structure saas with tools

This commit is contained in:
Davidson Gomes
2025-04-25 15:30:54 -03:00
commit 1aef473937
16434 changed files with 6584257 additions and 0 deletions

View File

@@ -0,0 +1,709 @@
import json
from copy import deepcopy
from typing import Any, Callable, List, Optional, Union, cast
import httpx
import litellm
from litellm._logging import verbose_logger
from litellm.litellm_core_utils.asyncify import asyncify
from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM
from litellm.llms.custom_httpx.http_handler import (
_get_httpx_client,
get_async_httpx_client,
)
from litellm.types.llms.openai import AllMessageValues
from litellm.utils import (
CustomStreamWrapper,
EmbeddingResponse,
ModelResponse,
Usage,
get_secret,
)
from ..common_utils import AWSEventStreamDecoder, SagemakerError
from .transformation import SagemakerConfig
sagemaker_config = SagemakerConfig()
"""
SAGEMAKER AUTH Keys/Vars
os.environ['AWS_ACCESS_KEY_ID'] = ""
os.environ['AWS_SECRET_ACCESS_KEY'] = ""
"""
# set os.environ['AWS_REGION_NAME'] = <your-region_name>
class SagemakerLLM(BaseAWSLLM):
def _load_credentials(
self,
optional_params: dict,
):
try:
from botocore.credentials import Credentials
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
## CREDENTIALS ##
# pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
aws_session_token = optional_params.pop("aws_session_token", None)
aws_region_name = optional_params.pop("aws_region_name", None)
aws_role_name = optional_params.pop("aws_role_name", None)
aws_session_name = optional_params.pop("aws_session_name", None)
aws_profile_name = optional_params.pop("aws_profile_name", None)
optional_params.pop(
"aws_bedrock_runtime_endpoint", None
) # https://bedrock-runtime.{region_name}.amazonaws.com
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None)
### SET REGION NAME ###
if aws_region_name is None:
# check env #
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
if litellm_aws_region_name is not None and isinstance(
litellm_aws_region_name, str
):
aws_region_name = litellm_aws_region_name
standard_aws_region_name = get_secret("AWS_REGION", None)
if standard_aws_region_name is not None and isinstance(
standard_aws_region_name, str
):
aws_region_name = standard_aws_region_name
if aws_region_name is None:
aws_region_name = "us-west-2"
credentials: Credentials = self.get_credentials(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
aws_region_name=aws_region_name,
aws_session_name=aws_session_name,
aws_profile_name=aws_profile_name,
aws_role_name=aws_role_name,
aws_web_identity_token=aws_web_identity_token,
aws_sts_endpoint=aws_sts_endpoint,
)
return credentials, aws_region_name
def _prepare_request(
self,
credentials,
model: str,
data: dict,
messages: List[AllMessageValues],
litellm_params: dict,
optional_params: dict,
aws_region_name: str,
extra_headers: Optional[dict] = None,
):
try:
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
sigv4 = SigV4Auth(credentials, "sagemaker", aws_region_name)
if optional_params.get("stream") is True:
api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations-response-stream"
else:
api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations"
sagemaker_base_url = optional_params.get("sagemaker_base_url", None)
if sagemaker_base_url is not None:
api_base = sagemaker_base_url
encoded_data = json.dumps(data).encode("utf-8")
headers = sagemaker_config.validate_environment(
headers=extra_headers,
model=model,
messages=messages,
optional_params=optional_params,
litellm_params=litellm_params,
)
request = AWSRequest(
method="POST", url=api_base, data=encoded_data, headers=headers
)
sigv4.add_auth(request)
if (
extra_headers is not None and "Authorization" in extra_headers
): # prevent sigv4 from overwriting the auth header
request.headers["Authorization"] = extra_headers["Authorization"]
prepped_request = request.prepare()
return prepped_request
def completion( # noqa: PLR0915
self,
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params: dict,
litellm_params: dict,
timeout: Optional[Union[float, httpx.Timeout]] = None,
custom_prompt_dict={},
hf_model_name=None,
logger_fn=None,
acompletion: bool = False,
headers: dict = {},
):
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
credentials, aws_region_name = self._load_credentials(optional_params)
inference_params = deepcopy(optional_params)
stream = inference_params.pop("stream", None)
model_id = optional_params.get("model_id", None)
## Load Config
config = litellm.SagemakerConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
if stream is True:
if acompletion is True:
response = self.async_streaming(
messages=messages,
model=model,
custom_prompt_dict=custom_prompt_dict,
hf_model_name=hf_model_name,
optional_params=optional_params,
encoding=encoding,
model_response=model_response,
logging_obj=logging_obj,
model_id=model_id,
aws_region_name=aws_region_name,
credentials=credentials,
headers=headers,
litellm_params=litellm_params,
)
return response
else:
data = sagemaker_config.transform_request(
model=model,
messages=messages,
optional_params=optional_params,
litellm_params=litellm_params,
headers=headers,
)
prepared_request = self._prepare_request(
model=model,
data=data,
messages=messages,
optional_params=optional_params,
litellm_params=litellm_params,
credentials=credentials,
aws_region_name=aws_region_name,
)
if model_id is not None:
# Add model_id as InferenceComponentName header
# boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
prepared_request.headers.update(
{"X-Amzn-SageMaker-Inference-Component": model_id}
)
sync_handler = _get_httpx_client()
sync_response = sync_handler.post(
url=prepared_request.url,
headers=prepared_request.headers, # type: ignore
data=prepared_request.body,
stream=stream,
)
if sync_response.status_code != 200:
raise SagemakerError(
status_code=sync_response.status_code,
message=str(sync_response.read()),
)
decoder = AWSEventStreamDecoder(model="")
completion_stream = decoder.iter_bytes(
sync_response.iter_bytes(chunk_size=1024)
)
streaming_response = CustomStreamWrapper(
completion_stream=completion_stream,
model=model,
custom_llm_provider="sagemaker",
logging_obj=logging_obj,
)
## LOGGING
logging_obj.post_call(
input=messages,
api_key="",
original_response=streaming_response,
additional_args={"complete_input_dict": data},
)
return streaming_response
# Non-Streaming Requests
# Async completion
if acompletion is True:
return self.async_completion(
messages=messages,
model=model,
custom_prompt_dict=custom_prompt_dict,
hf_model_name=hf_model_name,
model_response=model_response,
encoding=encoding,
logging_obj=logging_obj,
model_id=model_id,
optional_params=optional_params,
credentials=credentials,
aws_region_name=aws_region_name,
headers=headers,
litellm_params=litellm_params,
)
## Non-Streaming completion CALL
_data = sagemaker_config.transform_request(
model=model,
messages=messages,
optional_params=optional_params,
litellm_params=litellm_params,
headers=headers,
)
prepared_request_args = {
"model": model,
"data": _data,
"optional_params": optional_params,
"litellm_params": litellm_params,
"credentials": credentials,
"aws_region_name": aws_region_name,
"messages": messages,
}
prepared_request = self._prepare_request(**prepared_request_args)
try:
if model_id is not None:
# Add model_id as InferenceComponentName header
# boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
prepared_request.headers.update(
{"X-Amzn-SageMaker-Inference-Component": model_id}
)
## LOGGING
timeout = 300.0
sync_handler = _get_httpx_client()
## LOGGING
logging_obj.pre_call(
input=[],
api_key="",
additional_args={
"complete_input_dict": _data,
"api_base": prepared_request.url,
"headers": prepared_request.headers,
},
)
# make sync httpx post request here
try:
sync_response = sync_handler.post(
url=prepared_request.url,
headers=prepared_request.headers, # type: ignore
data=prepared_request.body,
timeout=timeout,
)
if sync_response.status_code != 200:
raise SagemakerError(
status_code=sync_response.status_code,
message=sync_response.text,
)
except Exception as e:
## LOGGING
logging_obj.post_call(
input=[],
api_key="",
original_response=str(e),
additional_args={"complete_input_dict": _data},
)
raise e
except Exception as e:
verbose_logger.error("Sagemaker error %s", str(e))
status_code = (
getattr(e, "response", {})
.get("ResponseMetadata", {})
.get("HTTPStatusCode", 500)
)
error_message = (
getattr(e, "response", {}).get("Error", {}).get("Message", str(e))
)
if "Inference Component Name header is required" in error_message:
error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`"
raise SagemakerError(status_code=status_code, message=error_message)
return sagemaker_config.transform_response(
model=model,
raw_response=sync_response,
model_response=model_response,
logging_obj=logging_obj,
request_data=_data,
messages=messages,
optional_params=optional_params,
encoding=encoding,
litellm_params=litellm_params,
)
async def make_async_call(
self,
api_base: str,
headers: dict,
data: str,
logging_obj,
client=None,
):
try:
if client is None:
client = get_async_httpx_client(
llm_provider=litellm.LlmProviders.SAGEMAKER
) # Create a new client if none provided
response = await client.post(
api_base,
headers=headers,
data=data,
stream=True,
)
if response.status_code != 200:
raise SagemakerError(
status_code=response.status_code, message=response.text
)
decoder = AWSEventStreamDecoder(model="")
completion_stream = decoder.aiter_bytes(
response.aiter_bytes(chunk_size=1024)
)
return completion_stream
# LOGGING
logging_obj.post_call(
input=[],
api_key="",
original_response="first stream response received",
additional_args={"complete_input_dict": data},
)
except httpx.HTTPStatusError as err:
error_code = err.response.status_code
raise SagemakerError(status_code=error_code, message=err.response.text)
except httpx.TimeoutException:
raise SagemakerError(status_code=408, message="Timeout error occurred.")
except Exception as e:
raise SagemakerError(status_code=500, message=str(e))
async def async_streaming(
self,
messages: List[AllMessageValues],
model: str,
custom_prompt_dict: dict,
hf_model_name: Optional[str],
credentials,
aws_region_name: str,
optional_params,
encoding,
model_response: ModelResponse,
model_id: Optional[str],
logging_obj: Any,
litellm_params: dict,
headers: dict,
):
data = await sagemaker_config.async_transform_request(
model=model,
messages=messages,
optional_params={**optional_params, "stream": True},
litellm_params=litellm_params,
headers=headers,
)
asyncified_prepare_request = asyncify(self._prepare_request)
prepared_request_args = {
"model": model,
"data": data,
"optional_params": optional_params,
"litellm_params": litellm_params,
"credentials": credentials,
"aws_region_name": aws_region_name,
"messages": messages,
}
prepared_request = await asyncified_prepare_request(**prepared_request_args)
if model_id is not None: # Fixes https://github.com/BerriAI/litellm/issues/8889
prepared_request.headers.update(
{"X-Amzn-SageMaker-Inference-Component": model_id}
)
if not prepared_request.body:
raise ValueError("Prepared request body is empty")
completion_stream = await self.make_async_call(
api_base=prepared_request.url,
headers=prepared_request.headers, # type: ignore
data=cast(str, prepared_request.body),
logging_obj=logging_obj,
)
streaming_response = CustomStreamWrapper(
completion_stream=completion_stream,
model=model,
custom_llm_provider="sagemaker",
logging_obj=logging_obj,
)
# LOGGING
logging_obj.post_call(
input=[],
api_key="",
original_response="first stream response received",
additional_args={"complete_input_dict": data},
)
return streaming_response
async def async_completion(
self,
messages: List[AllMessageValues],
model: str,
custom_prompt_dict: dict,
hf_model_name: Optional[str],
credentials,
aws_region_name: str,
encoding,
model_response: ModelResponse,
optional_params: dict,
logging_obj: Any,
model_id: Optional[str],
headers: dict,
litellm_params: dict,
):
timeout = 300.0
async_handler = get_async_httpx_client(
llm_provider=litellm.LlmProviders.SAGEMAKER
)
data = await sagemaker_config.async_transform_request(
model=model,
messages=messages,
optional_params=optional_params,
litellm_params=litellm_params,
headers=headers,
)
asyncified_prepare_request = asyncify(self._prepare_request)
prepared_request_args = {
"model": model,
"data": data,
"optional_params": optional_params,
"litellm_params": litellm_params,
"credentials": credentials,
"aws_region_name": aws_region_name,
"messages": messages,
}
prepared_request = await asyncified_prepare_request(**prepared_request_args)
## LOGGING
logging_obj.pre_call(
input=[],
api_key="",
additional_args={
"complete_input_dict": data,
"api_base": prepared_request.url,
"headers": prepared_request.headers,
},
)
try:
if model_id is not None:
# Add model_id as InferenceComponentName header
# boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
prepared_request.headers.update(
{"X-Amzn-SageMaker-Inference-Component": model_id}
)
# make async httpx post request here
try:
response = await async_handler.post(
url=prepared_request.url,
headers=prepared_request.headers, # type: ignore
data=prepared_request.body,
timeout=timeout,
)
if response.status_code != 200:
raise SagemakerError(
status_code=response.status_code, message=response.text
)
except Exception as e:
## LOGGING
logging_obj.post_call(
input=data["inputs"],
api_key="",
original_response=str(e),
additional_args={"complete_input_dict": data},
)
raise e
except Exception as e:
error_message = f"{str(e)}"
if "Inference Component Name header is required" in error_message:
error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`"
raise SagemakerError(status_code=500, message=error_message)
return sagemaker_config.transform_response(
model=model,
raw_response=response,
model_response=model_response,
logging_obj=logging_obj,
request_data=data,
messages=messages,
optional_params=optional_params,
encoding=encoding,
litellm_params=litellm_params,
)
def embedding(
self,
model: str,
input: list,
model_response: EmbeddingResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params: dict,
custom_prompt_dict={},
litellm_params=None,
logger_fn=None,
):
"""
Supports Huggingface Jumpstart embeddings like GPT-6B
"""
### BOTO3 INIT
import boto3
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
aws_region_name = optional_params.pop("aws_region_name", None)
if aws_access_key_id is not None:
# uses auth params passed to completion
# aws_access_key_id is not None, assume user is trying to auth using litellm.completion
client = boto3.client(
service_name="sagemaker-runtime",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
region_name=aws_region_name,
)
else:
# aws_access_key_id is None, assume user is trying to auth using env variables
# boto3 automaticaly reads env variables
# we need to read region name from env
# I assume majority of users use .env for auth
region_name = (
get_secret("AWS_REGION_NAME")
or aws_region_name # get region from config file if specified
or "us-west-2" # default to us-west-2 if region not specified
)
client = boto3.client(
service_name="sagemaker-runtime",
region_name=region_name,
)
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
inference_params = deepcopy(optional_params)
inference_params.pop("stream", None)
## Load Config
config = litellm.SagemakerConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
#### HF EMBEDDING LOGIC
data = json.dumps({"text_inputs": input}).encode("utf-8")
## LOGGING
request_str = f"""
response = client.invoke_endpoint(
EndpointName={model},
ContentType="application/json",
Body=f"{data!r}", # Use !r for safe representation
CustomAttributes="accept_eula=true",
)""" # type: ignore
logging_obj.pre_call(
input=input,
api_key="",
additional_args={"complete_input_dict": data, "request_str": request_str},
)
## EMBEDDING CALL
try:
response = client.invoke_endpoint(
EndpointName=model,
ContentType="application/json",
Body=data,
CustomAttributes="accept_eula=true",
)
except Exception as e:
status_code = (
getattr(e, "response", {})
.get("ResponseMetadata", {})
.get("HTTPStatusCode", 500)
)
error_message = (
getattr(e, "response", {}).get("Error", {}).get("Message", str(e))
)
raise SagemakerError(status_code=status_code, message=error_message)
response = json.loads(response["Body"].read().decode("utf8"))
## LOGGING
logging_obj.post_call(
input=input,
api_key="",
original_response=response,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response}")
if "embedding" not in response:
raise SagemakerError(
status_code=500, message="embedding not found in response"
)
embeddings = response["embedding"]
if not isinstance(embeddings, list):
raise SagemakerError(
status_code=422,
message=f"Response not in expected format - {embeddings}",
)
output_data = []
for idx, embedding in enumerate(embeddings):
output_data.append(
{"object": "embedding", "index": idx, "embedding": embedding}
)
model_response.object = "list"
model_response.data = output_data
model_response.model = model
input_tokens = 0
for text in input:
input_tokens += len(encoding.encode(text))
setattr(
model_response,
"usage",
Usage(
prompt_tokens=input_tokens,
completion_tokens=0,
total_tokens=input_tokens,
),
)
return model_response

View File

@@ -0,0 +1,275 @@
"""
Translate from OpenAI's `/v1/chat/completions` to Sagemaker's `/invoke`
In the Huggingface TGI format.
"""
import json
import time
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
from httpx._models import Headers, Response
import litellm
from litellm.litellm_core_utils.asyncify import asyncify
from litellm.litellm_core_utils.prompt_templates.factory import (
custom_prompt,
prompt_factory,
)
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import ModelResponse, Usage
from litellm.utils import token_counter
from ..common_utils import SagemakerError
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
LiteLLMLoggingObj = _LiteLLMLoggingObj
else:
LiteLLMLoggingObj = Any
class SagemakerConfig(BaseConfig):
"""
Reference: https://d-uuwbxj1u4cnu.studio.us-west-2.sagemaker.aws/jupyter/default/lab/workspaces/auto-q/tree/DemoNotebooks/meta-textgeneration-llama-2-7b-SDK_1.ipynb
"""
max_new_tokens: Optional[int] = None
top_p: Optional[float] = None
temperature: Optional[float] = None
return_full_text: Optional[bool] = None
def __init__(
self,
max_new_tokens: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
return_full_text: Optional[bool] = None,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, Headers]
) -> BaseLLMException:
return SagemakerError(
message=error_message, status_code=status_code, headers=headers
)
def get_supported_openai_params(self, model: str) -> List:
return ["stream", "temperature", "max_tokens", "top_p", "stop", "n"]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
for param, value in non_default_params.items():
if param == "temperature":
if value == 0.0 or value == 0:
# hugging face exception raised when temp==0
# Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
if not non_default_params.get(
"aws_sagemaker_allow_zero_temp", False
):
value = 0.01
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "n":
optional_params["best_of"] = value
optional_params[
"do_sample"
] = True # Need to sample if you want best of for hf inference endpoints
if param == "stream":
optional_params["stream"] = value
if param == "stop":
optional_params["stop"] = value
if param == "max_tokens":
# HF TGI raises the following exception when max_new_tokens==0
# Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
if value == 0:
value = 1
optional_params["max_new_tokens"] = value
non_default_params.pop("aws_sagemaker_allow_zero_temp", None)
return optional_params
def _transform_prompt(
self,
model: str,
messages: List,
custom_prompt_dict: dict,
hf_model_name: Optional[str],
) -> str:
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details.get("roles", None),
initial_prompt_value=model_prompt_details.get(
"initial_prompt_value", ""
),
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
messages=messages,
)
elif hf_model_name in custom_prompt_dict:
# check if the base huggingface model has a registered custom prompt
model_prompt_details = custom_prompt_dict[hf_model_name]
prompt = custom_prompt(
role_dict=model_prompt_details.get("roles", None),
initial_prompt_value=model_prompt_details.get(
"initial_prompt_value", ""
),
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
messages=messages,
)
else:
if hf_model_name is None:
if "llama-2" in model.lower(): # llama-2 model
if "chat" in model.lower(): # apply llama2 chat template
hf_model_name = "meta-llama/Llama-2-7b-chat-hf"
else: # apply regular llama2 template
hf_model_name = "meta-llama/Llama-2-7b"
hf_model_name = (
hf_model_name or model
) # pass in hf model name for pulling it's prompt template - (e.g. `hf_model_name="meta-llama/Llama-2-7b-chat-hf` applies the llama2 chat template to the prompt)
prompt: str = prompt_factory(model=hf_model_name, messages=messages) # type: ignore
return prompt
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
inference_params = optional_params.copy()
stream = inference_params.pop("stream", False)
data: Dict = {"parameters": inference_params}
if stream is True:
data["stream"] = True
custom_prompt_dict = (
litellm_params.get("custom_prompt_dict", None) or litellm.custom_prompt_dict
)
hf_model_name = litellm_params.get("hf_model_name", None)
prompt = self._transform_prompt(
model=model,
messages=messages,
custom_prompt_dict=custom_prompt_dict,
hf_model_name=hf_model_name,
)
data["inputs"] = prompt
return data
async def async_transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
return await asyncify(self.transform_request)(
model, messages, optional_params, litellm_params, headers
)
def transform_response(
self,
model: str,
raw_response: Response,
model_response: ModelResponse,
logging_obj: LiteLLMLoggingObj,
request_data: dict,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
encoding: str,
api_key: Optional[str] = None,
json_mode: Optional[bool] = None,
) -> ModelResponse:
completion_response = raw_response.json()
## LOGGING
logging_obj.post_call(
input=messages,
api_key="",
original_response=completion_response,
additional_args={"complete_input_dict": request_data},
)
prompt = request_data["inputs"]
## RESPONSE OBJECT
try:
if isinstance(completion_response, list):
completion_response_choices = completion_response[0]
else:
completion_response_choices = completion_response
completion_output = ""
if "generation" in completion_response_choices:
completion_output += completion_response_choices["generation"]
elif "generated_text" in completion_response_choices:
completion_output += completion_response_choices["generated_text"]
# check if the prompt template is part of output, if so - filter it out
if completion_output.startswith(prompt) and "<s>" in prompt:
completion_output = completion_output.replace(prompt, "", 1)
model_response.choices[0].message.content = completion_output # type: ignore
except Exception:
raise SagemakerError(
message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}",
status_code=500,
)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = token_counter(
text=prompt, count_response_tokens=True
) # doesn't apply any default token count from openai's chat template
completion_tokens = token_counter(
text=model_response["choices"][0]["message"].get("content", ""),
count_response_tokens=True,
)
model_response.created = int(time.time())
model_response.model = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
return model_response
def validate_environment(
self,
headers: Optional[dict],
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
headers = {"Content-Type": "application/json"}
if headers is not None:
headers = {"Content-Type": "application/json", **headers}
return headers