structure saas with tools

This commit is contained in:
Davidson Gomes
2025-04-25 15:30:54 -03:00
commit 1aef473937
16434 changed files with 6584257 additions and 0 deletions

View File

@@ -0,0 +1,58 @@
from typing import List, Optional
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues
from ..base_llm.base_utils import BaseLLMModelInfo
from ..base_llm.chat.transformation import BaseLLMException
class TopazException(BaseLLMException):
pass
class TopazModelInfo(BaseLLMModelInfo):
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
if api_key is None:
raise ValueError(
"API key is required for Topaz image variations. Set via `TOPAZ_API_KEY` or `api_key=..`"
)
return {
# "Content-Type": "multipart/form-data",
"Accept": "image/jpeg",
"X-API-Key": api_key,
}
def get_models(
self, api_key: Optional[str] = None, api_base: Optional[str] = None
) -> List[str]:
return [
"topaz/Standard V2",
"topaz/Low Resolution V2",
"topaz/CGI",
"topaz/High Resolution V2",
"topaz/Text Refine",
]
@staticmethod
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
return api_key or get_secret_str("TOPAZ_API_KEY")
@staticmethod
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
return (
api_base or get_secret_str("TOPAZ_API_BASE") or "https://api.topazlabs.com"
)
@staticmethod
def get_base_model(model: str) -> str:
return model

View File

@@ -0,0 +1,181 @@
import base64
import time
from io import BytesIO
from typing import Any, List, Mapping, Optional, Tuple, Union
from aiohttp import ClientResponse
from httpx import Headers, Response
from litellm.llms.base_llm.chat.transformation import (
BaseLLMException,
LiteLLMLoggingObj,
)
from litellm.types.llms.openai import OpenAIImageVariationOptionalParams
from litellm.types.utils import (
FileTypes,
HttpHandlerRequestFields,
ImageObject,
ImageResponse,
)
from ...base_llm.image_variations.transformation import BaseImageVariationConfig
from ..common_utils import TopazException, TopazModelInfo
class TopazImageVariationConfig(TopazModelInfo, BaseImageVariationConfig):
def get_supported_openai_params(
self, model: str
) -> List[OpenAIImageVariationOptionalParams]:
return ["response_format", "size"]
def get_complete_url(
self,
api_base: Optional[str],
api_key: Optional[str],
model: str,
optional_params: dict,
litellm_params: dict,
stream: Optional[bool] = None,
) -> str:
api_base = api_base or "https://api.topazlabs.com"
return f"{api_base}/image/v1/enhance"
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
for k, v in non_default_params.items():
if k == "response_format":
optional_params["output_format"] = v
elif k == "size":
split_v = v.split("x")
assert len(split_v) == 2, "size must be in the format of widthxheight"
optional_params["output_width"] = split_v[0]
optional_params["output_height"] = split_v[1]
return optional_params
def prepare_file_tuple(
self,
file_data: FileTypes,
) -> Tuple[str, Optional[FileTypes], str, Mapping[str, str]]:
"""
Convert various file input formats to a consistent tuple format for HTTPX
Returns: (filename, file_content, content_type, headers)
"""
# Default values
filename = "image.png"
content: Optional[FileTypes] = None
content_type = "image/png"
headers: Mapping[str, str] = {}
if isinstance(file_data, (bytes, BytesIO)):
# Case 1: Just file content
content = file_data
elif isinstance(file_data, tuple):
if len(file_data) == 2:
# Case 2: (filename, content)
filename = file_data[0] or filename
content = file_data[1]
elif len(file_data) == 3:
# Case 3: (filename, content, content_type)
filename = file_data[0] or filename
content = file_data[1]
content_type = file_data[2] or content_type
elif len(file_data) == 4:
# Case 4: (filename, content, content_type, headers)
filename = file_data[0] or filename
content = file_data[1]
content_type = file_data[2] or content_type
headers = file_data[3]
return (filename, content, content_type, headers)
def transform_request_image_variation(
self,
model: Optional[str],
image: FileTypes,
optional_params: dict,
headers: dict,
) -> HttpHandlerRequestFields:
request_params = HttpHandlerRequestFields(
files={"image": self.prepare_file_tuple(image)},
data=optional_params,
)
return request_params
def _common_transform_response_image_variation(
self,
image_content: bytes,
response_ms: float,
) -> ImageResponse:
# Convert to base64
base64_image = base64.b64encode(image_content).decode("utf-8")
return ImageResponse(
created=int(time.time()),
data=[
ImageObject(
b64_json=base64_image,
url=None,
revised_prompt=None,
)
],
response_ms=response_ms,
)
async def async_transform_response_image_variation(
self,
model: Optional[str],
raw_response: ClientResponse,
model_response: ImageResponse,
logging_obj: LiteLLMLoggingObj,
request_data: dict,
image: FileTypes,
optional_params: dict,
litellm_params: dict,
encoding: Any,
api_key: Optional[str] = None,
) -> ImageResponse:
image_content = await raw_response.read()
response_ms = logging_obj.get_response_ms()
return self._common_transform_response_image_variation(
image_content, response_ms
)
def transform_response_image_variation(
self,
model: Optional[str],
raw_response: Response,
model_response: ImageResponse,
logging_obj: LiteLLMLoggingObj,
request_data: dict,
image: FileTypes,
optional_params: dict,
litellm_params: dict,
encoding: Any,
api_key: Optional[str] = None,
) -> ImageResponse:
image_content = raw_response.content
response_ms = (
raw_response.elapsed.total_seconds() * 1000
) # Convert to milliseconds
return self._common_transform_response_image_variation(
image_content, response_ms
)
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, Headers]
) -> BaseLLMException:
return TopazException(
status_code=status_code,
message=error_message,
headers=headers,
)