationTemporality"
)
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(
{
"data_points": [
loads(data_point.to_json(indent=indent))
for data_point in self.data_points
],
"aggregation_temporality": self.aggregation_temporality,
},
indent=indent,
)
# pylint: disable=invalid-name
DataT = Union[Sum, Gauge, Histogram, ExponentialHistogram]
DataPointT = Union[
NumberDataPoint, HistogramDataPoint, ExponentialHistogramDataPoint
]
@dataclass(frozen=True)
class Metric:
"""Represents a metric point in the OpenTelemetry data model to be
exported."""
name: str
description: Optional[str]
unit: Optional[str]
data: DataT
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(
{
"name": self.name,
"description": self.description or "",
"unit": self.unit or "",
"data": loads(self.data.to_json(indent=indent)),
},
indent=indent,
)
@dataclass(frozen=True)
class ScopeMetrics:
"""A collection of Metrics produced by a scope"""
scope: InstrumentationScope
metrics: Sequence[Metric]
schema_url: str
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(
{
"scope": loads(self.scope.to_json(indent=indent)),
"metrics": [
loads(metric.to_json(indent=indent))
for metric in self.metrics
],
"schema_url": self.schema_url,
},
indent=indent,
)
@dataclass(frozen=True)
class ResourceMetrics:
"""A collection of ScopeMetrics from a Resource"""
resource: Resource
scope_metrics: Sequence[ScopeMetrics]
schema_url: str
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(
{
"resource": loads(self.resource.to_json(indent=indent)),
"scope_metrics": [
loads(scope_metrics.to_json(indent=indent))
for scope_metrics in self.scope_metrics
],
"schema_url": self.schema_url,
},
indent=indent,
)
@dataclass(frozen=True)
class MetricsData:
"""An array of ResourceMetrics"""
resource_metrics: Sequence[ResourceMetrics]
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(
{
"resource_metrics": [
loads(resource_metrics.to_json(indent=indent))
for resource_metrics in self.resource_metrics
]
},
indent=indent,
)

View File

@@ -0,0 +1,30 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=unused-import
from dataclasses import dataclass
from typing import Sequence
# This kind of import is needed to avoid Sphinx errors.
import opentelemetry.sdk.metrics
import opentelemetry.sdk.resources
@dataclass
class SdkConfiguration:
exemplar_filter: "opentelemetry.sdk.metrics.ExemplarFilter"
resource: "opentelemetry.sdk.resources.Resource"
metric_readers: Sequence["opentelemetry.sdk.metrics.MetricReader"]
views: Sequence["opentelemetry.sdk.metrics.View"]

View File

@@ -0,0 +1,195 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from fnmatch import fnmatch
from logging import getLogger
from typing import Callable, Optional, Set, Type
from opentelemetry.metrics import Instrument
from opentelemetry.sdk.metrics._internal.aggregation import (
Aggregation,
DefaultAggregation,
_Aggregation,
_ExplicitBucketHistogramAggregation,
_ExponentialBucketHistogramAggregation,
)
from opentelemetry.sdk.metrics._internal.exemplar import (
AlignedHistogramBucketExemplarReservoir,
ExemplarReservoirBuilder,
SimpleFixedSizeExemplarReservoir,
)
_logger = getLogger(__name__)
def _default_reservoir_factory(
aggregation_type: Type[_Aggregation],
) -> ExemplarReservoirBuilder:
"""Default reservoir factory per aggregation."""
if issubclass(aggregation_type, _ExplicitBucketHistogramAggregation):
return AlignedHistogramBucketExemplarReservoir
if issubclass(aggregation_type, _ExponentialBucketHistogramAggregation):
return SimpleFixedSizeExemplarReservoir
return SimpleFixedSizeExemplarReservoir
class View:
"""
A `View` configuration parameters can be used for the following
purposes:
1. Match instruments: When an instrument matches a view, measurements
received by that instrument will be processed.
2. Customize metric streams: A metric stream is identified by a match
between a view and an instrument and a set of attributes. The metric
stream can be customized by certain attributes of the corresponding view.
The attributes documented next serve one of the previous two purposes.
Args:
instrument_type: This is an instrument matching attribute: the class the
instrument must be to match the view.
instrument_name: This is an instrument matching attribute: the name the
instrument must have to match the view. Wild card characters are supported. Wild
card characters should not be used with this attribute if the view has also a
``name`` defined.
meter_name: This is an instrument matching attribute: the name the
instrument meter must have to match the view.
meter_version: This is an instrument matching attribute: the version
the instrument meter must have to match the view.
meter_schema_url: This is an instrument matching attribute: the schema
URL the instrument meter must have to match the view.
name: This is a metric stream customizing attribute: the name of the
metric stream. If `None`, the name of the instrument will be used.
description: This is a metric stream customizing attribute: the
description of the metric stream. If `None`, the description of the instrument will
be used.
attribute_keys: This is a metric stream customizing attribute: this is
a set of attribute keys. If not `None` then only the measurement attributes that
are in ``attribute_keys`` will be used to identify the metric stream.
aggregation: This is a metric stream customizing attribute: the
aggregation instance to use when data is aggregated for the
corresponding metrics stream. If `None` an instance of
`DefaultAggregation` will be used.
exemplar_reservoir_factory: This is a metric stream customizing attribute:
the exemplar reservoir factory
instrument_unit: This is an instrument matching attribute: the unit the
instrument must have to match the view.
This class is not intended to be subclassed by the user.
"""
_default_aggregation = DefaultAggregation()
def __init__(
self,
instrument_type: Optional[Type[Instrument]] = None,
instrument_name: Optional[str] = None,
meter_name: Optional[str] = None,
meter_version: Optional[str] = None,
meter_schema_url: Optional[str] = None,
name: Optional[str] = None,
description: Optional[str] = None,
attribute_keys: Optional[Set[str]] = None,
aggregation: Optional[Aggregation] = None,
exemplar_reservoir_factory: Optional[
Callable[[Type[_Aggregation]], ExemplarReservoirBuilder]
] = None,
instrument_unit: Optional[str] = None,
):
if (
instrument_type
is instrument_name
is instrument_unit
is meter_name
is meter_version
is meter_schema_url
is None
):
# pylint: disable=broad-exception-raised
raise Exception(
"Some instrument selection "
f"criteria must be provided for View {name}"
)
if (
name is not None
and instrument_name is not None
and ("*" in instrument_name or "?" in instrument_name)
):
# pylint: disable=broad-exception-raised
raise Exception(
f"View {name} declared with wildcard "
"characters in instrument_name"
)
# _name, _description, _aggregation, _exemplar_reservoir_factory and
# _attribute_keys will be accessed when instantiating a _ViewInstrumentMatch.
self._name = name
self._instrument_type = instrument_type
self._instrument_name = instrument_name
self._instrument_unit = instrument_unit
self._meter_name = meter_name
self._meter_version = meter_version
self._meter_schema_url = meter_schema_url
self._description = description
self._attribute_keys = attribute_keys
self._aggregation = aggregation or self._default_aggregation
self._exemplar_reservoir_factory = (
exemplar_reservoir_factory or _default_reservoir_factory
)
# pylint: disable=too-many-return-statements
# pylint: disable=too-many-branches
def _match(self, instrument: Instrument) -> bool:
if self._instrument_type is not None:
if not isinstance(instrument, self._instrument_type):
return False
if self._instrument_name is not None:
if not fnmatch(instrument.name, self._instrument_name):
return False
if self._instrument_unit is not None:
if not fnmatch(instrument.unit, self._instrument_unit):
return False
if self._meter_name is not None:
if instrument.instrumentation_scope.name != self._meter_name:
return False
if self._meter_version is not None:
if instrument.instrumentation_scope.version != self._meter_version:
return False
if self._meter_schema_url is not None:
if (
instrument.instrumentation_scope.schema_url
!= self._meter_schema_url
):
return False
return True

View File

@@ -0,0 +1,66 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from opentelemetry.sdk.metrics._internal.export import (
AggregationTemporality,
ConsoleMetricExporter,
InMemoryMetricReader,
MetricExporter,
MetricExportResult,
MetricReader,
PeriodicExportingMetricReader,
)
# The point module is not in the export directory to avoid a circular import.
from opentelemetry.sdk.metrics._internal.point import ( # noqa: F401
Buckets,
DataPointT,
DataT,
ExponentialHistogram,
ExponentialHistogramDataPoint,
Gauge,
Histogram,
HistogramDataPoint,
Metric,
MetricsData,
NumberDataPoint,
ResourceMetrics,
ScopeMetrics,
Sum,
)
__all__ = [
"AggregationTemporality",
"Buckets",
"ConsoleMetricExporter",
"InMemoryMetricReader",
"MetricExporter",
"MetricExportResult",
"MetricReader",
"PeriodicExportingMetricReader",
"DataPointT",
"DataT",
"ExponentialHistogram",
"ExponentialHistogramDataPoint",
"Gauge",
"Histogram",
"HistogramDataPoint",
"Metric",
"MetricsData",
"NumberDataPoint",
"ResourceMetrics",
"ScopeMetrics",
"Sum",
]

View File

@@ -0,0 +1,35 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from opentelemetry.sdk.metrics._internal.aggregation import (
Aggregation,
DefaultAggregation,
DropAggregation,
ExplicitBucketHistogramAggregation,
ExponentialBucketHistogramAggregation,
LastValueAggregation,
SumAggregation,
)
from opentelemetry.sdk.metrics._internal.view import View
__all__ = [
"Aggregation",
"DefaultAggregation",
"DropAggregation",
"ExplicitBucketHistogramAggregation",
"ExponentialBucketHistogramAggregation",
"LastValueAggregation",
"SumAggregation",
"View",
]

View File

@@ -0,0 +1,541 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This package implements `OpenTelemetry Resources
<https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/resource/sdk.md#resource-sdk>`_:
*A Resource is an immutable representation of the entity producing
telemetry. For example, a process producing telemetry that is running in
a container on Kubernetes has a Pod name, it is in a namespace and
possibly is part of a Deployment which also has a name. All three of
these attributes can be included in the Resource.*
Resource objects are created with `Resource.create`, which accepts attributes
(key-values). Resources should NOT be created via constructor except by `ResourceDetector`
instances which can't use `Resource.create` to avoid infinite loops. Working with
`Resource` objects should only be done via the Resource API methods. Resource
attributes can also be passed at process invocation in the
:envvar:`OTEL_RESOURCE_ATTRIBUTES` environment variable. You should register
your resource with the `opentelemetry.sdk.trace.TracerProvider` by passing
them into their constructors. The `Resource` passed to a provider is available
to the exporter, which can send on this information as it sees fit.
.. code-block:: python
trace.set_tracer_provider(
TracerProvider(
resource=Resource.create({
"service.name": "shoppingcart",
"service.instance.id": "instance-12",
}),
),
)
print(trace.get_tracer_provider().resource.attributes)
{'telemetry.sdk.language': 'python',
'telemetry.sdk.name': 'opentelemetry',
'telemetry.sdk.version': '0.13.dev0',
'service.name': 'shoppingcart',
'service.instance.id': 'instance-12'}
Note that the OpenTelemetry project documents certain `"standard attributes"
<https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/resource/semantic_conventions/README.md>`_
that have prescribed semantic meanings, for example ``service.name`` in the
above example.
"""
import abc
import concurrent.futures
import logging
import os
import platform
import socket
import sys
import typing
from json import dumps
from os import environ
from types import ModuleType
from typing import List, MutableMapping, Optional, cast
from urllib import parse
from opentelemetry.attributes import BoundedAttributes
from opentelemetry.sdk.environment_variables import (
OTEL_EXPERIMENTAL_RESOURCE_DETECTORS,
OTEL_RESOURCE_ATTRIBUTES,
OTEL_SERVICE_NAME,
)
from opentelemetry.semconv.resource import ResourceAttributes
from opentelemetry.util._importlib_metadata import entry_points, version
from opentelemetry.util.types import AttributeValue
psutil: Optional[ModuleType] = None
try:
import psutil as psutil_module
psutil = psutil_module
except ImportError:
pass
LabelValue = AttributeValue
Attributes = typing.Mapping[str, LabelValue]
logger = logging.getLogger(__name__)
CLOUD_PROVIDER = ResourceAttributes.CLOUD_PROVIDER
CLOUD_ACCOUNT_ID = ResourceAttributes.CLOUD_ACCOUNT_ID
CLOUD_REGION = ResourceAttributes.CLOUD_REGION
CLOUD_AVAILABILITY_ZONE = ResourceAttributes.CLOUD_AVAILABILITY_ZONE
CONTAINER_NAME = ResourceAttributes.CONTAINER_NAME
CONTAINER_ID = ResourceAttributes.CONTAINER_ID
CONTAINER_IMAGE_NAME = ResourceAttributes.CONTAINER_IMAGE_NAME
CONTAINER_IMAGE_TAG = ResourceAttributes.CONTAINER_IMAGE_TAG
DEPLOYMENT_ENVIRONMENT = ResourceAttributes.DEPLOYMENT_ENVIRONMENT
FAAS_NAME = ResourceAttributes.FAAS_NAME
FAAS_ID = ResourceAttributes.FAAS_ID
FAAS_VERSION = ResourceAttributes.FAAS_VERSION
FAAS_INSTANCE = ResourceAttributes.FAAS_INSTANCE
HOST_NAME = ResourceAttributes.HOST_NAME
HOST_ARCH = ResourceAttributes.HOST_ARCH
HOST_TYPE = ResourceAttributes.HOST_TYPE
HOST_IMAGE_NAME = ResourceAttributes.HOST_IMAGE_NAME
HOST_IMAGE_ID = ResourceAttributes.HOST_IMAGE_ID
HOST_IMAGE_VERSION = ResourceAttributes.HOST_IMAGE_VERSION
KUBERNETES_CLUSTER_NAME = ResourceAttributes.K8S_CLUSTER_NAME
KUBERNETES_NAMESPACE_NAME = ResourceAttributes.K8S_NAMESPACE_NAME
KUBERNETES_POD_UID = ResourceAttributes.K8S_POD_UID
KUBERNETES_POD_NAME = ResourceAttributes.K8S_POD_NAME
KUBERNETES_CONTAINER_NAME = ResourceAttributes.K8S_CONTAINER_NAME
KUBERNETES_REPLICA_SET_UID = ResourceAttributes.K8S_REPLICASET_UID
KUBERNETES_REPLICA_SET_NAME = ResourceAttributes.K8S_REPLICASET_NAME
KUBERNETES_DEPLOYMENT_UID = ResourceAttributes.K8S_DEPLOYMENT_UID
KUBERNETES_DEPLOYMENT_NAME = ResourceAttributes.K8S_DEPLOYMENT_NAME
KUBERNETES_STATEFUL_SET_UID = ResourceAttributes.K8S_STATEFULSET_UID
KUBERNETES_STATEFUL_SET_NAME = ResourceAttributes.K8S_STATEFULSET_NAME
KUBERNETES_DAEMON_SET_UID = ResourceAttributes.K8S_DAEMONSET_UID
KUBERNETES_DAEMON_SET_NAME = ResourceAttributes.K8S_DAEMONSET_NAME
KUBERNETES_JOB_UID = ResourceAttributes.K8S_JOB_UID
KUBERNETES_JOB_NAME = ResourceAttributes.K8S_JOB_NAME
KUBERNETES_CRON_JOB_UID = ResourceAttributes.K8S_CRONJOB_UID
KUBERNETES_CRON_JOB_NAME = ResourceAttributes.K8S_CRONJOB_NAME
OS_DESCRIPTION = ResourceAttributes.OS_DESCRIPTION
OS_TYPE = ResourceAttributes.OS_TYPE
OS_VERSION = ResourceAttributes.OS_VERSION
PROCESS_PID = ResourceAttributes.PROCESS_PID
PROCESS_PARENT_PID = ResourceAttributes.PROCESS_PARENT_PID
PROCESS_EXECUTABLE_NAME = ResourceAttributes.PROCESS_EXECUTABLE_NAME
PROCESS_EXECUTABLE_PATH = ResourceAttributes.PROCESS_EXECUTABLE_PATH
PROCESS_COMMAND = ResourceAttributes.PROCESS_COMMAND
PROCESS_COMMAND_LINE = ResourceAttributes.PROCESS_COMMAND_LINE
PROCESS_COMMAND_ARGS = ResourceAttributes.PROCESS_COMMAND_ARGS
PROCESS_OWNER = ResourceAttributes.PROCESS_OWNER
PROCESS_RUNTIME_NAME = ResourceAttributes.PROCESS_RUNTIME_NAME
PROCESS_RUNTIME_VERSION = ResourceAttributes.PROCESS_RUNTIME_VERSION
PROCESS_RUNTIME_DESCRIPTION = ResourceAttributes.PROCESS_RUNTIME_DESCRIPTION
SERVICE_NAME = ResourceAttributes.SERVICE_NAME
SERVICE_NAMESPACE = ResourceAttributes.SERVICE_NAMESPACE
SERVICE_INSTANCE_ID = ResourceAttributes.SERVICE_INSTANCE_ID
SERVICE_VERSION = ResourceAttributes.SERVICE_VERSION
TELEMETRY_SDK_NAME = ResourceAttributes.TELEMETRY_SDK_NAME
TELEMETRY_SDK_VERSION = ResourceAttributes.TELEMETRY_SDK_VERSION
TELEMETRY_AUTO_VERSION = ResourceAttributes.TELEMETRY_AUTO_VERSION
TELEMETRY_SDK_LANGUAGE = ResourceAttributes.TELEMETRY_SDK_LANGUAGE
_OPENTELEMETRY_SDK_VERSION: str = version("opentelemetry-sdk")
class Resource:
"""A Resource is an immutable representation of the entity producing telemetry as Attributes."""
_attributes: BoundedAttributes
_schema_url: str
def __init__(
self, attributes: Attributes, schema_url: typing.Optional[str] = None
):
self._attributes = BoundedAttributes(attributes=attributes)
if schema_url is None:
schema_url = ""
self._schema_url = schema_url
@staticmethod
def create(
attributes: typing.Optional[Attributes] = None,
schema_url: typing.Optional[str] = None,
) -> "Resource":
"""Creates a new `Resource` from attributes.
`ResourceDetector` instances should not call this method.
Args:
attributes: Optional zero or more key-value pairs.
schema_url: Optional URL pointing to the schema
Returns:
The newly-created Resource.
"""
if not attributes:
attributes = {}
otel_experimental_resource_detectors = {"otel"}.union(
{
otel_experimental_resource_detector.strip()
for otel_experimental_resource_detector in environ.get(
OTEL_EXPERIMENTAL_RESOURCE_DETECTORS, ""
).split(",")
if otel_experimental_resource_detector
}
)
resource_detectors: List[ResourceDetector] = []
resource_detector: str
for resource_detector in otel_experimental_resource_detectors:
try:
resource_detectors.append(
next(
iter(
entry_points(
group="opentelemetry_resource_detector",
name=resource_detector.strip(),
) # type: ignore
)
).load()()
)
except Exception: # pylint: disable=broad-exception-caught
logger.exception(
"Failed to load resource detector '%s', skipping",
resource_detector,
)
continue
resource = get_aggregated_resources(
resource_detectors, _DEFAULT_RESOURCE
).merge(Resource(attributes, schema_url))
if not resource.attributes.get(SERVICE_NAME, None):
default_service_name = "unknown_service"
process_executable_name = cast(
Optional[str],
resource.attributes.get(PROCESS_EXECUTABLE_NAME, None),
)
if process_executable_name:
default_service_name += ":" + process_executable_name
resource = resource.merge(
Resource({SERVICE_NAME: default_service_name}, schema_url)
)
return resource
@staticmethod
def get_empty() -> "Resource":
return _EMPTY_RESOURCE
@property
def attributes(self) -> Attributes:
return self._attributes
@property
def schema_url(self) -> str:
return self._schema_url
def merge(self, other: "Resource") -> "Resource":
"""Merges this resource and an updating resource into a new `Resource`.
If a key exists on both the old and updating resource, the value of the
updating resource will override the old resource value.
The updating resource's `schema_url` will be used only if the old
`schema_url` is empty. Attempting to merge two resources with
different, non-empty values for `schema_url` will result in an error
and return the old resource.
Args:
other: The other resource to be merged.
Returns:
The newly-created Resource.
"""
merged_attributes = self.attributes.copy() # type: ignore
merged_attributes.update(other.attributes) # type: ignore
if self.schema_url == "":
schema_url = other.schema_url
elif other.schema_url == "":
schema_url = self.schema_url
elif self.schema_url == other.schema_url:
schema_url = other.schema_url
else:
logger.error(
"Failed to merge resources: The two schemas %s and %s are incompatible",
self.schema_url,
other.schema_url,
)
return self
return Resource(merged_attributes, schema_url) # type: ignore
def __eq__(self, other: object) -> bool:
if not isinstance(other, Resource):
return False
return (
self._attributes == other._attributes
and self._schema_url == other._schema_url
)
def __hash__(self) -> int:
return hash(
f"{dumps(self._attributes.copy(), sort_keys=True)}|{self._schema_url}" # type: ignore
)
def to_json(self, indent: Optional[int] = 4) -> str:
attributes: MutableMapping[str, AttributeValue] = dict(
self._attributes
)
return dumps(
{
"attributes": attributes, # type: ignore
"schema_url": self._schema_url,
},
indent=indent,
)
_EMPTY_RESOURCE = Resource({})
_DEFAULT_RESOURCE = Resource(
{
TELEMETRY_SDK_LANGUAGE: "python",
TELEMETRY_SDK_NAME: "opentelemetry",
TELEMETRY_SDK_VERSION: _OPENTELEMETRY_SDK_VERSION,
}
)
class ResourceDetector(abc.ABC):
def __init__(self, raise_on_error: bool = False) -> None:
self.raise_on_error = raise_on_error
@abc.abstractmethod
def detect(self) -> "Resource":
"""Don't call `Resource.create` here to avoid an infinite loop, instead instantiate `Resource` directly"""
raise NotImplementedError()
class OTELResourceDetector(ResourceDetector):
# pylint: disable=no-self-use
def detect(self) -> "Resource":
env_resources_items = environ.get(OTEL_RESOURCE_ATTRIBUTES)
env_resource_map = {}
if env_resources_items:
for item in env_resources_items.split(","):
try:
key, value = item.split("=", maxsplit=1)
except ValueError as exc:
logger.warning(
"Invalid key value resource attribute pair %s: %s",
item,
exc,
)
continue
value_url_decoded = parse.unquote(value.strip())
env_resource_map[key.strip()] = value_url_decoded
service_name = environ.get(OTEL_SERVICE_NAME)
if service_name:
env_resource_map[SERVICE_NAME] = service_name
return Resource(env_resource_map)
class ProcessResourceDetector(ResourceDetector):
# pylint: disable=no-self-use
def detect(self) -> "Resource":
_runtime_version = ".".join(
map(
str,
(
sys.version_info[:3]
if sys.version_info.releaselevel == "final"
and not sys.version_info.serial
else sys.version_info
),
)
)
_process_pid = os.getpid()
_process_executable_name = sys.executable
_process_executable_path = os.path.dirname(_process_executable_name)
_process_command = sys.argv[0]
_process_command_line = " ".join(sys.argv)
_process_command_args = sys.argv
resource_info = {
PROCESS_RUNTIME_DESCRIPTION: sys.version,
PROCESS_RUNTIME_NAME: sys.implementation.name,
PROCESS_RUNTIME_VERSION: _runtime_version,
PROCESS_PID: _process_pid,
PROCESS_EXECUTABLE_NAME: _process_executable_name,
PROCESS_EXECUTABLE_PATH: _process_executable_path,
PROCESS_COMMAND: _process_command,
PROCESS_COMMAND_LINE: _process_command_line,
PROCESS_COMMAND_ARGS: _process_command_args,
}
if hasattr(os, "getppid"):
# pypy3 does not have getppid()
resource_info[PROCESS_PARENT_PID] = os.getppid()
if psutil is not None:
process: psutil_module.Process = psutil.Process()
username = process.username()
resource_info[PROCESS_OWNER] = username
return Resource(resource_info) # type: ignore
class OsResourceDetector(ResourceDetector):
"""Detect os resources based on `Operating System conventions <https://opentelemetry.io/docs/specs/semconv/resource/os/>`_."""
def detect(self) -> "Resource":
"""Returns a resource with with ``os.type`` and ``os.version``.
Python's platform library
~~~~~~~~~~~~~~~~~~~~~~~~~
To grab this information, Python's ``platform`` does not return what a
user might expect it to. Below is a breakdown of its return values in
different operating systems.
.. code-block:: python
:caption: Linux
>>> platform.system()
'Linux'
>>> platform.release()
'6.5.0-35-generic'
>>> platform.version()
'#35~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue May 7 09:00:52 UTC 2'
.. code-block:: python
:caption: MacOS
>>> platform.system()
'Darwin'
>>> platform.release()
'23.0.0'
>>> platform.version()
'Darwin Kernel Version 23.0.0: Fri Sep 15 14:42:57 PDT 2023; root:xnu-10002.1.13~1/RELEASE_ARM64_T8112'
.. code-block:: python
:caption: Windows
>>> platform.system()
'Windows'
>>> platform.release()
'2022Server'
>>> platform.version()
'10.0.20348'
.. code-block:: python
:caption: FreeBSD
>>> platform.system()
'FreeBSD'
>>> platform.release()
'14.1-RELEASE'
>>> platform.version()
'FreeBSD 14.1-RELEASE releng/14.1-n267679-10e31f0946d8 GENERIC'
.. code-block:: python
:caption: Solaris
>>> platform.system()
'SunOS'
>>> platform.release()
'5.11'
>>> platform.version()
'11.4.0.15.0'
"""
os_type = platform.system().lower()
os_version = platform.release()
# See docstring
if os_type == "windows":
os_version = platform.version()
# Align SunOS with conventions
elif os_type == "sunos":
os_type = "solaris"
os_version = platform.version()
return Resource(
{
OS_TYPE: os_type,
OS_VERSION: os_version,
}
)
class _HostResourceDetector(ResourceDetector):
"""
The HostResourceDetector detects the hostname and architecture attributes.
"""
def detect(self) -> "Resource":
return Resource(
{
HOST_NAME: socket.gethostname(),
HOST_ARCH: platform.machine(),
}
)
def get_aggregated_resources(
detectors: typing.List["ResourceDetector"],
initial_resource: typing.Optional[Resource] = None,
timeout: int = 5,
) -> "Resource":
"""Retrieves resources from detectors in the order that they were passed
:param detectors: List of resources in order of priority
:param initial_resource: Static resource. This has highest priority
:param timeout: Number of seconds to wait for each detector to return
:return:
"""
detectors_merged_resource = initial_resource or Resource.create()
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(detector.detect) for detector in detectors]
for detector_ind, future in enumerate(futures):
detector = detectors[detector_ind]
detected_resource: Resource = _EMPTY_RESOURCE
try:
detected_resource = future.result(timeout=timeout)
except concurrent.futures.TimeoutError as ex:
if detector.raise_on_error:
raise ex
logger.warning(
"Detector %s took longer than %s seconds, skipping",
detector,
timeout,
)
# pylint: disable=broad-exception-caught
except Exception as ex:
if detector.raise_on_error:
raise ex
logger.warning(
"Exception %s in detector %s, ignoring", ex, detector
)
finally:
detectors_merged_resource = detectors_merged_resource.merge(
detected_resource
)
return detectors_merged_resource

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,519 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import collections
import logging
import os
import sys
import threading
import typing
import weakref
from enum import Enum
from os import environ, linesep
from time import time_ns
from opentelemetry.context import (
_SUPPRESS_INSTRUMENTATION_KEY,
Context,
attach,
detach,
set_value,
)
from opentelemetry.sdk.environment_variables import (
OTEL_BSP_EXPORT_TIMEOUT,
OTEL_BSP_MAX_EXPORT_BATCH_SIZE,
OTEL_BSP_MAX_QUEUE_SIZE,
OTEL_BSP_SCHEDULE_DELAY,
)
from opentelemetry.sdk.trace import ReadableSpan, Span, SpanProcessor
from opentelemetry.util._once import Once
_DEFAULT_SCHEDULE_DELAY_MILLIS = 5000
_DEFAULT_MAX_EXPORT_BATCH_SIZE = 512
_DEFAULT_EXPORT_TIMEOUT_MILLIS = 30000
_DEFAULT_MAX_QUEUE_SIZE = 2048
_ENV_VAR_INT_VALUE_ERROR_MESSAGE = (
"Unable to parse value for %s as integer. Defaulting to %s."
)
logger = logging.getLogger(__name__)
class SpanExportResult(Enum):
SUCCESS = 0
FAILURE = 1
class SpanExporter:
"""Interface for exporting spans.
Interface to be implemented by services that want to export spans recorded
in their own format.
To export data this MUST be registered to the :class`opentelemetry.sdk.trace.Tracer` using a
`SimpleSpanProcessor` or a `BatchSpanProcessor`.
"""
def export(
self, spans: typing.Sequence[ReadableSpan]
) -> "SpanExportResult":
"""Exports a batch of telemetry data.
Args:
spans: The list of `opentelemetry.trace.Span` objects to be exported
Returns:
The result of the export
"""
def shutdown(self) -> None:
"""Shuts down the exporter.
Called when the SDK is shut down.
"""
def force_flush(self, timeout_millis: int = 30000) -> bool:
"""Hint to ensure that the export of any spans the exporter has received
prior to the call to ForceFlush SHOULD be completed as soon as possible, preferably
before returning from this method.
"""
class SimpleSpanProcessor(SpanProcessor):
"""Simple SpanProcessor implementation.
SimpleSpanProcessor is an implementation of `SpanProcessor` that
passes ended spans directly to the configured `SpanExporter`.
"""
def __init__(self, span_exporter: SpanExporter):
self.span_exporter = span_exporter
def on_start(
self, span: Span, parent_context: typing.Optional[Context] = None
) -> None:
pass
def on_end(self, span: ReadableSpan) -> None:
if not span.context.trace_flags.sampled:
return
token = attach(set_value(_SUPPRESS_INSTRUMENTATION_KEY, True))
try:
self.span_exporter.export((span,))
# pylint: disable=broad-exception-caught
except Exception:
logger.exception("Exception while exporting Span.")
detach(token)
def shutdown(self) -> None:
self.span_exporter.shutdown()
def force_flush(self, timeout_millis: int = 30000) -> bool:
# pylint: disable=unused-argument
return True
class _FlushRequest:
"""Represents a request for the BatchSpanProcessor to flush spans."""
__slots__ = ["event", "num_spans"]
def __init__(self):
self.event = threading.Event()
self.num_spans = 0
_BSP_RESET_ONCE = Once()
class BatchSpanProcessor(SpanProcessor):
"""Batch span processor implementation.
`BatchSpanProcessor` is an implementation of `SpanProcessor` that
batches ended spans and pushes them to the configured `SpanExporter`.
`BatchSpanProcessor` is configurable with the following environment
variables which correspond to constructor parameters:
- :envvar:`OTEL_BSP_SCHEDULE_DELAY`
- :envvar:`OTEL_BSP_MAX_QUEUE_SIZE`
- :envvar:`OTEL_BSP_MAX_EXPORT_BATCH_SIZE`
- :envvar:`OTEL_BSP_EXPORT_TIMEOUT`
"""
def __init__(
self,
span_exporter: SpanExporter,
max_queue_size: int | None = None,
schedule_delay_millis: float | None = None,
max_export_batch_size: int | None = None,
export_timeout_millis: float | None = None,
):
if max_queue_size is None:
max_queue_size = BatchSpanProcessor._default_max_queue_size()
if schedule_delay_millis is None:
schedule_delay_millis = (
BatchSpanProcessor._default_schedule_delay_millis()
)
if max_export_batch_size is None:
max_export_batch_size = (
BatchSpanProcessor._default_max_export_batch_size()
)
if export_timeout_millis is None:
export_timeout_millis = (
BatchSpanProcessor._default_export_timeout_millis()
)
BatchSpanProcessor._validate_arguments(
max_queue_size, schedule_delay_millis, max_export_batch_size
)
self.span_exporter = span_exporter
self.queue = collections.deque([], max_queue_size) # type: typing.Deque[Span]
self.worker_thread = threading.Thread(
name="OtelBatchSpanProcessor", target=self.worker, daemon=True
)
self.condition = threading.Condition(threading.Lock())
self._flush_request = None # type: typing.Optional[_FlushRequest]
self.schedule_delay_millis = schedule_delay_millis
self.max_export_batch_size = max_export_batch_size
self.max_queue_size = max_queue_size
self.export_timeout_millis = export_timeout_millis
self.done = False
# flag that indicates that spans are being dropped
self._spans_dropped = False
# precallocated list to send spans to exporter
self.spans_list = [None] * self.max_export_batch_size # type: typing.List[typing.Optional[Span]]
self.worker_thread.start()
if hasattr(os, "register_at_fork"):
weak_reinit = weakref.WeakMethod(self._at_fork_reinit)
os.register_at_fork(after_in_child=lambda: weak_reinit()()) # pylint: disable=unnecessary-lambda
self._pid = os.getpid()
def on_start(
self, span: Span, parent_context: Context | None = None
) -> None:
pass
def on_end(self, span: ReadableSpan) -> None:
if self.done:
logger.warning("Already shutdown, dropping span.")
return
if not span.context.trace_flags.sampled:
return
if self._pid != os.getpid():
_BSP_RESET_ONCE.do_once(self._at_fork_reinit)
if len(self.queue) == self.max_queue_size:
if not self._spans_dropped:
logger.warning("Queue is full, likely spans will be dropped.")
self._spans_dropped = True
self.queue.appendleft(span)
if len(self.queue) >= self.max_export_batch_size:
with self.condition:
self.condition.notify()
def _at_fork_reinit(self):
self.condition = threading.Condition(threading.Lock())
self.queue.clear()
# worker_thread is local to a process, only the thread that issued fork continues
# to exist. A new worker thread must be started in child process.
self.worker_thread = threading.Thread(
name="OtelBatchSpanProcessor", target=self.worker, daemon=True
)
self.worker_thread.start()
self._pid = os.getpid()
def worker(self):
timeout = self.schedule_delay_millis / 1e3
flush_request = None # type: typing.Optional[_FlushRequest]
while not self.done:
with self.condition:
if self.done:
# done flag may have changed, avoid waiting
break
flush_request = self._get_and_unset_flush_request()
if (
len(self.queue) < self.max_export_batch_size
and flush_request is None
):
self.condition.wait(timeout)
flush_request = self._get_and_unset_flush_request()
if not self.queue:
# spurious notification, let's wait again, reset timeout
timeout = self.schedule_delay_millis / 1e3
self._notify_flush_request_finished(flush_request)
flush_request = None
continue
if self.done:
# missing spans will be sent when calling flush
break
# subtract the duration of this export call to the next timeout
start = time_ns()
self._export(flush_request)
end = time_ns()
duration = (end - start) / 1e9
timeout = self.schedule_delay_millis / 1e3 - duration
self._notify_flush_request_finished(flush_request)
flush_request = None
# there might have been a new flush request while export was running
# and before the done flag switched to true
with self.condition:
shutdown_flush_request = self._get_and_unset_flush_request()
# be sure that all spans are sent
self._drain_queue()
self._notify_flush_request_finished(flush_request)
self._notify_flush_request_finished(shutdown_flush_request)
def _get_and_unset_flush_request(
self,
) -> typing.Optional[_FlushRequest]:
"""Returns the current flush request and makes it invisible to the
worker thread for subsequent calls.
"""
flush_request = self._flush_request
self._flush_request = None
if flush_request is not None:
flush_request.num_spans = len(self.queue)
return flush_request
@staticmethod
def _notify_flush_request_finished(
flush_request: typing.Optional[_FlushRequest],
):
"""Notifies the flush initiator(s) waiting on the given request/event
that the flush operation was finished.
"""
if flush_request is not None:
flush_request.event.set()
def _get_or_create_flush_request(self) -> _FlushRequest:
"""Either returns the current active flush event or creates a new one.
The flush event will be visible and read by the worker thread before an
export operation starts. Callers of a flush operation may wait on the
returned event to be notified when the flush/export operation was
finished.
This method is not thread-safe, i.e. callers need to take care about
synchronization/locking.
"""
if self._flush_request is None:
self._flush_request = _FlushRequest()
return self._flush_request
def _export(self, flush_request: typing.Optional[_FlushRequest]):
"""Exports spans considering the given flush_request.
In case of a given flush_requests spans are exported in batches until
the number of exported spans reached or exceeded the number of spans in
the flush request.
In no flush_request was given at most max_export_batch_size spans are
exported.
"""
if not flush_request:
self._export_batch()
return
num_spans = flush_request.num_spans
while self.queue:
num_exported = self._export_batch()
num_spans -= num_exported
if num_spans <= 0:
break
def _export_batch(self) -> int:
"""Exports at most max_export_batch_size spans and returns the number of
exported spans.
"""
idx = 0
# currently only a single thread acts as consumer, so queue.pop() will
# not raise an exception
while idx < self.max_export_batch_size and self.queue:
self.spans_list[idx] = self.queue.pop()
idx += 1
token = attach(set_value(_SUPPRESS_INSTRUMENTATION_KEY, True))
try:
# Ignore type b/c the Optional[None]+slicing is too "clever"
# for mypy
self.span_exporter.export(self.spans_list[:idx]) # type: ignore
except Exception: # pylint: disable=broad-exception-caught
logger.exception("Exception while exporting Span batch.")
detach(token)
# clean up list
for index in range(idx):
self.spans_list[index] = None
return idx
def _drain_queue(self):
"""Export all elements until queue is empty.
Can only be called from the worker thread context because it invokes
`export` that is not thread safe.
"""
while self.queue:
self._export_batch()
def force_flush(self, timeout_millis: int | None = None) -> bool:
if timeout_millis is None:
timeout_millis = self.export_timeout_millis
if self.done:
logger.warning("Already shutdown, ignoring call to force_flush().")
return True
with self.condition:
flush_request = self._get_or_create_flush_request()
# signal the worker thread to flush and wait for it to finish
self.condition.notify_all()
# wait for token to be processed
ret = flush_request.event.wait(timeout_millis / 1e3)
if not ret:
logger.warning("Timeout was exceeded in force_flush().")
return ret
def shutdown(self) -> None:
# signal the worker thread to finish and then wait for it
self.done = True
with self.condition:
self.condition.notify_all()
self.worker_thread.join()
self.span_exporter.shutdown()
@staticmethod
def _default_max_queue_size():
try:
return int(
environ.get(OTEL_BSP_MAX_QUEUE_SIZE, _DEFAULT_MAX_QUEUE_SIZE)
)
except ValueError:
logger.exception(
_ENV_VAR_INT_VALUE_ERROR_MESSAGE,
OTEL_BSP_MAX_QUEUE_SIZE,
_DEFAULT_MAX_QUEUE_SIZE,
)
return _DEFAULT_MAX_QUEUE_SIZE
@staticmethod
def _default_schedule_delay_millis():
try:
return int(
environ.get(
OTEL_BSP_SCHEDULE_DELAY, _DEFAULT_SCHEDULE_DELAY_MILLIS
)
)
except ValueError:
logger.exception(
_ENV_VAR_INT_VALUE_ERROR_MESSAGE,
OTEL_BSP_SCHEDULE_DELAY,
_DEFAULT_SCHEDULE_DELAY_MILLIS,
)
return _DEFAULT_SCHEDULE_DELAY_MILLIS
@staticmethod
def _default_max_export_batch_size():
try:
return int(
environ.get(
OTEL_BSP_MAX_EXPORT_BATCH_SIZE,
_DEFAULT_MAX_EXPORT_BATCH_SIZE,
)
)
except ValueError:
logger.exception(
_ENV_VAR_INT_VALUE_ERROR_MESSAGE,
OTEL_BSP_MAX_EXPORT_BATCH_SIZE,
_DEFAULT_MAX_EXPORT_BATCH_SIZE,
)
return _DEFAULT_MAX_EXPORT_BATCH_SIZE
@staticmethod
def _default_export_timeout_millis():
try:
return int(
environ.get(
OTEL_BSP_EXPORT_TIMEOUT, _DEFAULT_EXPORT_TIMEOUT_MILLIS
)
)
except ValueError:
logger.exception(
_ENV_VAR_INT_VALUE_ERROR_MESSAGE,
OTEL_BSP_EXPORT_TIMEOUT,
_DEFAULT_EXPORT_TIMEOUT_MILLIS,
)
return _DEFAULT_EXPORT_TIMEOUT_MILLIS
@staticmethod
def _validate_arguments(
max_queue_size, schedule_delay_millis, max_export_batch_size
):
if max_queue_size <= 0:
raise ValueError("max_queue_size must be a positive integer.")
if schedule_delay_millis <= 0:
raise ValueError("schedule_delay_millis must be positive.")
if max_export_batch_size <= 0:
raise ValueError(
"max_export_batch_size must be a positive integer."
)
if max_export_batch_size > max_queue_size:
raise ValueError(
"max_export_batch_size must be less than or equal to max_queue_size."
)
class ConsoleSpanExporter(SpanExporter):
"""Implementation of :class:`SpanExporter` that prints spans to the
console.
This class can be used for diagnostic purposes. It prints the exported
spans to the console STDOUT.
"""
def __init__(
self,
service_name: str | None = None,
out: typing.IO = sys.stdout,
formatter: typing.Callable[
[ReadableSpan], str
] = lambda span: span.to_json() + linesep,
):
self.out = out
self.formatter = formatter
self.service_name = service_name
def export(self, spans: typing.Sequence[ReadableSpan]) -> SpanExportResult:
for span in spans:
self.out.write(self.formatter(span))
self.out.flush()
return SpanExportResult.SUCCESS
def force_flush(self, timeout_millis: int = 30000) -> bool:
return True

View File

@@ -0,0 +1,61 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import threading
import typing
from opentelemetry.sdk.trace import ReadableSpan
from opentelemetry.sdk.trace.export import SpanExporter, SpanExportResult
class InMemorySpanExporter(SpanExporter):
"""Implementation of :class:`.SpanExporter` that stores spans in memory.
This class can be used for testing purposes. It stores the exported spans
in a list in memory that can be retrieved using the
:func:`.get_finished_spans` method.
"""
def __init__(self) -> None:
self._finished_spans: typing.List[ReadableSpan] = []
self._stopped = False
self._lock = threading.Lock()
def clear(self) -> None:
"""Clear list of collected spans."""
with self._lock:
self._finished_spans.clear()
def get_finished_spans(self) -> typing.Tuple[ReadableSpan, ...]:
"""Get list of collected spans."""
with self._lock:
return tuple(self._finished_spans)
def export(self, spans: typing.Sequence[ReadableSpan]) -> SpanExportResult:
"""Stores a list of spans in memory."""
if self._stopped:
return SpanExportResult.FAILURE
with self._lock:
self._finished_spans.extend(spans)
return SpanExportResult.SUCCESS
def shutdown(self) -> None:
"""Shut downs the exporter.
Calls to export after the exporter has been shut down will fail.
"""
self._stopped = True
def force_flush(self, timeout_millis: int = 30000) -> bool:
return True

View File

@@ -0,0 +1,60 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
import random
from opentelemetry import trace
class IdGenerator(abc.ABC):
@abc.abstractmethod
def generate_span_id(self) -> int:
"""Get a new span ID.
Returns:
A 64-bit int for use as a span ID
"""
@abc.abstractmethod
def generate_trace_id(self) -> int:
"""Get a new trace ID.
Implementations should at least make the 64 least significant bits
uniformly random. Samplers like the `TraceIdRatioBased` sampler rely on
this randomness to make sampling decisions.
See `the specification on TraceIdRatioBased <https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/trace/sdk.md#traceidratiobased>`_.
Returns:
A 128-bit int for use as a trace ID
"""
class RandomIdGenerator(IdGenerator):
"""The default ID generator for TracerProvider which randomly generates all
bits when generating IDs.
"""
def generate_span_id(self) -> int:
span_id = random.getrandbits(64)
while span_id == trace.INVALID_SPAN_ID:
span_id = random.getrandbits(64)
return span_id
def generate_trace_id(self) -> int:
trace_id = random.getrandbits(128)
while trace_id == trace.INVALID_TRACE_ID:
trace_id = random.getrandbits(128)
return trace_id

View File

@@ -0,0 +1,453 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
For general information about sampling, see `the specification <https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/trace/sdk.md#sampling>`_.
OpenTelemetry provides two types of samplers:
- `StaticSampler`
- `TraceIdRatioBased`
A `StaticSampler` always returns the same sampling result regardless of the conditions. Both possible StaticSamplers are already created:
- Always sample spans: ALWAYS_ON
- Never sample spans: ALWAYS_OFF
A `TraceIdRatioBased` sampler makes a random sampling result based on the sampling probability given.
If the span being sampled has a parent, `ParentBased` will respect the parent delegate sampler. Otherwise, it returns the sampling result from the given root sampler.
Currently, sampling results are always made during the creation of the span. However, this might not always be the case in the future (see `OTEP #115 <https://github.com/open-telemetry/oteps/pull/115>`_).
Custom samplers can be created by subclassing `Sampler` and implementing `Sampler.should_sample` as well as `Sampler.get_description`.
Samplers are able to modify the `opentelemetry.trace.span.TraceState` of the parent of the span being created. For custom samplers, it is suggested to implement `Sampler.should_sample` to utilize the
parent span context's `opentelemetry.trace.span.TraceState` and pass into the `SamplingResult` instead of the explicit trace_state field passed into the parameter of `Sampler.should_sample`.
To use a sampler, pass it into the tracer provider constructor. For example:
.. code:: python
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import (
ConsoleSpanExporter,
SimpleSpanProcessor,
)
from opentelemetry.sdk.trace.sampling import TraceIdRatioBased
# sample 1 in every 1000 traces
sampler = TraceIdRatioBased(1/1000)
# set the sampler onto the global tracer provider
trace.set_tracer_provider(TracerProvider(sampler=sampler))
# set up an exporter for sampled spans
trace.get_tracer_provider().add_span_processor(
SimpleSpanProcessor(ConsoleSpanExporter())
)
# created spans will now be sampled by the TraceIdRatioBased sampler
with trace.get_tracer(__name__).start_as_current_span("Test Span"):
...
The tracer sampler can also be configured via environment variables ``OTEL_TRACES_SAMPLER`` and ``OTEL_TRACES_SAMPLER_ARG`` (only if applicable).
The list of built-in values for ``OTEL_TRACES_SAMPLER`` are:
* always_on - Sampler that always samples spans, regardless of the parent span's sampling decision.
* always_off - Sampler that never samples spans, regardless of the parent span's sampling decision.
* traceidratio - Sampler that samples probabilistically based on rate.
* parentbased_always_on - (default) Sampler that respects its parent span's sampling decision, but otherwise always samples.
* parentbased_always_off - Sampler that respects its parent span's sampling decision, but otherwise never samples.
* parentbased_traceidratio - Sampler that respects its parent span's sampling decision, but otherwise samples probabilistically based on rate.
Sampling probability can be set with ``OTEL_TRACES_SAMPLER_ARG`` if the sampler is traceidratio or parentbased_traceidratio. Rate must be in the range [0.0,1.0]. When not provided rate will be set to
1.0 (maximum rate possible).
Prev example but with environment variables. Please make sure to set the env ``OTEL_TRACES_SAMPLER=traceidratio`` and ``OTEL_TRACES_SAMPLER_ARG=0.001``.
.. code:: python
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import (
ConsoleSpanExporter,
SimpleSpanProcessor,
)
trace.set_tracer_provider(TracerProvider())
# set up an exporter for sampled spans
trace.get_tracer_provider().add_span_processor(
SimpleSpanProcessor(ConsoleSpanExporter())
)
# created spans will now be sampled by the TraceIdRatioBased sampler with rate 1/1000.
with trace.get_tracer(__name__).start_as_current_span("Test Span"):
...
When utilizing a configurator, you can configure a custom sampler. In order to create a configurable custom sampler, create an entry point for the custom sampler
factory method or function under the entry point group, ``opentelemetry_traces_sampler``. The custom sampler factory method must be of type ``Callable[[str], Sampler]``, taking a single string argument and
returning a Sampler object. The single input will come from the string value of the ``OTEL_TRACES_SAMPLER_ARG`` environment variable. If ``OTEL_TRACES_SAMPLER_ARG`` is not configured, the input will
be an empty string. For example:
.. code:: python
setup(
...
entry_points={
...
"opentelemetry_traces_sampler": [
"custom_sampler_name = path.to.sampler.factory.method:CustomSamplerFactory.get_sampler"
]
}
)
# ...
class CustomRatioSampler(Sampler):
def __init__(rate):
# ...
# ...
class CustomSamplerFactory:
@staticmethod
def get_sampler(sampler_argument):
try:
rate = float(sampler_argument)
return CustomSampler(rate)
except ValueError: # In case argument is empty string.
return CustomSampler(0.5)
In order to configure you application with a custom sampler's entry point, set the ``OTEL_TRACES_SAMPLER`` environment variable to the key name of the entry point. For example, to configured the
above sampler, set ``OTEL_TRACES_SAMPLER=custom_sampler_name`` and ``OTEL_TRACES_SAMPLER_ARG=0.5``.
"""
import abc
import enum
import os
from logging import getLogger
from types import MappingProxyType
from typing import Optional, Sequence
# pylint: disable=unused-import
from opentelemetry.context import Context
from opentelemetry.sdk.environment_variables import (
OTEL_TRACES_SAMPLER,
OTEL_TRACES_SAMPLER_ARG,
)
from opentelemetry.trace import Link, SpanKind, get_current_span
from opentelemetry.trace.span import TraceState
from opentelemetry.util.types import Attributes
_logger = getLogger(__name__)
class Decision(enum.Enum):
# IsRecording() == false, span will not be recorded and all events and attributes will be dropped.
DROP = 0
# IsRecording() == true, but Sampled flag MUST NOT be set.
RECORD_ONLY = 1
# IsRecording() == true AND Sampled flag` MUST be set.
RECORD_AND_SAMPLE = 2
def is_recording(self):
return self in (Decision.RECORD_ONLY, Decision.RECORD_AND_SAMPLE)
def is_sampled(self):
return self is Decision.RECORD_AND_SAMPLE
class SamplingResult:
"""A sampling result as applied to a newly-created Span.
Args:
decision: A sampling decision based off of whether the span is recorded
and the sampled flag in trace flags in the span context.
attributes: Attributes to add to the `opentelemetry.trace.Span`.
trace_state: The tracestate used for the `opentelemetry.trace.Span`.
Could possibly have been modified by the sampler.
"""
def __repr__(self) -> str:
return f"{type(self).__name__}({str(self.decision)}, attributes={str(self.attributes)})"
def __init__(
self,
decision: Decision,
attributes: "Attributes" = None,
trace_state: Optional["TraceState"] = None,
) -> None:
self.decision = decision
if attributes is None:
self.attributes = MappingProxyType({})
else:
self.attributes = MappingProxyType(attributes)
self.trace_state = trace_state
class Sampler(abc.ABC):
@abc.abstractmethod
def should_sample(
self,
parent_context: Optional["Context"],
trace_id: int,
name: str,
kind: Optional[SpanKind] = None,
attributes: Attributes = None,
links: Optional[Sequence["Link"]] = None,
trace_state: Optional["TraceState"] = None,
) -> "SamplingResult":
pass
@abc.abstractmethod
def get_description(self) -> str:
pass
class StaticSampler(Sampler):
"""Sampler that always returns the same decision."""
def __init__(self, decision: "Decision") -> None:
self._decision = decision
def should_sample(
self,
parent_context: Optional["Context"],
trace_id: int,
name: str,
kind: Optional[SpanKind] = None,
attributes: Attributes = None,
links: Optional[Sequence["Link"]] = None,
trace_state: Optional["TraceState"] = None,
) -> "SamplingResult":
if self._decision is Decision.DROP:
attributes = None
return SamplingResult(
self._decision,
attributes,
_get_parent_trace_state(parent_context),
)
def get_description(self) -> str:
if self._decision is Decision.DROP:
return "AlwaysOffSampler"
return "AlwaysOnSampler"
ALWAYS_OFF = StaticSampler(Decision.DROP)
"""Sampler that never samples spans, regardless of the parent span's sampling decision."""
ALWAYS_ON = StaticSampler(Decision.RECORD_AND_SAMPLE)
"""Sampler that always samples spans, regardless of the parent span's sampling decision."""
class TraceIdRatioBased(Sampler):
"""
Sampler that makes sampling decisions probabilistically based on `rate`.
Args:
rate: Probability (between 0 and 1) that a span will be sampled
"""
def __init__(self, rate: float):
if rate < 0.0 or rate > 1.0:
raise ValueError("Probability must be in range [0.0, 1.0].")
self._rate = rate
self._bound = self.get_bound_for_rate(self._rate)
# For compatibility with 64 bit trace IDs, the sampler checks the 64
# low-order bits of the trace ID to decide whether to sample a given trace.
TRACE_ID_LIMIT = (1 << 64) - 1
@classmethod
def get_bound_for_rate(cls, rate: float) -> int:
return round(rate * (cls.TRACE_ID_LIMIT + 1))
@property
def rate(self) -> float:
return self._rate
@property
def bound(self) -> int:
return self._bound
def should_sample(
self,
parent_context: Optional["Context"],
trace_id: int,
name: str,
kind: Optional[SpanKind] = None,
attributes: Attributes = None,
links: Optional[Sequence["Link"]] = None,
trace_state: Optional["TraceState"] = None,
) -> "SamplingResult":
decision = Decision.DROP
if trace_id & self.TRACE_ID_LIMIT < self.bound:
decision = Decision.RECORD_AND_SAMPLE
if decision is Decision.DROP:
attributes = None
return SamplingResult(
decision,
attributes,
_get_parent_trace_state(parent_context),
)
def get_description(self) -> str:
return f"TraceIdRatioBased{{{self._rate}}}"
class ParentBased(Sampler):
"""
If a parent is set, applies the respective delegate sampler.
Otherwise, uses the root provided at initialization to make a
decision.
Args:
root: Sampler called for spans with no parent (root spans).
remote_parent_sampled: Sampler called for a remote sampled parent.
remote_parent_not_sampled: Sampler called for a remote parent that is
not sampled.
local_parent_sampled: Sampler called for a local sampled parent.
local_parent_not_sampled: Sampler called for a local parent that is
not sampled.
"""
def __init__(
self,
root: Sampler,
remote_parent_sampled: Sampler = ALWAYS_ON,
remote_parent_not_sampled: Sampler = ALWAYS_OFF,
local_parent_sampled: Sampler = ALWAYS_ON,
local_parent_not_sampled: Sampler = ALWAYS_OFF,
):
self._root = root
self._remote_parent_sampled = remote_parent_sampled
self._remote_parent_not_sampled = remote_parent_not_sampled
self._local_parent_sampled = local_parent_sampled
self._local_parent_not_sampled = local_parent_not_sampled
def should_sample(
self,
parent_context: Optional["Context"],
trace_id: int,
name: str,
kind: Optional[SpanKind] = None,
attributes: Attributes = None,
links: Optional[Sequence["Link"]] = None,
trace_state: Optional["TraceState"] = None,
) -> "SamplingResult":
parent_span_context = get_current_span(
parent_context
).get_span_context()
# default to the root sampler
sampler = self._root
# respect the sampling and remote flag of the parent if present
if parent_span_context is not None and parent_span_context.is_valid:
if parent_span_context.is_remote:
if parent_span_context.trace_flags.sampled:
sampler = self._remote_parent_sampled
else:
sampler = self._remote_parent_not_sampled
else:
if parent_span_context.trace_flags.sampled:
sampler = self._local_parent_sampled
else:
sampler = self._local_parent_not_sampled
return sampler.should_sample(
parent_context=parent_context,
trace_id=trace_id,
name=name,
kind=kind,
attributes=attributes,
links=links,
)
def get_description(self):
return f"ParentBased{{root:{self._root.get_description()},remoteParentSampled:{self._remote_parent_sampled.get_description()},remoteParentNotSampled:{self._remote_parent_not_sampled.get_description()},localParentSampled:{self._local_parent_sampled.get_description()},localParentNotSampled:{self._local_parent_not_sampled.get_description()}}}"
DEFAULT_OFF = ParentBased(ALWAYS_OFF)
"""Sampler that respects its parent span's sampling decision, but otherwise never samples."""
DEFAULT_ON = ParentBased(ALWAYS_ON)
"""Sampler that respects its parent span's sampling decision, but otherwise always samples."""
class ParentBasedTraceIdRatio(ParentBased):
"""
Sampler that respects its parent span's sampling decision, but otherwise
samples probabilistically based on `rate`.
"""
def __init__(self, rate: float):
root = TraceIdRatioBased(rate=rate)
super().__init__(root=root)
class _AlwaysOff(StaticSampler):
def __init__(self, _):
super().__init__(Decision.DROP)
class _AlwaysOn(StaticSampler):
def __init__(self, _):
super().__init__(Decision.RECORD_AND_SAMPLE)
class _ParentBasedAlwaysOff(ParentBased):
def __init__(self, _):
super().__init__(ALWAYS_OFF)
class _ParentBasedAlwaysOn(ParentBased):
def __init__(self, _):
super().__init__(ALWAYS_ON)
_KNOWN_SAMPLERS = {
"always_on": ALWAYS_ON,
"always_off": ALWAYS_OFF,
"parentbased_always_on": DEFAULT_ON,
"parentbased_always_off": DEFAULT_OFF,
"traceidratio": TraceIdRatioBased,
"parentbased_traceidratio": ParentBasedTraceIdRatio,
}
def _get_from_env_or_default() -> Sampler:
trace_sampler = os.getenv(
OTEL_TRACES_SAMPLER, "parentbased_always_on"
).lower()
if trace_sampler not in _KNOWN_SAMPLERS:
_logger.warning("Couldn't recognize sampler %s.", trace_sampler)
trace_sampler = "parentbased_always_on"
if trace_sampler in ("traceidratio", "parentbased_traceidratio"):
try:
rate = float(os.getenv(OTEL_TRACES_SAMPLER_ARG))
except (ValueError, TypeError):
_logger.warning("Could not convert TRACES_SAMPLER_ARG to float.")
rate = 1.0
return _KNOWN_SAMPLERS[trace_sampler](rate)
return _KNOWN_SAMPLERS[trace_sampler]
def _get_parent_trace_state(
parent_context: Optional[Context],
) -> Optional["TraceState"]:
parent_span_context = get_current_span(parent_context).get_span_context()
if parent_span_context is None or not parent_span_context.is_valid:
return None
return parent_span_context.trace_state

View File

@@ -0,0 +1,152 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datetime
import threading
from collections import deque
from collections.abc import MutableMapping, Sequence
from typing import Optional
from deprecated import deprecated
def ns_to_iso_str(nanoseconds):
"""Get an ISO 8601 string from time_ns value."""
ts = datetime.datetime.fromtimestamp(
nanoseconds / 1e9, tz=datetime.timezone.utc
)
return ts.strftime("%Y-%m-%dT%H:%M:%S.%fZ")
def get_dict_as_key(labels):
"""Converts a dict to be used as a unique key"""
return tuple(
sorted(
map(
lambda kv: (
(kv[0], tuple(kv[1])) if isinstance(kv[1], list) else kv
),
labels.items(),
)
)
)
class BoundedList(Sequence):
"""An append only list with a fixed max size.
Calls to `append` and `extend` will drop the oldest elements if there is
not enough room.
"""
def __init__(self, maxlen: Optional[int]):
self.dropped = 0
self._dq = deque(maxlen=maxlen) # type: deque
self._lock = threading.Lock()
def __repr__(self):
return f"{type(self).__name__}({list(self._dq)}, maxlen={self._dq.maxlen})"
def __getitem__(self, index):
return self._dq[index]
def __len__(self):
return len(self._dq)
def __iter__(self):
with self._lock:
return iter(deque(self._dq))
def append(self, item):
with self._lock:
if (
self._dq.maxlen is not None
and len(self._dq) == self._dq.maxlen
):
self.dropped += 1
self._dq.append(item)
def extend(self, seq):
with self._lock:
if self._dq.maxlen is not None:
to_drop = len(seq) + len(self._dq) - self._dq.maxlen
if to_drop > 0:
self.dropped += to_drop
self._dq.extend(seq)
@classmethod
def from_seq(cls, maxlen, seq):
seq = tuple(seq)
bounded_list = cls(maxlen)
bounded_list.extend(seq)
return bounded_list
@deprecated(version="1.4.0") # type: ignore
class BoundedDict(MutableMapping):
"""An ordered dict with a fixed max capacity.
Oldest elements are dropped when the dict is full and a new element is
added.
"""
def __init__(self, maxlen: Optional[int]):
if maxlen is not None:
if not isinstance(maxlen, int):
raise ValueError
if maxlen < 0:
raise ValueError
self.maxlen = maxlen
self.dropped = 0
self._dict = {} # type: dict
self._lock = threading.Lock() # type: threading.Lock
def __repr__(self):
return (
f"{type(self).__name__}({dict(self._dict)}, maxlen={self.maxlen})"
)
def __getitem__(self, key):
return self._dict[key]
def __setitem__(self, key, value):
with self._lock:
if self.maxlen is not None and self.maxlen == 0:
self.dropped += 1
return
if key in self._dict:
del self._dict[key]
elif self.maxlen is not None and len(self._dict) == self.maxlen:
del self._dict[next(iter(self._dict.keys()))]
self.dropped += 1
self._dict[key] = value
def __delitem__(self, key):
del self._dict[key]
def __iter__(self):
with self._lock:
return iter(self._dict.copy())
def __len__(self):
return len(self._dict)
@classmethod
def from_map(cls, maxlen, mapping):
mapping = dict(mapping)
bounded_dict = cls(maxlen)
for key, value in mapping.items():
bounded_dict[key] = value
return bounded_dict

View File

@@ -0,0 +1,74 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import (
Iterable,
Iterator,
Mapping,
MutableMapping,
Sequence,
TypeVar,
overload,
)
from opentelemetry.util.types import AttributesAsKey, AttributeValue
_T = TypeVar("_T")
_KT = TypeVar("_KT")
_VT = TypeVar("_VT")
def ns_to_iso_str(nanoseconds: int) -> str: ...
def get_dict_as_key(
labels: Mapping[str, AttributeValue],
) -> AttributesAsKey: ...
# pylint: disable=no-self-use
class BoundedList(Sequence[_T]):
"""An append only list with a fixed max size.
Calls to `append` and `extend` will drop the oldest elements if there is
not enough room.
"""
dropped: int
def __init__(self, maxlen: int): ...
def insert(self, index: int, value: _T) -> None: ...
@overload
def __getitem__(self, i: int) -> _T: ...
@overload
def __getitem__(self, s: slice) -> Sequence[_T]: ...
def __len__(self) -> int: ...
def append(self, item: _T) -> None: ...
def extend(self, seq: Sequence[_T]) -> None: ...
@classmethod
def from_seq(cls, maxlen: int, seq: Iterable[_T]) -> BoundedList[_T]: ... # pylint: disable=undefined-variable
class BoundedDict(MutableMapping[_KT, _VT]):
"""An ordered dict with a fixed max capacity.
Oldest elements are dropped when the dict is full and a new element is
added.
"""
dropped: int
def __init__(self, maxlen: int): ...
def __getitem__(self, k: _KT) -> _VT: ...
def __setitem__(self, k: _KT, v: _VT) -> None: ...
def __delitem__(self, v: _KT) -> None: ...
def __iter__(self) -> Iterator[_KT]: ...
def __len__(self) -> int: ...
@classmethod
def from_map(
cls, maxlen: int, mapping: Mapping[_KT, _VT]
) -> BoundedDict[_KT, _VT]: ... # pylint: disable=undefined-variable

View File

@@ -0,0 +1,167 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from json import dumps
from typing import Optional
from deprecated import deprecated
from opentelemetry.attributes import BoundedAttributes
from opentelemetry.util.types import Attributes
class InstrumentationInfo:
"""Immutable information about an instrumentation library module.
See `opentelemetry.trace.TracerProvider.get_tracer` for the meaning of these
properties.
"""
__slots__ = ("_name", "_version", "_schema_url")
@deprecated(version="1.11.1", reason="You should use InstrumentationScope")
def __init__(
self,
name: str,
version: Optional[str] = None,
schema_url: Optional[str] = None,
):
self._name = name
self._version = version
if schema_url is None:
schema_url = ""
self._schema_url = schema_url
def __repr__(self):
return f"{type(self).__name__}({self._name}, {self._version}, {self._schema_url})"
def __hash__(self):
return hash((self._name, self._version, self._schema_url))
def __eq__(self, value):
return type(value) is type(self) and (
self._name,
self._version,
self._schema_url,
) == (value._name, value._version, value._schema_url)
def __lt__(self, value):
if type(value) is not type(self):
return NotImplemented
return (self._name, self._version, self._schema_url) < (
value._name,
value._version,
value._schema_url,
)
@property
def schema_url(self) -> Optional[str]:
return self._schema_url
@property
def version(self) -> Optional[str]:
return self._version
@property
def name(self) -> str:
return self._name
class InstrumentationScope:
"""A logical unit of the application code with which the emitted telemetry can be
associated.
See `opentelemetry.trace.TracerProvider.get_tracer` for the meaning of these
properties.
"""
__slots__ = ("_name", "_version", "_schema_url", "_attributes")
def __init__(
self,
name: str,
version: Optional[str] = None,
schema_url: Optional[str] = None,
attributes: Optional[Attributes] = None,
) -> None:
self._name = name
self._version = version
if schema_url is None:
schema_url = ""
self._schema_url = schema_url
self._attributes = BoundedAttributes(attributes=attributes)
def __repr__(self) -> str:
return f"{type(self).__name__}({self._name}, {self._version}, {self._schema_url}, {self._attributes})"
def __hash__(self) -> int:
return hash((self._name, self._version, self._schema_url))
def __eq__(self, value: object) -> bool:
if not isinstance(value, InstrumentationScope):
return NotImplemented
return (
self._name,
self._version,
self._schema_url,
self._attributes,
) == (
value._name,
value._version,
value._schema_url,
value._attributes,
)
def __lt__(self, value: object) -> bool:
if not isinstance(value, InstrumentationScope):
return NotImplemented
return (
self._name,
self._version,
self._schema_url,
self._attributes,
) < (
value._name,
value._version,
value._schema_url,
value._attributes,
)
@property
def schema_url(self) -> Optional[str]:
return self._schema_url
@property
def version(self) -> Optional[str]:
return self._version
@property
def name(self) -> str:
return self._name
@property
def attributes(self) -> Attributes:
return self._attributes
def to_json(self, indent: Optional[int] = 4) -> str:
return dumps(
{
"name": self._name,
"version": self._version,
"schema_url": self._schema_url,
"attributes": (
dict(self._attributes) if bool(self._attributes) else None
),
},
indent=indent,
)

View File

@@ -0,0 +1,15 @@
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__version__ = "1.32.1"