structure saas with tools
This commit is contained in:
@@ -0,0 +1,429 @@
|
||||
# What is this?
|
||||
## This hook is used to check for LiteLLM managed files in the request body, and replace them with model-specific file id
|
||||
|
||||
import base64
|
||||
import json
|
||||
import uuid
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional, Union, cast
|
||||
|
||||
from litellm import Router, verbose_logger
|
||||
from litellm.caching.caching import DualCache
|
||||
from litellm.integrations.custom_logger import CustomLogger
|
||||
from litellm.litellm_core_utils.prompt_templates.common_utils import extract_file_data
|
||||
from litellm.proxy._types import CallTypes, LiteLLM_ManagedFileTable, UserAPIKeyAuth
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
ChatCompletionFileObject,
|
||||
CreateFileRequest,
|
||||
OpenAIFileObject,
|
||||
OpenAIFilesPurpose,
|
||||
)
|
||||
from litellm.types.utils import SpecialEnums
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from opentelemetry.trace import Span as _Span
|
||||
|
||||
from litellm.proxy.utils import InternalUsageCache as _InternalUsageCache
|
||||
from litellm.proxy.utils import PrismaClient as _PrismaClient
|
||||
|
||||
Span = Union[_Span, Any]
|
||||
InternalUsageCache = _InternalUsageCache
|
||||
PrismaClient = _PrismaClient
|
||||
else:
|
||||
Span = Any
|
||||
InternalUsageCache = Any
|
||||
PrismaClient = Any
|
||||
|
||||
|
||||
class BaseFileEndpoints(ABC):
|
||||
@abstractmethod
|
||||
async def afile_retrieve(
|
||||
self,
|
||||
file_id: str,
|
||||
litellm_parent_otel_span: Optional[Span],
|
||||
) -> OpenAIFileObject:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def afile_list(
|
||||
self, custom_llm_provider: str, **data: dict
|
||||
) -> List[OpenAIFileObject]:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def afile_delete(
|
||||
self, custom_llm_provider: str, file_id: str, **data: dict
|
||||
) -> OpenAIFileObject:
|
||||
pass
|
||||
|
||||
|
||||
class _PROXY_LiteLLMManagedFiles(CustomLogger):
|
||||
# Class variables or attributes
|
||||
def __init__(
|
||||
self, internal_usage_cache: InternalUsageCache, prisma_client: PrismaClient
|
||||
):
|
||||
self.internal_usage_cache = internal_usage_cache
|
||||
self.prisma_client = prisma_client
|
||||
|
||||
async def store_unified_file_id(
|
||||
self,
|
||||
file_id: str,
|
||||
file_object: OpenAIFileObject,
|
||||
litellm_parent_otel_span: Optional[Span],
|
||||
model_mappings: Dict[str, str],
|
||||
) -> None:
|
||||
verbose_logger.info(
|
||||
f"Storing LiteLLM Managed File object with id={file_id} in cache"
|
||||
)
|
||||
litellm_managed_file_object = LiteLLM_ManagedFileTable(
|
||||
unified_file_id=file_id,
|
||||
file_object=file_object,
|
||||
model_mappings=model_mappings,
|
||||
)
|
||||
await self.internal_usage_cache.async_set_cache(
|
||||
key=file_id,
|
||||
value=litellm_managed_file_object.model_dump(),
|
||||
litellm_parent_otel_span=litellm_parent_otel_span,
|
||||
)
|
||||
|
||||
await self.prisma_client.db.litellm_managedfiletable.create(
|
||||
data={
|
||||
"unified_file_id": file_id,
|
||||
"file_object": file_object.model_dump_json(),
|
||||
"model_mappings": json.dumps(model_mappings),
|
||||
}
|
||||
)
|
||||
|
||||
async def get_unified_file_id(
|
||||
self, file_id: str, litellm_parent_otel_span: Optional[Span] = None
|
||||
) -> Optional[LiteLLM_ManagedFileTable]:
|
||||
## CHECK CACHE
|
||||
result = cast(
|
||||
Optional[dict],
|
||||
await self.internal_usage_cache.async_get_cache(
|
||||
key=file_id,
|
||||
litellm_parent_otel_span=litellm_parent_otel_span,
|
||||
),
|
||||
)
|
||||
|
||||
if result:
|
||||
return LiteLLM_ManagedFileTable(**result)
|
||||
|
||||
## CHECK DB
|
||||
db_object = await self.prisma_client.db.litellm_managedfiletable.find_first(
|
||||
where={"unified_file_id": file_id}
|
||||
)
|
||||
|
||||
if db_object:
|
||||
return LiteLLM_ManagedFileTable(**db_object.model_dump())
|
||||
return None
|
||||
|
||||
async def delete_unified_file_id(
|
||||
self, file_id: str, litellm_parent_otel_span: Optional[Span] = None
|
||||
) -> OpenAIFileObject:
|
||||
## get old value
|
||||
initial_value = await self.prisma_client.db.litellm_managedfiletable.find_first(
|
||||
where={"unified_file_id": file_id}
|
||||
)
|
||||
if initial_value is None:
|
||||
raise Exception(f"LiteLLM Managed File object with id={file_id} not found")
|
||||
## delete old value
|
||||
await self.internal_usage_cache.async_set_cache(
|
||||
key=file_id,
|
||||
value=None,
|
||||
litellm_parent_otel_span=litellm_parent_otel_span,
|
||||
)
|
||||
await self.prisma_client.db.litellm_managedfiletable.delete(
|
||||
where={"unified_file_id": file_id}
|
||||
)
|
||||
return initial_value.file_object
|
||||
|
||||
async def async_pre_call_hook(
|
||||
self,
|
||||
user_api_key_dict: UserAPIKeyAuth,
|
||||
cache: DualCache,
|
||||
data: Dict,
|
||||
call_type: Literal[
|
||||
"completion",
|
||||
"text_completion",
|
||||
"embeddings",
|
||||
"image_generation",
|
||||
"moderation",
|
||||
"audio_transcription",
|
||||
"pass_through_endpoint",
|
||||
"rerank",
|
||||
],
|
||||
) -> Union[Exception, str, Dict, None]:
|
||||
"""
|
||||
- Detect litellm_proxy/ file_id
|
||||
- add dictionary of mappings of litellm_proxy/ file_id -> provider_file_id => {litellm_proxy/file_id: {"model_id": id, "file_id": provider_file_id}}
|
||||
"""
|
||||
if call_type == CallTypes.completion.value:
|
||||
messages = data.get("messages")
|
||||
if messages:
|
||||
file_ids = self.get_file_ids_from_messages(messages)
|
||||
if file_ids:
|
||||
model_file_id_mapping = await self.get_model_file_id_mapping(
|
||||
file_ids, user_api_key_dict.parent_otel_span
|
||||
)
|
||||
|
||||
data["model_file_id_mapping"] = model_file_id_mapping
|
||||
|
||||
return data
|
||||
|
||||
def get_file_ids_from_messages(self, messages: List[AllMessageValues]) -> List[str]:
|
||||
"""
|
||||
Gets file ids from messages
|
||||
"""
|
||||
file_ids = []
|
||||
for message in messages:
|
||||
if message.get("role") == "user":
|
||||
content = message.get("content")
|
||||
if content:
|
||||
if isinstance(content, str):
|
||||
continue
|
||||
for c in content:
|
||||
if c["type"] == "file":
|
||||
file_object = cast(ChatCompletionFileObject, c)
|
||||
file_object_file_field = file_object["file"]
|
||||
file_id = file_object_file_field.get("file_id")
|
||||
if file_id:
|
||||
file_ids.append(file_id)
|
||||
return file_ids
|
||||
|
||||
@staticmethod
|
||||
def _convert_b64_uid_to_unified_uid(b64_uid: str) -> str:
|
||||
is_base64_unified_file_id = (
|
||||
_PROXY_LiteLLMManagedFiles._is_base64_encoded_unified_file_id(b64_uid)
|
||||
)
|
||||
if is_base64_unified_file_id:
|
||||
return is_base64_unified_file_id
|
||||
else:
|
||||
return b64_uid
|
||||
|
||||
@staticmethod
|
||||
def _is_base64_encoded_unified_file_id(b64_uid: str) -> Union[str, Literal[False]]:
|
||||
# Add padding back if needed
|
||||
padded = b64_uid + "=" * (-len(b64_uid) % 4)
|
||||
# Decode from base64
|
||||
try:
|
||||
decoded = base64.urlsafe_b64decode(padded).decode()
|
||||
if decoded.startswith(SpecialEnums.LITELM_MANAGED_FILE_ID_PREFIX.value):
|
||||
return decoded
|
||||
else:
|
||||
return False
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
def convert_b64_uid_to_unified_uid(self, b64_uid: str) -> str:
|
||||
is_base64_unified_file_id = self._is_base64_encoded_unified_file_id(b64_uid)
|
||||
if is_base64_unified_file_id:
|
||||
return is_base64_unified_file_id
|
||||
else:
|
||||
return b64_uid
|
||||
|
||||
async def get_model_file_id_mapping(
|
||||
self, file_ids: List[str], litellm_parent_otel_span: Span
|
||||
) -> dict:
|
||||
"""
|
||||
Get model-specific file IDs for a list of proxy file IDs.
|
||||
Returns a dictionary mapping litellm_proxy/ file_id -> model_id -> model_file_id
|
||||
|
||||
1. Get all the litellm_proxy/ file_ids from the messages
|
||||
2. For each file_id, search for cache keys matching the pattern file_id:*
|
||||
3. Return a dictionary of mappings of litellm_proxy/ file_id -> model_id -> model_file_id
|
||||
|
||||
Example:
|
||||
{
|
||||
"litellm_proxy/file_id": {
|
||||
"model_id": "model_file_id"
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
file_id_mapping: Dict[str, Dict[str, str]] = {}
|
||||
litellm_managed_file_ids = []
|
||||
|
||||
for file_id in file_ids:
|
||||
## CHECK IF FILE ID IS MANAGED BY LITELM
|
||||
is_base64_unified_file_id = self._is_base64_encoded_unified_file_id(file_id)
|
||||
|
||||
if is_base64_unified_file_id:
|
||||
litellm_managed_file_ids.append(file_id)
|
||||
|
||||
if litellm_managed_file_ids:
|
||||
# Get all cache keys matching the pattern file_id:*
|
||||
for file_id in litellm_managed_file_ids:
|
||||
# Search for any cache key starting with this file_id
|
||||
unified_file_object = await self.get_unified_file_id(
|
||||
file_id, litellm_parent_otel_span
|
||||
)
|
||||
if unified_file_object:
|
||||
file_id_mapping[file_id] = unified_file_object.model_mappings
|
||||
|
||||
return file_id_mapping
|
||||
|
||||
async def create_file_for_each_model(
|
||||
self,
|
||||
llm_router: Optional[Router],
|
||||
_create_file_request: CreateFileRequest,
|
||||
target_model_names_list: List[str],
|
||||
litellm_parent_otel_span: Span,
|
||||
) -> List[OpenAIFileObject]:
|
||||
if llm_router is None:
|
||||
raise Exception("LLM Router not initialized. Ensure models added to proxy.")
|
||||
responses = []
|
||||
for model in target_model_names_list:
|
||||
individual_response = await llm_router.acreate_file(
|
||||
model=model, **_create_file_request
|
||||
)
|
||||
responses.append(individual_response)
|
||||
|
||||
return responses
|
||||
|
||||
async def acreate_file(
|
||||
self,
|
||||
create_file_request: CreateFileRequest,
|
||||
llm_router: Router,
|
||||
target_model_names_list: List[str],
|
||||
litellm_parent_otel_span: Span,
|
||||
) -> OpenAIFileObject:
|
||||
responses = await self.create_file_for_each_model(
|
||||
llm_router=llm_router,
|
||||
_create_file_request=create_file_request,
|
||||
target_model_names_list=target_model_names_list,
|
||||
litellm_parent_otel_span=litellm_parent_otel_span,
|
||||
)
|
||||
response = await _PROXY_LiteLLMManagedFiles.return_unified_file_id(
|
||||
file_objects=responses,
|
||||
create_file_request=create_file_request,
|
||||
internal_usage_cache=self.internal_usage_cache,
|
||||
litellm_parent_otel_span=litellm_parent_otel_span,
|
||||
)
|
||||
|
||||
## STORE MODEL MAPPINGS IN DB
|
||||
model_mappings: Dict[str, str] = {}
|
||||
for file_object in responses:
|
||||
model_id = file_object._hidden_params.get("model_id")
|
||||
if model_id is None:
|
||||
verbose_logger.warning(
|
||||
f"Skipping file_object: {file_object} because model_id in hidden_params={file_object._hidden_params} is None"
|
||||
)
|
||||
continue
|
||||
file_id = file_object.id
|
||||
model_mappings[model_id] = file_id
|
||||
|
||||
await self.store_unified_file_id(
|
||||
file_id=response.id,
|
||||
file_object=response,
|
||||
litellm_parent_otel_span=litellm_parent_otel_span,
|
||||
model_mappings=model_mappings,
|
||||
)
|
||||
return response
|
||||
|
||||
@staticmethod
|
||||
async def return_unified_file_id(
|
||||
file_objects: List[OpenAIFileObject],
|
||||
create_file_request: CreateFileRequest,
|
||||
internal_usage_cache: InternalUsageCache,
|
||||
litellm_parent_otel_span: Span,
|
||||
) -> OpenAIFileObject:
|
||||
## GET THE FILE TYPE FROM THE CREATE FILE REQUEST
|
||||
file_data = extract_file_data(create_file_request["file"])
|
||||
|
||||
file_type = file_data["content_type"]
|
||||
|
||||
unified_file_id = SpecialEnums.LITELLM_MANAGED_FILE_COMPLETE_STR.value.format(
|
||||
file_type, str(uuid.uuid4())
|
||||
)
|
||||
|
||||
# Convert to URL-safe base64 and strip padding
|
||||
base64_unified_file_id = (
|
||||
base64.urlsafe_b64encode(unified_file_id.encode()).decode().rstrip("=")
|
||||
)
|
||||
|
||||
## CREATE RESPONSE OBJECT
|
||||
|
||||
response = OpenAIFileObject(
|
||||
id=base64_unified_file_id,
|
||||
object="file",
|
||||
purpose=create_file_request["purpose"],
|
||||
created_at=file_objects[0].created_at,
|
||||
bytes=file_objects[0].bytes,
|
||||
filename=file_objects[0].filename,
|
||||
status="uploaded",
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
async def afile_retrieve(
|
||||
self, file_id: str, litellm_parent_otel_span: Optional[Span]
|
||||
) -> OpenAIFileObject:
|
||||
stored_file_object = await self.get_unified_file_id(
|
||||
file_id, litellm_parent_otel_span
|
||||
)
|
||||
if stored_file_object:
|
||||
return stored_file_object.file_object
|
||||
else:
|
||||
raise Exception(f"LiteLLM Managed File object with id={file_id} not found")
|
||||
|
||||
async def afile_list(
|
||||
self,
|
||||
purpose: Optional[OpenAIFilesPurpose],
|
||||
litellm_parent_otel_span: Optional[Span],
|
||||
**data: Dict,
|
||||
) -> List[OpenAIFileObject]:
|
||||
return []
|
||||
|
||||
async def afile_delete(
|
||||
self,
|
||||
file_id: str,
|
||||
litellm_parent_otel_span: Optional[Span],
|
||||
llm_router: Router,
|
||||
**data: Dict,
|
||||
) -> OpenAIFileObject:
|
||||
file_id = self.convert_b64_uid_to_unified_uid(file_id)
|
||||
model_file_id_mapping = await self.get_model_file_id_mapping(
|
||||
[file_id], litellm_parent_otel_span
|
||||
)
|
||||
specific_model_file_id_mapping = model_file_id_mapping.get(file_id)
|
||||
if specific_model_file_id_mapping:
|
||||
for model_id, file_id in specific_model_file_id_mapping.items():
|
||||
await llm_router.afile_delete(model=model_id, file_id=file_id, **data) # type: ignore
|
||||
|
||||
stored_file_object = await self.delete_unified_file_id(
|
||||
file_id, litellm_parent_otel_span
|
||||
)
|
||||
if stored_file_object:
|
||||
return stored_file_object
|
||||
else:
|
||||
raise Exception(f"LiteLLM Managed File object with id={file_id} not found")
|
||||
|
||||
async def afile_content(
|
||||
self,
|
||||
file_id: str,
|
||||
litellm_parent_otel_span: Optional[Span],
|
||||
llm_router: Router,
|
||||
**data: Dict,
|
||||
) -> str:
|
||||
"""
|
||||
Get the content of a file from first model that has it
|
||||
"""
|
||||
model_file_id_mapping = await self.get_model_file_id_mapping(
|
||||
[file_id], litellm_parent_otel_span
|
||||
)
|
||||
specific_model_file_id_mapping = model_file_id_mapping.get(file_id)
|
||||
|
||||
if specific_model_file_id_mapping:
|
||||
exception_dict = {}
|
||||
for model_id, file_id in specific_model_file_id_mapping.items():
|
||||
try:
|
||||
return await llm_router.afile_content(model=model_id, file_id=file_id, **data) # type: ignore
|
||||
except Exception as e:
|
||||
exception_dict[model_id] = str(e)
|
||||
raise Exception(
|
||||
f"LiteLLM Managed File object with id={file_id} not found. Checked model id's: {specific_model_file_id_mapping.keys()}. Errors: {exception_dict}"
|
||||
)
|
||||
else:
|
||||
raise Exception(f"LiteLLM Managed File object with id={file_id} not found")
|
||||
Reference in New Issue
Block a user