structure saas with tools
This commit is contained in:
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,149 @@
|
||||
import time
|
||||
from typing import Callable, Optional, Union
|
||||
|
||||
import litellm
|
||||
from litellm.litellm_core_utils.prompt_templates.factory import (
|
||||
custom_prompt,
|
||||
prompt_factory,
|
||||
)
|
||||
from litellm.llms.custom_httpx.http_handler import (
|
||||
AsyncHTTPHandler,
|
||||
HTTPHandler,
|
||||
_get_httpx_client,
|
||||
)
|
||||
from litellm.utils import ModelResponse, Usage
|
||||
|
||||
from ..common_utils import PetalsError
|
||||
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: Optional[str],
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
logging_obj,
|
||||
optional_params: dict,
|
||||
stream=False,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
||||
):
|
||||
## Load Config
|
||||
config = litellm.PetalsConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > petals_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
if model in litellm.custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = litellm.custom_prompt_dict[model]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details["roles"],
|
||||
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
||||
final_prompt_value=model_prompt_details["final_prompt_value"],
|
||||
messages=messages,
|
||||
)
|
||||
else:
|
||||
prompt = prompt_factory(model=model, messages=messages)
|
||||
|
||||
output_text: Optional[str] = None
|
||||
if api_base:
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": optional_params,
|
||||
"api_base": api_base,
|
||||
},
|
||||
)
|
||||
data = {"model": model, "inputs": prompt, **optional_params}
|
||||
|
||||
## COMPLETION CALL
|
||||
if client is None or not isinstance(client, HTTPHandler):
|
||||
client = _get_httpx_client()
|
||||
response = client.post(api_base, data=data)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
original_response=response.text,
|
||||
additional_args={"complete_input_dict": optional_params},
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
try:
|
||||
output_text = response.json()["outputs"]
|
||||
except Exception as e:
|
||||
PetalsError(
|
||||
status_code=response.status_code,
|
||||
message=str(e),
|
||||
headers=response.headers,
|
||||
)
|
||||
|
||||
else:
|
||||
try:
|
||||
from petals import AutoDistributedModelForCausalLM # type: ignore
|
||||
from transformers import AutoTokenizer
|
||||
except Exception:
|
||||
raise Exception(
|
||||
"Importing torch, transformers, petals failed\nTry pip installing petals \npip install git+https://github.com/bigscience-workshop/petals"
|
||||
)
|
||||
|
||||
model = model
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model, use_fast=False, add_bos_token=False
|
||||
)
|
||||
model_obj = AutoDistributedModelForCausalLM.from_pretrained(model)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
additional_args={"complete_input_dict": optional_params},
|
||||
)
|
||||
|
||||
## COMPLETION CALL
|
||||
inputs = tokenizer(prompt, return_tensors="pt")["input_ids"]
|
||||
|
||||
# optional params: max_new_tokens=1,temperature=0.9, top_p=0.6
|
||||
outputs = model_obj.generate(inputs, **optional_params)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
original_response=outputs,
|
||||
additional_args={"complete_input_dict": optional_params},
|
||||
)
|
||||
## RESPONSE OBJECT
|
||||
output_text = tokenizer.decode(outputs[0])
|
||||
|
||||
if output_text is not None and len(output_text) > 0:
|
||||
model_response.choices[0].message.content = output_text # type: ignore
|
||||
|
||||
prompt_tokens = len(encoding.encode(prompt))
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"].get("content"))
|
||||
)
|
||||
|
||||
model_response.created = int(time.time())
|
||||
model_response.model = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
def embedding():
|
||||
# logic for parsing in - calling - parsing out model embedding calls
|
||||
pass
|
||||
@@ -0,0 +1,138 @@
|
||||
from typing import Any, List, Optional, Union
|
||||
|
||||
from httpx import Headers, Response
|
||||
|
||||
import litellm
|
||||
from litellm.llms.base_llm.chat.transformation import (
|
||||
BaseConfig,
|
||||
BaseLLMException,
|
||||
LiteLLMLoggingObj,
|
||||
)
|
||||
from litellm.types.llms.openai import AllMessageValues
|
||||
from litellm.types.utils import ModelResponse
|
||||
|
||||
from ..common_utils import PetalsError
|
||||
|
||||
|
||||
class PetalsConfig(BaseConfig):
|
||||
"""
|
||||
Reference: https://github.com/petals-infra/chat.petals.dev#post-apiv1generate
|
||||
The `PetalsConfig` class encapsulates the configuration for the Petals API. The properties of this class are described below:
|
||||
|
||||
- `max_length` (integer): This represents the maximum length of the generated text (including the prefix) in tokens.
|
||||
|
||||
- `max_new_tokens` (integer): This represents the maximum number of newly generated tokens (excluding the prefix).
|
||||
|
||||
The generation parameters are compatible with `.generate()` from Hugging Face's Transformers library:
|
||||
|
||||
- `do_sample` (boolean, optional): If set to 0 (default), the API runs greedy generation. If set to 1, the API performs sampling using the parameters below:
|
||||
|
||||
- `temperature` (float, optional): This value sets the temperature for sampling.
|
||||
|
||||
- `top_k` (integer, optional): This value sets the limit for top-k sampling.
|
||||
|
||||
- `top_p` (float, optional): This value sets the limit for top-p (nucleus) sampling.
|
||||
|
||||
- `repetition_penalty` (float, optional): This helps apply the repetition penalty during text generation, as discussed in this paper.
|
||||
"""
|
||||
|
||||
max_length: Optional[int] = None
|
||||
max_new_tokens: Optional[
|
||||
int
|
||||
] = litellm.max_tokens # petals requires max tokens to be set
|
||||
do_sample: Optional[bool] = None
|
||||
temperature: Optional[float] = None
|
||||
top_k: Optional[int] = None
|
||||
top_p: Optional[float] = None
|
||||
repetition_penalty: Optional[float] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_length: Optional[int] = None,
|
||||
max_new_tokens: Optional[
|
||||
int
|
||||
] = litellm.max_tokens, # petals requires max tokens to be set
|
||||
do_sample: Optional[bool] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_k: Optional[int] = None,
|
||||
top_p: Optional[float] = None,
|
||||
repetition_penalty: Optional[float] = None,
|
||||
) -> None:
|
||||
locals_ = locals().copy()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return super().get_config()
|
||||
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[dict, Headers]
|
||||
) -> BaseLLMException:
|
||||
return PetalsError(
|
||||
status_code=status_code, message=error_message, headers=headers
|
||||
)
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> List:
|
||||
return ["max_tokens", "temperature", "top_p", "stream"]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
for param, value in non_default_params.items():
|
||||
if param == "max_tokens":
|
||||
optional_params["max_new_tokens"] = value
|
||||
if param == "temperature":
|
||||
optional_params["temperature"] = value
|
||||
if param == "top_p":
|
||||
optional_params["top_p"] = value
|
||||
if param == "stream":
|
||||
optional_params["stream"] = value
|
||||
return optional_params
|
||||
|
||||
def transform_request(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
headers: dict,
|
||||
) -> dict:
|
||||
raise NotImplementedError(
|
||||
"Petals transformation currently done in handler.py. [TODO] Move to the transformation.py"
|
||||
)
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: Response,
|
||||
model_response: ModelResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> ModelResponse:
|
||||
raise NotImplementedError(
|
||||
"Petals transformation currently done in handler.py. [TODO] Move to the transformation.py"
|
||||
)
|
||||
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: dict,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
) -> dict:
|
||||
return {}
|
||||
Reference in New Issue
Block a user