structure saas with tools
This commit is contained in:
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,107 @@
|
||||
import asyncio
|
||||
from typing import Any, Coroutine, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
from litellm import LlmProviders
|
||||
from litellm.integrations.gcs_bucket.gcs_bucket_base import (
|
||||
GCSBucketBase,
|
||||
GCSLoggingConfig,
|
||||
)
|
||||
from litellm.llms.custom_httpx.http_handler import get_async_httpx_client
|
||||
from litellm.types.llms.openai import CreateFileRequest, OpenAIFileObject
|
||||
from litellm.types.llms.vertex_ai import VERTEX_CREDENTIALS_TYPES
|
||||
|
||||
from .transformation import VertexAIJsonlFilesTransformation
|
||||
|
||||
vertex_ai_files_transformation = VertexAIJsonlFilesTransformation()
|
||||
|
||||
|
||||
class VertexAIFilesHandler(GCSBucketBase):
|
||||
"""
|
||||
Handles Calling VertexAI in OpenAI Files API format v1/files/*
|
||||
|
||||
This implementation uploads files on GCS Buckets
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.async_httpx_client = get_async_httpx_client(
|
||||
llm_provider=LlmProviders.VERTEX_AI,
|
||||
)
|
||||
|
||||
async def async_create_file(
|
||||
self,
|
||||
create_file_data: CreateFileRequest,
|
||||
api_base: Optional[str],
|
||||
vertex_credentials: Optional[VERTEX_CREDENTIALS_TYPES],
|
||||
vertex_project: Optional[str],
|
||||
vertex_location: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
) -> OpenAIFileObject:
|
||||
gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config(
|
||||
kwargs={}
|
||||
)
|
||||
headers = await self.construct_request_headers(
|
||||
vertex_instance=gcs_logging_config["vertex_instance"],
|
||||
service_account_json=gcs_logging_config["path_service_account"],
|
||||
)
|
||||
bucket_name = gcs_logging_config["bucket_name"]
|
||||
(
|
||||
logging_payload,
|
||||
object_name,
|
||||
) = vertex_ai_files_transformation.transform_openai_file_content_to_vertex_ai_file_content(
|
||||
openai_file_content=create_file_data.get("file")
|
||||
)
|
||||
gcs_upload_response = await self._log_json_data_on_gcs(
|
||||
headers=headers,
|
||||
bucket_name=bucket_name,
|
||||
object_name=object_name,
|
||||
logging_payload=logging_payload,
|
||||
)
|
||||
|
||||
return vertex_ai_files_transformation.transform_gcs_bucket_response_to_openai_file_object(
|
||||
create_file_data=create_file_data,
|
||||
gcs_upload_response=gcs_upload_response,
|
||||
)
|
||||
|
||||
def create_file(
|
||||
self,
|
||||
_is_async: bool,
|
||||
create_file_data: CreateFileRequest,
|
||||
api_base: Optional[str],
|
||||
vertex_credentials: Optional[VERTEX_CREDENTIALS_TYPES],
|
||||
vertex_project: Optional[str],
|
||||
vertex_location: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
) -> Union[OpenAIFileObject, Coroutine[Any, Any, OpenAIFileObject]]:
|
||||
"""
|
||||
Creates a file on VertexAI GCS Bucket
|
||||
|
||||
Only supported for Async litellm.acreate_file
|
||||
"""
|
||||
|
||||
if _is_async:
|
||||
return self.async_create_file(
|
||||
create_file_data=create_file_data,
|
||||
api_base=api_base,
|
||||
vertex_credentials=vertex_credentials,
|
||||
vertex_project=vertex_project,
|
||||
vertex_location=vertex_location,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
)
|
||||
else:
|
||||
return asyncio.run(
|
||||
self.async_create_file(
|
||||
create_file_data=create_file_data,
|
||||
api_base=api_base,
|
||||
vertex_credentials=vertex_credentials,
|
||||
vertex_project=vertex_project,
|
||||
vertex_location=vertex_location,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
)
|
||||
)
|
||||
@@ -0,0 +1,481 @@
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
from httpx import Headers, Response
|
||||
|
||||
from litellm.litellm_core_utils.prompt_templates.common_utils import extract_file_data
|
||||
from litellm.llms.base_llm.chat.transformation import BaseLLMException
|
||||
from litellm.llms.base_llm.files.transformation import (
|
||||
BaseFilesConfig,
|
||||
LiteLLMLoggingObj,
|
||||
)
|
||||
from litellm.llms.vertex_ai.common_utils import (
|
||||
_convert_vertex_datetime_to_openai_datetime,
|
||||
)
|
||||
from litellm.llms.vertex_ai.gemini.transformation import _transform_request_body
|
||||
from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import (
|
||||
VertexGeminiConfig,
|
||||
)
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
CreateFileRequest,
|
||||
FileTypes,
|
||||
OpenAICreateFileRequestOptionalParams,
|
||||
OpenAIFileObject,
|
||||
PathLike,
|
||||
)
|
||||
from litellm.types.llms.vertex_ai import GcsBucketResponse
|
||||
from litellm.types.utils import ExtractedFileData, LlmProviders
|
||||
|
||||
from ..common_utils import VertexAIError
|
||||
from ..vertex_llm_base import VertexBase
|
||||
|
||||
|
||||
class VertexAIFilesConfig(VertexBase, BaseFilesConfig):
|
||||
"""
|
||||
Config for VertexAI Files
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.jsonl_transformation = VertexAIJsonlFilesTransformation()
|
||||
super().__init__()
|
||||
|
||||
@property
|
||||
def custom_llm_provider(self) -> LlmProviders:
|
||||
return LlmProviders.VERTEX_AI
|
||||
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: dict,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
) -> dict:
|
||||
if not api_key:
|
||||
api_key, _ = self.get_access_token(
|
||||
credentials=litellm_params.get("vertex_credentials"),
|
||||
project_id=litellm_params.get("vertex_project"),
|
||||
)
|
||||
if not api_key:
|
||||
raise ValueError("api_key is required")
|
||||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
return headers
|
||||
|
||||
def _get_content_from_openai_file(self, openai_file_content: FileTypes) -> str:
|
||||
"""
|
||||
Helper to extract content from various OpenAI file types and return as string.
|
||||
|
||||
Handles:
|
||||
- Direct content (str, bytes, IO[bytes])
|
||||
- Tuple formats: (filename, content, [content_type], [headers])
|
||||
- PathLike objects
|
||||
"""
|
||||
content: Union[str, bytes] = b""
|
||||
# Extract file content from tuple if necessary
|
||||
if isinstance(openai_file_content, tuple):
|
||||
# Take the second element which is always the file content
|
||||
file_content = openai_file_content[1]
|
||||
else:
|
||||
file_content = openai_file_content
|
||||
|
||||
# Handle different file content types
|
||||
if isinstance(file_content, str):
|
||||
# String content can be used directly
|
||||
content = file_content
|
||||
elif isinstance(file_content, bytes):
|
||||
# Bytes content can be decoded
|
||||
content = file_content
|
||||
elif isinstance(file_content, PathLike): # PathLike
|
||||
with open(str(file_content), "rb") as f:
|
||||
content = f.read()
|
||||
elif hasattr(file_content, "read"): # IO[bytes]
|
||||
# File-like objects need to be read
|
||||
content = file_content.read()
|
||||
|
||||
# Ensure content is string
|
||||
if isinstance(content, bytes):
|
||||
content = content.decode("utf-8")
|
||||
|
||||
return content
|
||||
|
||||
def _get_gcs_object_name_from_batch_jsonl(
|
||||
self,
|
||||
openai_jsonl_content: List[Dict[str, Any]],
|
||||
) -> str:
|
||||
"""
|
||||
Gets a unique GCS object name for the VertexAI batch prediction job
|
||||
|
||||
named as: litellm-vertex-{model}-{uuid}
|
||||
"""
|
||||
_model = openai_jsonl_content[0].get("body", {}).get("model", "")
|
||||
if "publishers/google/models" not in _model:
|
||||
_model = f"publishers/google/models/{_model}"
|
||||
object_name = f"litellm-vertex-files/{_model}/{uuid.uuid4()}"
|
||||
return object_name
|
||||
|
||||
def get_object_name(
|
||||
self, extracted_file_data: ExtractedFileData, purpose: str
|
||||
) -> str:
|
||||
"""
|
||||
Get the object name for the request
|
||||
"""
|
||||
extracted_file_data_content = extracted_file_data.get("content")
|
||||
|
||||
if extracted_file_data_content is None:
|
||||
raise ValueError("file content is required")
|
||||
|
||||
if purpose == "batch":
|
||||
## 1. If jsonl, check if there's a model name
|
||||
file_content = self._get_content_from_openai_file(
|
||||
extracted_file_data_content
|
||||
)
|
||||
|
||||
# Split into lines and parse each line as JSON
|
||||
openai_jsonl_content = [
|
||||
json.loads(line) for line in file_content.splitlines() if line.strip()
|
||||
]
|
||||
if len(openai_jsonl_content) > 0:
|
||||
return self._get_gcs_object_name_from_batch_jsonl(openai_jsonl_content)
|
||||
|
||||
## 2. If not jsonl, return the filename
|
||||
filename = extracted_file_data.get("filename")
|
||||
if filename:
|
||||
return filename
|
||||
## 3. If no file name, return timestamp
|
||||
return str(int(time.time()))
|
||||
|
||||
def get_complete_file_url(
|
||||
self,
|
||||
api_base: Optional[str],
|
||||
api_key: Optional[str],
|
||||
model: str,
|
||||
optional_params: Dict,
|
||||
litellm_params: Dict,
|
||||
data: CreateFileRequest,
|
||||
) -> str:
|
||||
"""
|
||||
Get the complete url for the request
|
||||
"""
|
||||
bucket_name = litellm_params.get("bucket_name") or os.getenv("GCS_BUCKET_NAME")
|
||||
if not bucket_name:
|
||||
raise ValueError("GCS bucket_name is required")
|
||||
file_data = data.get("file")
|
||||
purpose = data.get("purpose")
|
||||
if file_data is None:
|
||||
raise ValueError("file is required")
|
||||
if purpose is None:
|
||||
raise ValueError("purpose is required")
|
||||
extracted_file_data = extract_file_data(file_data)
|
||||
object_name = self.get_object_name(extracted_file_data, purpose)
|
||||
endpoint = (
|
||||
f"upload/storage/v1/b/{bucket_name}/o?uploadType=media&name={object_name}"
|
||||
)
|
||||
api_base = api_base or "https://storage.googleapis.com"
|
||||
if not api_base:
|
||||
raise ValueError("api_base is required")
|
||||
|
||||
return f"{api_base}/{endpoint}"
|
||||
|
||||
def get_supported_openai_params(
|
||||
self, model: str
|
||||
) -> List[OpenAICreateFileRequestOptionalParams]:
|
||||
return []
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
return optional_params
|
||||
|
||||
def _map_openai_to_vertex_params(
|
||||
self,
|
||||
openai_request_body: Dict[str, Any],
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
wrapper to call VertexGeminiConfig.map_openai_params
|
||||
"""
|
||||
from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import (
|
||||
VertexGeminiConfig,
|
||||
)
|
||||
|
||||
config = VertexGeminiConfig()
|
||||
_model = openai_request_body.get("model", "")
|
||||
vertex_params = config.map_openai_params(
|
||||
model=_model,
|
||||
non_default_params=openai_request_body,
|
||||
optional_params={},
|
||||
drop_params=False,
|
||||
)
|
||||
return vertex_params
|
||||
|
||||
def _transform_openai_jsonl_content_to_vertex_ai_jsonl_content(
|
||||
self, openai_jsonl_content: List[Dict[str, Any]]
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Transforms OpenAI JSONL content to VertexAI JSONL content
|
||||
|
||||
jsonl body for vertex is {"request": <request_body>}
|
||||
Example Vertex jsonl
|
||||
{"request":{"contents": [{"role": "user", "parts": [{"text": "What is the relation between the following video and image samples?"}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/video/animals.mp4", "mimeType": "video/mp4"}}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/image/cricket.jpeg", "mimeType": "image/jpeg"}}]}]}}
|
||||
{"request":{"contents": [{"role": "user", "parts": [{"text": "Describe what is happening in this video."}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/video/another_video.mov", "mimeType": "video/mov"}}]}]}}
|
||||
"""
|
||||
|
||||
vertex_jsonl_content = []
|
||||
for _openai_jsonl_content in openai_jsonl_content:
|
||||
openai_request_body = _openai_jsonl_content.get("body") or {}
|
||||
vertex_request_body = _transform_request_body(
|
||||
messages=openai_request_body.get("messages", []),
|
||||
model=openai_request_body.get("model", ""),
|
||||
optional_params=self._map_openai_to_vertex_params(openai_request_body),
|
||||
custom_llm_provider="vertex_ai",
|
||||
litellm_params={},
|
||||
cached_content=None,
|
||||
)
|
||||
vertex_jsonl_content.append({"request": vertex_request_body})
|
||||
return vertex_jsonl_content
|
||||
|
||||
def transform_create_file_request(
|
||||
self,
|
||||
model: str,
|
||||
create_file_data: CreateFileRequest,
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
) -> Union[bytes, str, dict]:
|
||||
"""
|
||||
2 Cases:
|
||||
1. Handle basic file upload
|
||||
2. Handle batch file upload (.jsonl)
|
||||
"""
|
||||
file_data = create_file_data.get("file")
|
||||
if file_data is None:
|
||||
raise ValueError("file is required")
|
||||
extracted_file_data = extract_file_data(file_data)
|
||||
extracted_file_data_content = extracted_file_data.get("content")
|
||||
if (
|
||||
create_file_data.get("purpose") == "batch"
|
||||
and extracted_file_data.get("content_type") == "application/jsonl"
|
||||
and extracted_file_data_content is not None
|
||||
):
|
||||
## 1. If jsonl, check if there's a model name
|
||||
file_content = self._get_content_from_openai_file(
|
||||
extracted_file_data_content
|
||||
)
|
||||
|
||||
# Split into lines and parse each line as JSON
|
||||
openai_jsonl_content = [
|
||||
json.loads(line) for line in file_content.splitlines() if line.strip()
|
||||
]
|
||||
vertex_jsonl_content = (
|
||||
self._transform_openai_jsonl_content_to_vertex_ai_jsonl_content(
|
||||
openai_jsonl_content
|
||||
)
|
||||
)
|
||||
return json.dumps(vertex_jsonl_content)
|
||||
elif isinstance(extracted_file_data_content, bytes):
|
||||
return extracted_file_data_content
|
||||
else:
|
||||
raise ValueError("Unsupported file content type")
|
||||
|
||||
def transform_create_file_response(
|
||||
self,
|
||||
model: Optional[str],
|
||||
raw_response: Response,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
litellm_params: dict,
|
||||
) -> OpenAIFileObject:
|
||||
"""
|
||||
Transform VertexAI File upload response into OpenAI-style FileObject
|
||||
"""
|
||||
response_json = raw_response.json()
|
||||
|
||||
try:
|
||||
response_object = GcsBucketResponse(**response_json) # type: ignore
|
||||
except Exception as e:
|
||||
raise VertexAIError(
|
||||
status_code=raw_response.status_code,
|
||||
message=f"Error reading GCS bucket response: {e}",
|
||||
headers=raw_response.headers,
|
||||
)
|
||||
|
||||
gcs_id = response_object.get("id", "")
|
||||
# Remove the last numeric ID from the path
|
||||
gcs_id = "/".join(gcs_id.split("/")[:-1]) if gcs_id else ""
|
||||
|
||||
return OpenAIFileObject(
|
||||
purpose=response_object.get("purpose", "batch"),
|
||||
id=f"gs://{gcs_id}",
|
||||
filename=response_object.get("name", ""),
|
||||
created_at=_convert_vertex_datetime_to_openai_datetime(
|
||||
vertex_datetime=response_object.get("timeCreated", "")
|
||||
),
|
||||
status="uploaded",
|
||||
bytes=int(response_object.get("size", 0)),
|
||||
object="file",
|
||||
)
|
||||
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[Dict, Headers]
|
||||
) -> BaseLLMException:
|
||||
return VertexAIError(
|
||||
status_code=status_code, message=error_message, headers=headers
|
||||
)
|
||||
|
||||
|
||||
class VertexAIJsonlFilesTransformation(VertexGeminiConfig):
|
||||
"""
|
||||
Transforms OpenAI /v1/files/* requests to VertexAI /v1/files/* requests
|
||||
"""
|
||||
|
||||
def transform_openai_file_content_to_vertex_ai_file_content(
|
||||
self, openai_file_content: Optional[FileTypes] = None
|
||||
) -> Tuple[str, str]:
|
||||
"""
|
||||
Transforms OpenAI FileContentRequest to VertexAI FileContentRequest
|
||||
"""
|
||||
|
||||
if openai_file_content is None:
|
||||
raise ValueError("contents of file are None")
|
||||
# Read the content of the file
|
||||
file_content = self._get_content_from_openai_file(openai_file_content)
|
||||
|
||||
# Split into lines and parse each line as JSON
|
||||
openai_jsonl_content = [
|
||||
json.loads(line) for line in file_content.splitlines() if line.strip()
|
||||
]
|
||||
vertex_jsonl_content = (
|
||||
self._transform_openai_jsonl_content_to_vertex_ai_jsonl_content(
|
||||
openai_jsonl_content
|
||||
)
|
||||
)
|
||||
vertex_jsonl_string = "\n".join(
|
||||
json.dumps(item) for item in vertex_jsonl_content
|
||||
)
|
||||
object_name = self._get_gcs_object_name(
|
||||
openai_jsonl_content=openai_jsonl_content
|
||||
)
|
||||
return vertex_jsonl_string, object_name
|
||||
|
||||
def _transform_openai_jsonl_content_to_vertex_ai_jsonl_content(
|
||||
self, openai_jsonl_content: List[Dict[str, Any]]
|
||||
):
|
||||
"""
|
||||
Transforms OpenAI JSONL content to VertexAI JSONL content
|
||||
|
||||
jsonl body for vertex is {"request": <request_body>}
|
||||
Example Vertex jsonl
|
||||
{"request":{"contents": [{"role": "user", "parts": [{"text": "What is the relation between the following video and image samples?"}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/video/animals.mp4", "mimeType": "video/mp4"}}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/image/cricket.jpeg", "mimeType": "image/jpeg"}}]}]}}
|
||||
{"request":{"contents": [{"role": "user", "parts": [{"text": "Describe what is happening in this video."}, {"fileData": {"fileUri": "gs://cloud-samples-data/generative-ai/video/another_video.mov", "mimeType": "video/mov"}}]}]}}
|
||||
"""
|
||||
|
||||
vertex_jsonl_content = []
|
||||
for _openai_jsonl_content in openai_jsonl_content:
|
||||
openai_request_body = _openai_jsonl_content.get("body") or {}
|
||||
vertex_request_body = _transform_request_body(
|
||||
messages=openai_request_body.get("messages", []),
|
||||
model=openai_request_body.get("model", ""),
|
||||
optional_params=self._map_openai_to_vertex_params(openai_request_body),
|
||||
custom_llm_provider="vertex_ai",
|
||||
litellm_params={},
|
||||
cached_content=None,
|
||||
)
|
||||
vertex_jsonl_content.append({"request": vertex_request_body})
|
||||
return vertex_jsonl_content
|
||||
|
||||
def _get_gcs_object_name(
|
||||
self,
|
||||
openai_jsonl_content: List[Dict[str, Any]],
|
||||
) -> str:
|
||||
"""
|
||||
Gets a unique GCS object name for the VertexAI batch prediction job
|
||||
|
||||
named as: litellm-vertex-{model}-{uuid}
|
||||
"""
|
||||
_model = openai_jsonl_content[0].get("body", {}).get("model", "")
|
||||
if "publishers/google/models" not in _model:
|
||||
_model = f"publishers/google/models/{_model}"
|
||||
object_name = f"litellm-vertex-files/{_model}/{uuid.uuid4()}"
|
||||
return object_name
|
||||
|
||||
def _map_openai_to_vertex_params(
|
||||
self,
|
||||
openai_request_body: Dict[str, Any],
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
wrapper to call VertexGeminiConfig.map_openai_params
|
||||
"""
|
||||
_model = openai_request_body.get("model", "")
|
||||
vertex_params = self.map_openai_params(
|
||||
model=_model,
|
||||
non_default_params=openai_request_body,
|
||||
optional_params={},
|
||||
drop_params=False,
|
||||
)
|
||||
return vertex_params
|
||||
|
||||
def _get_content_from_openai_file(self, openai_file_content: FileTypes) -> str:
|
||||
"""
|
||||
Helper to extract content from various OpenAI file types and return as string.
|
||||
|
||||
Handles:
|
||||
- Direct content (str, bytes, IO[bytes])
|
||||
- Tuple formats: (filename, content, [content_type], [headers])
|
||||
- PathLike objects
|
||||
"""
|
||||
content: Union[str, bytes] = b""
|
||||
# Extract file content from tuple if necessary
|
||||
if isinstance(openai_file_content, tuple):
|
||||
# Take the second element which is always the file content
|
||||
file_content = openai_file_content[1]
|
||||
else:
|
||||
file_content = openai_file_content
|
||||
|
||||
# Handle different file content types
|
||||
if isinstance(file_content, str):
|
||||
# String content can be used directly
|
||||
content = file_content
|
||||
elif isinstance(file_content, bytes):
|
||||
# Bytes content can be decoded
|
||||
content = file_content
|
||||
elif isinstance(file_content, PathLike): # PathLike
|
||||
with open(str(file_content), "rb") as f:
|
||||
content = f.read()
|
||||
elif hasattr(file_content, "read"): # IO[bytes]
|
||||
# File-like objects need to be read
|
||||
content = file_content.read()
|
||||
|
||||
# Ensure content is string
|
||||
if isinstance(content, bytes):
|
||||
content = content.decode("utf-8")
|
||||
|
||||
return content
|
||||
|
||||
def transform_gcs_bucket_response_to_openai_file_object(
|
||||
self, create_file_data: CreateFileRequest, gcs_upload_response: Dict[str, Any]
|
||||
) -> OpenAIFileObject:
|
||||
"""
|
||||
Transforms GCS Bucket upload file response to OpenAI FileObject
|
||||
"""
|
||||
gcs_id = gcs_upload_response.get("id", "")
|
||||
# Remove the last numeric ID from the path
|
||||
gcs_id = "/".join(gcs_id.split("/")[:-1]) if gcs_id else ""
|
||||
|
||||
return OpenAIFileObject(
|
||||
purpose=create_file_data.get("purpose", "batch"),
|
||||
id=f"gs://{gcs_id}",
|
||||
filename=gcs_upload_response.get("name", ""),
|
||||
created_at=_convert_vertex_datetime_to_openai_datetime(
|
||||
vertex_datetime=gcs_upload_response.get("timeCreated", "")
|
||||
),
|
||||
status="uploaded",
|
||||
bytes=gcs_upload_response.get("size", 0),
|
||||
object="file",
|
||||
)
|
||||
Reference in New Issue
Block a user