structure saas with tools

This commit is contained in:
Davidson Gomes
2025-04-25 15:30:54 -03:00
commit 1aef473937
16434 changed files with 6584257 additions and 0 deletions

View File

@@ -0,0 +1,92 @@
from typing import Callable, Optional, Union
import httpx
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.types.utils import CustomStreamingDecoder, ModelResponse
from ...openai_like.chat.handler import OpenAILikeChatHandler
from ..common_utils import _get_api_params
from .transformation import IBMWatsonXChatConfig
watsonx_chat_transformation = IBMWatsonXChatConfig()
class WatsonXChatHandler(OpenAILikeChatHandler):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def completion(
self,
*,
model: str,
messages: list,
api_base: str,
custom_llm_provider: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key: Optional[str],
logging_obj,
optional_params: dict,
acompletion=None,
litellm_params: dict = {},
headers: Optional[dict] = None,
logger_fn=None,
timeout: Optional[Union[float, httpx.Timeout]] = None,
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
custom_endpoint: Optional[bool] = None,
streaming_decoder: Optional[CustomStreamingDecoder] = None,
fake_stream: bool = False,
):
api_params = _get_api_params(params=optional_params)
## UPDATE HEADERS
headers = watsonx_chat_transformation.validate_environment(
headers=headers or {},
model=model,
messages=messages,
optional_params=optional_params,
api_key=api_key,
litellm_params=litellm_params,
)
## UPDATE PAYLOAD (optional params)
watsonx_auth_payload = watsonx_chat_transformation._prepare_payload(
model=model,
api_params=api_params,
)
optional_params.update(watsonx_auth_payload)
## GET API URL
api_base = watsonx_chat_transformation.get_complete_url(
api_base=api_base,
api_key=api_key,
model=model,
optional_params=optional_params,
litellm_params=litellm_params,
stream=optional_params.get("stream", False),
)
return super().completion(
model=model,
messages=messages,
api_base=api_base,
custom_llm_provider=custom_llm_provider,
custom_prompt_dict=custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
encoding=encoding,
api_key=api_key,
logging_obj=logging_obj,
optional_params=optional_params,
acompletion=acompletion,
litellm_params=litellm_params,
logger_fn=logger_fn,
headers=headers,
timeout=timeout,
client=client,
custom_endpoint=True,
streaming_decoder=streaming_decoder,
)

View File

@@ -0,0 +1,110 @@
"""
Translation from OpenAI's `/chat/completions` endpoint to IBM WatsonX's `/text/chat` endpoint.
Docs: https://cloud.ibm.com/apidocs/watsonx-ai#text-chat
"""
from typing import List, Optional, Tuple, Union
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.watsonx import WatsonXAIEndpoint
from ....utils import _remove_additional_properties, _remove_strict_from_schema
from ...openai.chat.gpt_transformation import OpenAIGPTConfig
from ..common_utils import IBMWatsonXMixin
class IBMWatsonXChatConfig(IBMWatsonXMixin, OpenAIGPTConfig):
def get_supported_openai_params(self, model: str) -> List:
return [
"temperature", # equivalent to temperature
"max_tokens", # equivalent to max_new_tokens
"top_p", # equivalent to top_p
"frequency_penalty", # equivalent to repetition_penalty
"stop", # equivalent to stop_sequences
"seed", # equivalent to random_seed
"stream", # equivalent to stream
"tools",
"tool_choice", # equivalent to tool_choice + tool_choice_options
"logprobs",
"top_logprobs",
"n",
"presence_penalty",
"response_format",
]
def is_tool_choice_option(self, tool_choice: Optional[Union[str, dict]]) -> bool:
if tool_choice is None:
return False
if isinstance(tool_choice, str):
return tool_choice in ["auto", "none", "required"]
return False
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
## TOOLS ##
_tools = non_default_params.pop("tools", None)
if _tools is not None:
# remove 'additionalProperties' from tools
_tools = _remove_additional_properties(_tools)
# remove 'strict' from tools
_tools = _remove_strict_from_schema(_tools)
if _tools is not None:
non_default_params["tools"] = _tools
## TOOL CHOICE ##
_tool_choice = non_default_params.pop("tool_choice", None)
if self.is_tool_choice_option(_tool_choice):
optional_params["tool_choice_options"] = _tool_choice
elif _tool_choice is not None:
optional_params["tool_choice"] = _tool_choice
return super().map_openai_params(
non_default_params, optional_params, model, drop_params
)
def _get_openai_compatible_provider_info(
self, api_base: Optional[str], api_key: Optional[str]
) -> Tuple[Optional[str], Optional[str]]:
api_base = api_base or get_secret_str("HOSTED_VLLM_API_BASE") # type: ignore
dynamic_api_key = (
api_key or get_secret_str("HOSTED_VLLM_API_KEY") or ""
) # vllm does not require an api key
return api_base, dynamic_api_key
def get_complete_url(
self,
api_base: Optional[str],
api_key: Optional[str],
model: str,
optional_params: dict,
litellm_params: dict,
stream: Optional[bool] = None,
) -> str:
url = self._get_base_url(api_base=api_base)
if model.startswith("deployment/"):
deployment_id = "/".join(model.split("/")[1:])
endpoint = (
WatsonXAIEndpoint.DEPLOYMENT_CHAT_STREAM.value
if stream
else WatsonXAIEndpoint.DEPLOYMENT_CHAT.value
)
endpoint = endpoint.format(deployment_id=deployment_id)
else:
endpoint = (
WatsonXAIEndpoint.CHAT_STREAM.value
if stream
else WatsonXAIEndpoint.CHAT.value
)
url = url.rstrip("/") + endpoint
## add api version
url = self._add_api_version_to_url(
url=url, api_version=optional_params.pop("api_version", None)
)
return url

View File

@@ -0,0 +1,292 @@
from typing import Dict, List, Optional, Union, cast
import httpx
import litellm
from litellm import verbose_logger
from litellm.caching import InMemoryCache
from litellm.litellm_core_utils.prompt_templates import factory as ptf
from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues
from litellm.types.llms.watsonx import WatsonXAPIParams, WatsonXCredentials
class WatsonXAIError(BaseLLMException):
def __init__(
self,
status_code: int,
message: str,
headers: Optional[Union[Dict, httpx.Headers]] = None,
):
super().__init__(status_code=status_code, message=message, headers=headers)
iam_token_cache = InMemoryCache()
def get_watsonx_iam_url():
return (
get_secret_str("WATSONX_IAM_URL") or "https://iam.cloud.ibm.com/identity/token"
)
def generate_iam_token(api_key=None, **params) -> str:
result: Optional[str] = iam_token_cache.get_cache(api_key) # type: ignore
if result is None:
headers = {}
headers["Content-Type"] = "application/x-www-form-urlencoded"
if api_key is None:
api_key = get_secret_str("WX_API_KEY") or get_secret_str("WATSONX_API_KEY") or get_secret_str("WATSONX_APIKEY")
if api_key is None:
raise ValueError("API key is required")
headers["Accept"] = "application/json"
data = {
"grant_type": "urn:ibm:params:oauth:grant-type:apikey",
"apikey": api_key,
}
iam_token_url = get_watsonx_iam_url()
verbose_logger.debug(
"calling ibm `/identity/token` to retrieve IAM token.\nURL=%s\nheaders=%s\ndata=%s",
iam_token_url,
headers,
data,
)
response = litellm.module_level_client.post(
url=iam_token_url, data=data, headers=headers
)
response.raise_for_status()
json_data = response.json()
result = json_data["access_token"]
iam_token_cache.set_cache(
key=api_key,
value=result,
ttl=json_data["expires_in"] - 10, # leave some buffer
)
return cast(str, result)
def _generate_watsonx_token(api_key: Optional[str], token: Optional[str]) -> str:
if token is not None:
return token
token = generate_iam_token(api_key)
return token
def _get_api_params(
params: dict,
) -> WatsonXAPIParams:
"""
Find watsonx.ai credentials in the params or environment variables and return the headers for authentication.
"""
# Load auth variables from params
project_id = params.pop(
"project_id", params.pop("watsonx_project", None)
) # watsonx.ai project_id - allow 'watsonx_project' to be consistent with how vertex project implementation works -> reduce provider-specific params
space_id = params.pop("space_id", None) # watsonx.ai deployment space_id
region_name = params.pop("region_name", params.pop("region", None))
if region_name is None:
region_name = params.pop(
"watsonx_region_name", params.pop("watsonx_region", None)
) # consistent with how vertex ai + aws regions are accepted
# Load auth variables from environment variables
if project_id is None:
project_id = (
get_secret_str("WATSONX_PROJECT_ID")
or get_secret_str("WX_PROJECT_ID")
or get_secret_str("PROJECT_ID")
)
if region_name is None:
region_name = (
get_secret_str("WATSONX_REGION")
or get_secret_str("WX_REGION")
or get_secret_str("REGION")
)
if space_id is None:
space_id = (
get_secret_str("WATSONX_DEPLOYMENT_SPACE_ID")
or get_secret_str("WATSONX_SPACE_ID")
or get_secret_str("WX_SPACE_ID")
or get_secret_str("SPACE_ID")
)
if project_id is None:
raise WatsonXAIError(
status_code=401,
message="Error: Watsonx project_id not set. Set WX_PROJECT_ID in environment variables or pass in as a parameter.",
)
return WatsonXAPIParams(
project_id=project_id,
space_id=space_id,
region_name=region_name,
)
def convert_watsonx_messages_to_prompt(
model: str,
messages: List[AllMessageValues],
provider: str,
custom_prompt_dict: Dict,
) -> str:
# handle anthropic prompts and amazon titan prompts
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_dict = custom_prompt_dict[model]
prompt = ptf.custom_prompt(
messages=messages,
role_dict=model_prompt_dict.get(
"role_dict", model_prompt_dict.get("roles")
),
initial_prompt_value=model_prompt_dict.get("initial_prompt_value", ""),
final_prompt_value=model_prompt_dict.get("final_prompt_value", ""),
bos_token=model_prompt_dict.get("bos_token", ""),
eos_token=model_prompt_dict.get("eos_token", ""),
)
return prompt
elif provider == "ibm-mistralai":
prompt = ptf.mistral_instruct_pt(messages=messages)
else:
prompt: str = ptf.prompt_factory( # type: ignore
model=model, messages=messages, custom_llm_provider="watsonx"
)
return prompt
# Mixin class for shared IBM Watson X functionality
class IBMWatsonXMixin:
def validate_environment(
self,
headers: Dict,
model: str,
messages: List[AllMessageValues],
optional_params: Dict,
litellm_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> Dict:
default_headers = {
"Content-Type": "application/json",
"Accept": "application/json",
}
if "Authorization" in headers:
return {**default_headers, **headers}
token = cast(
Optional[str],
optional_params.get("token") or get_secret_str("WATSONX_TOKEN"),
)
if token:
headers["Authorization"] = f"Bearer {token}"
elif zen_api_key := get_secret_str("WATSONX_ZENAPIKEY"):
headers["Authorization"] = f"ZenApiKey {zen_api_key}"
else:
token = _generate_watsonx_token(api_key=api_key, token=token)
# build auth headers
headers["Authorization"] = f"Bearer {token}"
return {**default_headers, **headers}
def _get_base_url(self, api_base: Optional[str]) -> str:
url = (
api_base
or get_secret_str("WATSONX_API_BASE") # consistent with 'AZURE_API_BASE'
or get_secret_str("WATSONX_URL")
or get_secret_str("WX_URL")
or get_secret_str("WML_URL")
)
if url is None:
raise WatsonXAIError(
status_code=401,
message="Error: Watsonx URL not set. Set WATSONX_API_BASE in environment variables or pass in as parameter - 'api_base='.",
)
return url
def _add_api_version_to_url(self, url: str, api_version: Optional[str]) -> str:
api_version = api_version or litellm.WATSONX_DEFAULT_API_VERSION
url = url + f"?version={api_version}"
return url
def get_error_class(
self, error_message: str, status_code: int, headers: Union[Dict, httpx.Headers]
) -> BaseLLMException:
return WatsonXAIError(
status_code=status_code, message=error_message, headers=headers
)
@staticmethod
def get_watsonx_credentials(
optional_params: dict, api_key: Optional[str], api_base: Optional[str]
) -> WatsonXCredentials:
api_key = (
api_key
or optional_params.pop("apikey", None)
or get_secret_str("WATSONX_APIKEY")
or get_secret_str("WATSONX_API_KEY")
or get_secret_str("WX_API_KEY")
)
api_base = (
api_base
or optional_params.pop(
"url",
optional_params.pop("api_base", optional_params.pop("base_url", None)),
)
or get_secret_str("WATSONX_API_BASE")
or get_secret_str("WATSONX_URL")
or get_secret_str("WX_URL")
or get_secret_str("WML_URL")
)
wx_credentials = optional_params.pop(
"wx_credentials",
optional_params.pop(
"watsonx_credentials", None
), # follow {provider}_credentials, same as vertex ai
)
token: Optional[str] = None
if wx_credentials is not None:
api_base = wx_credentials.get("url", api_base)
api_key = wx_credentials.get(
"apikey", wx_credentials.get("api_key", api_key)
)
token = wx_credentials.get(
"token",
wx_credentials.get(
"watsonx_token", None
), # follow format of {provider}_token, same as azure - e.g. 'azure_ad_token=..'
)
if api_key is None or not isinstance(api_key, str):
raise WatsonXAIError(
status_code=401,
message="Error: Watsonx API key not set. Set WATSONX_API_KEY in environment variables or pass in as parameter - 'api_key='.",
)
if api_base is None or not isinstance(api_base, str):
raise WatsonXAIError(
status_code=401,
message="Error: Watsonx API base not set. Set WATSONX_API_BASE in environment variables or pass in as parameter - 'api_base='.",
)
return WatsonXCredentials(
api_key=api_key, api_base=api_base, token=cast(Optional[str], token)
)
def _prepare_payload(self, model: str, api_params: WatsonXAPIParams) -> dict:
payload: dict = {}
if model.startswith("deployment/"):
if api_params["space_id"] is None:
raise WatsonXAIError(
status_code=401,
message="Error: space_id is required for models called using the 'deployment/' endpoint. Pass in the space_id as a parameter or set it in the WX_SPACE_ID environment variable.",
)
payload["space_id"] = api_params["space_id"]
return payload
payload["model_id"] = model
payload["project_id"] = api_params["project_id"]
return payload

View File

@@ -0,0 +1,3 @@
"""
Watsonx uses the llm_http_handler.py to handle the requests.
"""

View File

@@ -0,0 +1,392 @@
import time
from datetime import datetime
from typing import (
TYPE_CHECKING,
Any,
AsyncIterator,
Dict,
Iterator,
List,
Optional,
Union,
)
import httpx
from litellm.llms.base_llm.base_model_iterator import BaseModelResponseIterator
from litellm.types.llms.openai import AllMessageValues, ChatCompletionUsageBlock
from litellm.types.llms.watsonx import WatsonXAIEndpoint
from litellm.types.utils import GenericStreamingChunk, ModelResponse, Usage
from litellm.utils import map_finish_reason
from ...base_llm.chat.transformation import BaseConfig
from ..common_utils import (
IBMWatsonXMixin,
WatsonXAIError,
_get_api_params,
convert_watsonx_messages_to_prompt,
)
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
LiteLLMLoggingObj = _LiteLLMLoggingObj
else:
LiteLLMLoggingObj = Any
class IBMWatsonXAIConfig(IBMWatsonXMixin, BaseConfig):
"""
Reference: https://cloud.ibm.com/apidocs/watsonx-ai#text-generation
(See ibm_watsonx_ai.metanames.GenTextParamsMetaNames for a list of all available params)
Supported params for all available watsonx.ai foundational models.
- `decoding_method` (str): One of "greedy" or "sample"
- `temperature` (float): Sets the model temperature for sampling - not available when decoding_method='greedy'.
- `max_new_tokens` (integer): Maximum length of the generated tokens.
- `min_new_tokens` (integer): Maximum length of input tokens. Any more than this will be truncated.
- `length_penalty` (dict): A dictionary with keys "decay_factor" and "start_index".
- `stop_sequences` (string[]): list of strings to use as stop sequences.
- `top_k` (integer): top k for sampling - not available when decoding_method='greedy'.
- `top_p` (integer): top p for sampling - not available when decoding_method='greedy'.
- `repetition_penalty` (float): token repetition penalty during text generation.
- `truncate_input_tokens` (integer): Truncate input tokens to this length.
- `include_stop_sequences` (bool): If True, the stop sequence will be included at the end of the generated text in the case of a match.
- `return_options` (dict): A dictionary of options to return. Options include "input_text", "generated_tokens", "input_tokens", "token_ranks". Values are boolean.
- `random_seed` (integer): Random seed for text generation.
- `moderations` (dict): Dictionary of properties that control the moderations, for usages such as Hate and profanity (HAP) and PII filtering.
- `stream` (bool): If True, the model will return a stream of responses.
"""
decoding_method: Optional[str] = "sample"
temperature: Optional[float] = None
max_new_tokens: Optional[int] = None # litellm.max_tokens
min_new_tokens: Optional[int] = None
length_penalty: Optional[dict] = None # e.g {"decay_factor": 2.5, "start_index": 5}
stop_sequences: Optional[List[str]] = None # e.g ["}", ")", "."]
top_k: Optional[int] = None
top_p: Optional[float] = None
repetition_penalty: Optional[float] = None
truncate_input_tokens: Optional[int] = None
include_stop_sequences: Optional[bool] = False
return_options: Optional[Dict[str, bool]] = None
random_seed: Optional[int] = None # e.g 42
moderations: Optional[dict] = None
stream: Optional[bool] = False
def __init__(
self,
decoding_method: Optional[str] = None,
temperature: Optional[float] = None,
max_new_tokens: Optional[int] = None,
min_new_tokens: Optional[int] = None,
length_penalty: Optional[dict] = None,
stop_sequences: Optional[List[str]] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
repetition_penalty: Optional[float] = None,
truncate_input_tokens: Optional[int] = None,
include_stop_sequences: Optional[bool] = None,
return_options: Optional[dict] = None,
random_seed: Optional[int] = None,
moderations: Optional[dict] = None,
stream: Optional[bool] = None,
**kwargs,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def is_watsonx_text_param(self, param: str) -> bool:
"""
Determine if user passed in a watsonx.ai text generation param
"""
text_generation_params = [
"decoding_method",
"max_new_tokens",
"min_new_tokens",
"length_penalty",
"stop_sequences",
"top_k",
"repetition_penalty",
"truncate_input_tokens",
"include_stop_sequences",
"return_options",
"random_seed",
"moderations",
"decoding_method",
"min_tokens",
]
return param in text_generation_params
def get_supported_openai_params(self, model: str):
return [
"temperature", # equivalent to temperature
"max_tokens", # equivalent to max_new_tokens
"top_p", # equivalent to top_p
"frequency_penalty", # equivalent to repetition_penalty
"stop", # equivalent to stop_sequences
"seed", # equivalent to random_seed
"stream", # equivalent to stream
]
def map_openai_params(
self,
non_default_params: Dict,
optional_params: Dict,
model: str,
drop_params: bool,
) -> Dict:
extra_body = {}
for k, v in non_default_params.items():
if k == "max_tokens":
optional_params["max_new_tokens"] = v
elif k == "stream":
optional_params["stream"] = v
elif k == "temperature":
optional_params["temperature"] = v
elif k == "top_p":
optional_params["top_p"] = v
elif k == "frequency_penalty":
optional_params["repetition_penalty"] = v
elif k == "seed":
optional_params["random_seed"] = v
elif k == "stop":
optional_params["stop_sequences"] = v
elif k == "decoding_method":
extra_body["decoding_method"] = v
elif k == "min_tokens":
extra_body["min_new_tokens"] = v
elif k == "top_k":
extra_body["top_k"] = v
elif k == "truncate_input_tokens":
extra_body["truncate_input_tokens"] = v
elif k == "length_penalty":
extra_body["length_penalty"] = v
elif k == "time_limit":
extra_body["time_limit"] = v
elif k == "return_options":
extra_body["return_options"] = v
if extra_body:
optional_params["extra_body"] = extra_body
return optional_params
def get_mapped_special_auth_params(self) -> dict:
"""
Common auth params across bedrock/vertex_ai/azure/watsonx
"""
return {
"project": "watsonx_project",
"region_name": "watsonx_region_name",
"token": "watsonx_token",
}
def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
mapped_params = self.get_mapped_special_auth_params()
for param, value in non_default_params.items():
if param in mapped_params:
optional_params[mapped_params[param]] = value
return optional_params
def get_eu_regions(self) -> List[str]:
"""
Source: https://www.ibm.com/docs/en/watsonx/saas?topic=integrations-regional-availability
"""
return [
"eu-de",
"eu-gb",
]
def get_us_regions(self) -> List[str]:
"""
Source: https://www.ibm.com/docs/en/watsonx/saas?topic=integrations-regional-availability
"""
return [
"us-south",
]
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: Dict,
litellm_params: Dict,
headers: Dict,
) -> Dict:
provider = model.split("/")[0]
prompt = convert_watsonx_messages_to_prompt(
model=model,
messages=messages,
provider=provider,
custom_prompt_dict={},
)
extra_body_params = optional_params.pop("extra_body", {})
optional_params.update(extra_body_params)
watsonx_api_params = _get_api_params(params=optional_params)
watsonx_auth_payload = self._prepare_payload(
model=model,
api_params=watsonx_api_params,
)
# init the payload to the text generation call
payload = {
"input": prompt,
"moderations": optional_params.pop("moderations", {}),
"parameters": optional_params,
**watsonx_auth_payload,
}
return payload
def transform_response(
self,
model: str,
raw_response: httpx.Response,
model_response: ModelResponse,
logging_obj: LiteLLMLoggingObj,
request_data: Dict,
messages: List[AllMessageValues],
optional_params: Dict,
litellm_params: Dict,
encoding: str,
api_key: Optional[str] = None,
json_mode: Optional[bool] = None,
) -> ModelResponse:
## LOGGING
logging_obj.post_call(
input=messages,
api_key="",
original_response=raw_response.text,
)
json_resp = raw_response.json()
if "results" not in json_resp:
raise WatsonXAIError(
status_code=500,
message=f"Error: Invalid response from Watsonx.ai API: {json_resp}",
)
if model_response is None:
model_response = ModelResponse(model=json_resp.get("model_id", None))
generated_text = json_resp["results"][0]["generated_text"]
prompt_tokens = json_resp["results"][0]["input_token_count"]
completion_tokens = json_resp["results"][0]["generated_token_count"]
model_response.choices[0].message.content = generated_text # type: ignore
model_response.choices[0].finish_reason = map_finish_reason(
json_resp["results"][0]["stop_reason"]
)
if json_resp.get("created_at"):
model_response.created = int(
datetime.fromisoformat(json_resp["created_at"]).timestamp()
)
else:
model_response.created = int(time.time())
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
return model_response
def get_complete_url(
self,
api_base: Optional[str],
api_key: Optional[str],
model: str,
optional_params: dict,
litellm_params: dict,
stream: Optional[bool] = None,
) -> str:
url = self._get_base_url(api_base=api_base)
if model.startswith("deployment/"):
# deployment models are passed in as 'deployment/<deployment_id>'
deployment_id = "/".join(model.split("/")[1:])
endpoint = (
WatsonXAIEndpoint.DEPLOYMENT_TEXT_GENERATION_STREAM.value
if stream
else WatsonXAIEndpoint.DEPLOYMENT_TEXT_GENERATION.value
)
endpoint = endpoint.format(deployment_id=deployment_id)
else:
endpoint = (
WatsonXAIEndpoint.TEXT_GENERATION_STREAM
if stream
else WatsonXAIEndpoint.TEXT_GENERATION
)
url = url.rstrip("/") + endpoint
## add api version
url = self._add_api_version_to_url(
url=url, api_version=optional_params.pop("api_version", None)
)
return url
def get_model_response_iterator(
self,
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
sync_stream: bool,
json_mode: Optional[bool] = False,
):
return WatsonxTextCompletionResponseIterator(
streaming_response=streaming_response,
sync_stream=sync_stream,
json_mode=json_mode,
)
class WatsonxTextCompletionResponseIterator(BaseModelResponseIterator):
# def _handle_string_chunk(self, str_line: str) -> GenericStreamingChunk:
# return self.chunk_parser(json.loads(str_line))
def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
try:
results = chunk.get("results", [])
if len(results) > 0:
text = results[0].get("generated_text", "")
finish_reason = results[0].get("stop_reason")
is_finished = finish_reason != "not_finished"
return GenericStreamingChunk(
text=text,
is_finished=is_finished,
finish_reason=finish_reason,
usage=ChatCompletionUsageBlock(
prompt_tokens=results[0].get("input_token_count", 0),
completion_tokens=results[0].get("generated_token_count", 0),
total_tokens=results[0].get("input_token_count", 0)
+ results[0].get("generated_token_count", 0),
),
)
return GenericStreamingChunk(
text="",
is_finished=False,
finish_reason="stop",
usage=None,
)
except Exception as e:
raise e

View File

@@ -0,0 +1,113 @@
"""
Translates from OpenAI's `/v1/embeddings` to IBM's `/text/embeddings` route.
"""
from typing import Optional
import httpx
from litellm.llms.base_llm.embedding.transformation import (
BaseEmbeddingConfig,
LiteLLMLoggingObj,
)
from litellm.types.llms.openai import AllEmbeddingInputValues
from litellm.types.llms.watsonx import WatsonXAIEndpoint
from litellm.types.utils import EmbeddingResponse, Usage
from ..common_utils import IBMWatsonXMixin, _get_api_params
class IBMWatsonXEmbeddingConfig(IBMWatsonXMixin, BaseEmbeddingConfig):
def get_supported_openai_params(self, model: str) -> list:
return []
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
return optional_params
def transform_embedding_request(
self,
model: str,
input: AllEmbeddingInputValues,
optional_params: dict,
headers: dict,
) -> dict:
watsonx_api_params = _get_api_params(params=optional_params)
watsonx_auth_payload = self._prepare_payload(
model=model,
api_params=watsonx_api_params,
)
return {
"inputs": input,
"parameters": optional_params,
**watsonx_auth_payload,
}
def get_complete_url(
self,
api_base: Optional[str],
api_key: Optional[str],
model: str,
optional_params: dict,
litellm_params: dict,
stream: Optional[bool] = None,
) -> str:
url = self._get_base_url(api_base=api_base)
endpoint = WatsonXAIEndpoint.EMBEDDINGS.value
if model.startswith("deployment/"):
deployment_id = "/".join(model.split("/")[1:])
endpoint = endpoint.format(deployment_id=deployment_id)
url = url.rstrip("/") + endpoint
## add api version
url = self._add_api_version_to_url(
url=url, api_version=optional_params.pop("api_version", None)
)
return url
def transform_embedding_response(
self,
model: str,
raw_response: httpx.Response,
model_response: EmbeddingResponse,
logging_obj: LiteLLMLoggingObj,
api_key: Optional[str],
request_data: dict,
optional_params: dict,
litellm_params: dict,
) -> EmbeddingResponse:
logging_obj.post_call(
original_response=raw_response.text,
)
json_resp = raw_response.json()
if model_response is None:
model_response = EmbeddingResponse(model=json_resp.get("model_id", None))
results = json_resp.get("results", [])
embedding_response = []
for idx, result in enumerate(results):
embedding_response.append(
{
"object": "embedding",
"index": idx,
"embedding": result["embedding"],
}
)
model_response.object = "list"
model_response.data = embedding_response
input_tokens = json_resp.get("input_token_count", 0)
setattr(
model_response,
"usage",
Usage(
prompt_tokens=input_tokens,
completion_tokens=0,
total_tokens=input_tokens,
),
)
return model_response