structure saas with tools
This commit is contained in:
Binary file not shown.
@@ -0,0 +1,181 @@
|
||||
import base64
|
||||
import time
|
||||
from io import BytesIO
|
||||
from typing import Any, List, Mapping, Optional, Tuple, Union
|
||||
|
||||
from aiohttp import ClientResponse
|
||||
from httpx import Headers, Response
|
||||
|
||||
from litellm.llms.base_llm.chat.transformation import (
|
||||
BaseLLMException,
|
||||
LiteLLMLoggingObj,
|
||||
)
|
||||
from litellm.types.llms.openai import OpenAIImageVariationOptionalParams
|
||||
from litellm.types.utils import (
|
||||
FileTypes,
|
||||
HttpHandlerRequestFields,
|
||||
ImageObject,
|
||||
ImageResponse,
|
||||
)
|
||||
|
||||
from ...base_llm.image_variations.transformation import BaseImageVariationConfig
|
||||
from ..common_utils import TopazException, TopazModelInfo
|
||||
|
||||
|
||||
class TopazImageVariationConfig(TopazModelInfo, BaseImageVariationConfig):
|
||||
def get_supported_openai_params(
|
||||
self, model: str
|
||||
) -> List[OpenAIImageVariationOptionalParams]:
|
||||
return ["response_format", "size"]
|
||||
|
||||
def get_complete_url(
|
||||
self,
|
||||
api_base: Optional[str],
|
||||
api_key: Optional[str],
|
||||
model: str,
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
stream: Optional[bool] = None,
|
||||
) -> str:
|
||||
api_base = api_base or "https://api.topazlabs.com"
|
||||
return f"{api_base}/image/v1/enhance"
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
for k, v in non_default_params.items():
|
||||
if k == "response_format":
|
||||
optional_params["output_format"] = v
|
||||
elif k == "size":
|
||||
split_v = v.split("x")
|
||||
assert len(split_v) == 2, "size must be in the format of widthxheight"
|
||||
optional_params["output_width"] = split_v[0]
|
||||
optional_params["output_height"] = split_v[1]
|
||||
return optional_params
|
||||
|
||||
def prepare_file_tuple(
|
||||
self,
|
||||
file_data: FileTypes,
|
||||
) -> Tuple[str, Optional[FileTypes], str, Mapping[str, str]]:
|
||||
"""
|
||||
Convert various file input formats to a consistent tuple format for HTTPX
|
||||
Returns: (filename, file_content, content_type, headers)
|
||||
"""
|
||||
# Default values
|
||||
filename = "image.png"
|
||||
content: Optional[FileTypes] = None
|
||||
content_type = "image/png"
|
||||
headers: Mapping[str, str] = {}
|
||||
|
||||
if isinstance(file_data, (bytes, BytesIO)):
|
||||
# Case 1: Just file content
|
||||
content = file_data
|
||||
elif isinstance(file_data, tuple):
|
||||
if len(file_data) == 2:
|
||||
# Case 2: (filename, content)
|
||||
filename = file_data[0] or filename
|
||||
content = file_data[1]
|
||||
elif len(file_data) == 3:
|
||||
# Case 3: (filename, content, content_type)
|
||||
filename = file_data[0] or filename
|
||||
content = file_data[1]
|
||||
content_type = file_data[2] or content_type
|
||||
elif len(file_data) == 4:
|
||||
# Case 4: (filename, content, content_type, headers)
|
||||
filename = file_data[0] or filename
|
||||
content = file_data[1]
|
||||
content_type = file_data[2] or content_type
|
||||
headers = file_data[3]
|
||||
|
||||
return (filename, content, content_type, headers)
|
||||
|
||||
def transform_request_image_variation(
|
||||
self,
|
||||
model: Optional[str],
|
||||
image: FileTypes,
|
||||
optional_params: dict,
|
||||
headers: dict,
|
||||
) -> HttpHandlerRequestFields:
|
||||
request_params = HttpHandlerRequestFields(
|
||||
files={"image": self.prepare_file_tuple(image)},
|
||||
data=optional_params,
|
||||
)
|
||||
|
||||
return request_params
|
||||
|
||||
def _common_transform_response_image_variation(
|
||||
self,
|
||||
image_content: bytes,
|
||||
response_ms: float,
|
||||
) -> ImageResponse:
|
||||
# Convert to base64
|
||||
base64_image = base64.b64encode(image_content).decode("utf-8")
|
||||
|
||||
return ImageResponse(
|
||||
created=int(time.time()),
|
||||
data=[
|
||||
ImageObject(
|
||||
b64_json=base64_image,
|
||||
url=None,
|
||||
revised_prompt=None,
|
||||
)
|
||||
],
|
||||
response_ms=response_ms,
|
||||
)
|
||||
|
||||
async def async_transform_response_image_variation(
|
||||
self,
|
||||
model: Optional[str],
|
||||
raw_response: ClientResponse,
|
||||
model_response: ImageResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
image: FileTypes,
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
) -> ImageResponse:
|
||||
image_content = await raw_response.read()
|
||||
|
||||
response_ms = logging_obj.get_response_ms()
|
||||
|
||||
return self._common_transform_response_image_variation(
|
||||
image_content, response_ms
|
||||
)
|
||||
|
||||
def transform_response_image_variation(
|
||||
self,
|
||||
model: Optional[str],
|
||||
raw_response: Response,
|
||||
model_response: ImageResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
image: FileTypes,
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
) -> ImageResponse:
|
||||
image_content = raw_response.content
|
||||
|
||||
response_ms = (
|
||||
raw_response.elapsed.total_seconds() * 1000
|
||||
) # Convert to milliseconds
|
||||
|
||||
return self._common_transform_response_image_variation(
|
||||
image_content, response_ms
|
||||
)
|
||||
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[dict, Headers]
|
||||
) -> BaseLLMException:
|
||||
return TopazException(
|
||||
status_code=status_code,
|
||||
message=error_message,
|
||||
headers=headers,
|
||||
)
|
||||
Reference in New Issue
Block a user