structure saas with tools
This commit is contained in:
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,403 @@
|
||||
"""
|
||||
OpenAI-like chat completion handler
|
||||
|
||||
For handling OpenAI-like chat completions, like IBM WatsonX, etc.
|
||||
"""
|
||||
|
||||
import json
|
||||
from typing import Any, Callable, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm import LlmProviders
|
||||
from litellm.llms.bedrock.chat.invoke_handler import MockResponseIterator
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
||||
from litellm.llms.databricks.streaming_utils import ModelResponseIterator
|
||||
from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig
|
||||
from litellm.llms.openai.openai import OpenAIConfig
|
||||
from litellm.types.utils import CustomStreamingDecoder, ModelResponse
|
||||
from litellm.utils import CustomStreamWrapper, ProviderConfigManager
|
||||
|
||||
from ..common_utils import OpenAILikeBase, OpenAILikeError
|
||||
from .transformation import OpenAILikeChatConfig
|
||||
|
||||
|
||||
async def make_call(
|
||||
client: Optional[AsyncHTTPHandler],
|
||||
api_base: str,
|
||||
headers: dict,
|
||||
data: str,
|
||||
model: str,
|
||||
messages: list,
|
||||
logging_obj,
|
||||
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
||||
fake_stream: bool = False,
|
||||
):
|
||||
if client is None:
|
||||
client = litellm.module_level_aclient
|
||||
|
||||
response = await client.post(
|
||||
api_base, headers=headers, data=data, stream=not fake_stream
|
||||
)
|
||||
|
||||
if streaming_decoder is not None:
|
||||
completion_stream: Any = streaming_decoder.aiter_bytes(
|
||||
response.aiter_bytes(chunk_size=1024)
|
||||
)
|
||||
elif fake_stream:
|
||||
model_response = ModelResponse(**response.json())
|
||||
completion_stream = MockResponseIterator(model_response=model_response)
|
||||
else:
|
||||
completion_stream = ModelResponseIterator(
|
||||
streaming_response=response.aiter_lines(), sync_stream=False
|
||||
)
|
||||
# LOGGING
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
api_key="",
|
||||
original_response=completion_stream, # Pass the completion stream for logging
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
|
||||
return completion_stream
|
||||
|
||||
|
||||
def make_sync_call(
|
||||
client: Optional[HTTPHandler],
|
||||
api_base: str,
|
||||
headers: dict,
|
||||
data: str,
|
||||
model: str,
|
||||
messages: list,
|
||||
logging_obj,
|
||||
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
||||
fake_stream: bool = False,
|
||||
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
||||
):
|
||||
if client is None:
|
||||
client = litellm.module_level_client # Create a new client if none provided
|
||||
|
||||
response = client.post(
|
||||
api_base, headers=headers, data=data, stream=not fake_stream, timeout=timeout
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
raise OpenAILikeError(status_code=response.status_code, message=response.read())
|
||||
|
||||
if streaming_decoder is not None:
|
||||
completion_stream = streaming_decoder.iter_bytes(
|
||||
response.iter_bytes(chunk_size=1024)
|
||||
)
|
||||
elif fake_stream:
|
||||
model_response = ModelResponse(**response.json())
|
||||
completion_stream = MockResponseIterator(model_response=model_response)
|
||||
else:
|
||||
completion_stream = ModelResponseIterator(
|
||||
streaming_response=response.iter_lines(), sync_stream=True
|
||||
)
|
||||
|
||||
# LOGGING
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
api_key="",
|
||||
original_response="first stream response received",
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
|
||||
return completion_stream
|
||||
|
||||
|
||||
class OpenAILikeChatHandler(OpenAILikeBase):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
async def acompletion_stream_function(
|
||||
self,
|
||||
model: str,
|
||||
messages: list,
|
||||
custom_llm_provider: str,
|
||||
api_base: str,
|
||||
custom_prompt_dict: dict,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key,
|
||||
logging_obj,
|
||||
stream,
|
||||
data: dict,
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
headers={},
|
||||
client: Optional[AsyncHTTPHandler] = None,
|
||||
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
||||
fake_stream: bool = False,
|
||||
) -> CustomStreamWrapper:
|
||||
data["stream"] = True
|
||||
completion_stream = await make_call(
|
||||
client=client,
|
||||
api_base=api_base,
|
||||
headers=headers,
|
||||
data=json.dumps(data),
|
||||
model=model,
|
||||
messages=messages,
|
||||
logging_obj=logging_obj,
|
||||
streaming_decoder=streaming_decoder,
|
||||
)
|
||||
streamwrapper = CustomStreamWrapper(
|
||||
completion_stream=completion_stream,
|
||||
model=model,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
|
||||
return streamwrapper
|
||||
|
||||
async def acompletion_function(
|
||||
self,
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
custom_prompt_dict: dict,
|
||||
model_response: ModelResponse,
|
||||
custom_llm_provider: str,
|
||||
print_verbose: Callable,
|
||||
client: Optional[AsyncHTTPHandler],
|
||||
encoding,
|
||||
api_key,
|
||||
logging_obj,
|
||||
stream,
|
||||
data: dict,
|
||||
base_model: Optional[str],
|
||||
optional_params: dict,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
headers={},
|
||||
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
||||
json_mode: bool = False,
|
||||
) -> ModelResponse:
|
||||
if timeout is None:
|
||||
timeout = httpx.Timeout(timeout=600.0, connect=5.0)
|
||||
|
||||
if client is None:
|
||||
client = litellm.module_level_aclient
|
||||
|
||||
try:
|
||||
response = await client.post(
|
||||
api_base, headers=headers, data=json.dumps(data), timeout=timeout
|
||||
)
|
||||
response.raise_for_status()
|
||||
except httpx.HTTPStatusError as e:
|
||||
raise OpenAILikeError(
|
||||
status_code=e.response.status_code,
|
||||
message=e.response.text,
|
||||
)
|
||||
except httpx.TimeoutException:
|
||||
raise OpenAILikeError(status_code=408, message="Timeout error occurred.")
|
||||
except Exception as e:
|
||||
raise OpenAILikeError(status_code=500, message=str(e))
|
||||
|
||||
return OpenAILikeChatConfig._transform_response(
|
||||
model=model,
|
||||
response=response,
|
||||
model_response=model_response,
|
||||
stream=stream,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
api_key=api_key,
|
||||
data=data,
|
||||
messages=messages,
|
||||
print_verbose=print_verbose,
|
||||
encoding=encoding,
|
||||
json_mode=json_mode,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
base_model=base_model,
|
||||
)
|
||||
|
||||
def completion(
|
||||
self,
|
||||
*,
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
custom_llm_provider: str,
|
||||
custom_prompt_dict: dict,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key: Optional[str],
|
||||
logging_obj,
|
||||
optional_params: dict,
|
||||
acompletion=None,
|
||||
litellm_params: dict = {},
|
||||
logger_fn=None,
|
||||
headers: Optional[dict] = None,
|
||||
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
||||
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
||||
custom_endpoint: Optional[bool] = None,
|
||||
streaming_decoder: Optional[
|
||||
CustomStreamingDecoder
|
||||
] = None, # if openai-compatible api needs custom stream decoder - e.g. sagemaker
|
||||
fake_stream: bool = False,
|
||||
):
|
||||
custom_endpoint = custom_endpoint or optional_params.pop(
|
||||
"custom_endpoint", None
|
||||
)
|
||||
base_model: Optional[str] = optional_params.pop("base_model", None)
|
||||
api_base, headers = self._validate_environment(
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
endpoint_type="chat_completions",
|
||||
custom_endpoint=custom_endpoint,
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
stream: bool = optional_params.pop("stream", None) or False
|
||||
extra_body = optional_params.pop("extra_body", {})
|
||||
json_mode = optional_params.pop("json_mode", None)
|
||||
optional_params.pop("max_retries", None)
|
||||
if not fake_stream:
|
||||
optional_params["stream"] = stream
|
||||
|
||||
if messages is not None and custom_llm_provider is not None:
|
||||
provider_config = ProviderConfigManager.get_provider_chat_config(
|
||||
model=model, provider=LlmProviders(custom_llm_provider)
|
||||
)
|
||||
if isinstance(provider_config, OpenAIGPTConfig) or isinstance(
|
||||
provider_config, OpenAIConfig
|
||||
):
|
||||
messages = provider_config._transform_messages(
|
||||
messages=messages, model=model
|
||||
)
|
||||
|
||||
data = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
**optional_params,
|
||||
**extra_body,
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"api_base": api_base,
|
||||
"headers": headers,
|
||||
},
|
||||
)
|
||||
if acompletion is True:
|
||||
if client is None or not isinstance(client, AsyncHTTPHandler):
|
||||
client = None
|
||||
if (
|
||||
stream is True
|
||||
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
||||
data["stream"] = stream
|
||||
return self.acompletion_stream_function(
|
||||
model=model,
|
||||
messages=messages,
|
||||
data=data,
|
||||
api_base=api_base,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
encoding=encoding,
|
||||
api_key=api_key,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
stream=stream,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
headers=headers,
|
||||
client=client,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
streaming_decoder=streaming_decoder,
|
||||
fake_stream=fake_stream,
|
||||
)
|
||||
else:
|
||||
return self.acompletion_function(
|
||||
model=model,
|
||||
messages=messages,
|
||||
data=data,
|
||||
api_base=api_base,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
encoding=encoding,
|
||||
api_key=api_key,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
stream=stream,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
headers=headers,
|
||||
timeout=timeout,
|
||||
base_model=base_model,
|
||||
client=client,
|
||||
json_mode=json_mode,
|
||||
)
|
||||
else:
|
||||
## COMPLETION CALL
|
||||
if stream is True:
|
||||
completion_stream = make_sync_call(
|
||||
client=(
|
||||
client
|
||||
if client is not None and isinstance(client, HTTPHandler)
|
||||
else None
|
||||
),
|
||||
api_base=api_base,
|
||||
headers=headers,
|
||||
data=json.dumps(data),
|
||||
model=model,
|
||||
messages=messages,
|
||||
logging_obj=logging_obj,
|
||||
streaming_decoder=streaming_decoder,
|
||||
fake_stream=fake_stream,
|
||||
timeout=timeout,
|
||||
)
|
||||
# completion_stream.__iter__()
|
||||
return CustomStreamWrapper(
|
||||
completion_stream=completion_stream,
|
||||
model=model,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
else:
|
||||
if client is None or not isinstance(client, HTTPHandler):
|
||||
client = HTTPHandler(timeout=timeout) # type: ignore
|
||||
try:
|
||||
response = client.post(
|
||||
url=api_base, headers=headers, data=json.dumps(data)
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
raise OpenAILikeError(
|
||||
status_code=e.response.status_code,
|
||||
message=e.response.text,
|
||||
)
|
||||
except httpx.TimeoutException:
|
||||
raise OpenAILikeError(
|
||||
status_code=408, message="Timeout error occurred."
|
||||
)
|
||||
except Exception as e:
|
||||
raise OpenAILikeError(status_code=500, message=str(e))
|
||||
return OpenAILikeChatConfig._transform_response(
|
||||
model=model,
|
||||
response=response,
|
||||
model_response=model_response,
|
||||
stream=stream,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
api_key=api_key,
|
||||
data=data,
|
||||
messages=messages,
|
||||
print_verbose=print_verbose,
|
||||
encoding=encoding,
|
||||
json_mode=json_mode,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
base_model=base_model,
|
||||
)
|
||||
@@ -0,0 +1,159 @@
|
||||
"""
|
||||
OpenAI-like chat completion transformation
|
||||
"""
|
||||
|
||||
from typing import TYPE_CHECKING, Any, List, Optional, Tuple, Union
|
||||
|
||||
import httpx
|
||||
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage
|
||||
from litellm.types.utils import ModelResponse
|
||||
|
||||
from ...openai.chat.gpt_transformation import OpenAIGPTConfig
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
|
||||
|
||||
LiteLLMLoggingObj = _LiteLLMLoggingObj
|
||||
else:
|
||||
LiteLLMLoggingObj = Any
|
||||
|
||||
|
||||
class OpenAILikeChatConfig(OpenAIGPTConfig):
|
||||
def _get_openai_compatible_provider_info(
|
||||
self,
|
||||
api_base: Optional[str],
|
||||
api_key: Optional[str],
|
||||
) -> Tuple[Optional[str], Optional[str]]:
|
||||
api_base = api_base or get_secret_str("OPENAI_LIKE_API_BASE") # type: ignore
|
||||
dynamic_api_key = (
|
||||
api_key or get_secret_str("OPENAI_LIKE_API_KEY") or ""
|
||||
) # vllm does not require an api key
|
||||
return api_base, dynamic_api_key
|
||||
|
||||
@staticmethod
|
||||
def _json_mode_convert_tool_response_to_message(
|
||||
message: ChatCompletionAssistantMessage, json_mode: bool
|
||||
) -> ChatCompletionAssistantMessage:
|
||||
"""
|
||||
if json_mode is true, convert the returned tool call response to a content with json str
|
||||
|
||||
e.g. input:
|
||||
|
||||
{"role": "assistant", "tool_calls": [{"id": "call_5ms4", "type": "function", "function": {"name": "json_tool_call", "arguments": "{\"key\": \"question\", \"value\": \"What is the capital of France?\"}"}}]}
|
||||
|
||||
output:
|
||||
|
||||
{"role": "assistant", "content": "{\"key\": \"question\", \"value\": \"What is the capital of France?\"}"}
|
||||
"""
|
||||
if not json_mode:
|
||||
return message
|
||||
|
||||
_tool_calls = message.get("tool_calls")
|
||||
|
||||
if _tool_calls is None or len(_tool_calls) != 1:
|
||||
return message
|
||||
|
||||
message["content"] = _tool_calls[0]["function"].get("arguments") or ""
|
||||
message["tool_calls"] = None
|
||||
|
||||
return message
|
||||
|
||||
@staticmethod
|
||||
def _transform_response(
|
||||
model: str,
|
||||
response: httpx.Response,
|
||||
model_response: ModelResponse,
|
||||
stream: bool,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
optional_params: dict,
|
||||
api_key: Optional[str],
|
||||
data: Union[dict, str],
|
||||
messages: List,
|
||||
print_verbose,
|
||||
encoding,
|
||||
json_mode: Optional[bool],
|
||||
custom_llm_provider: Optional[str],
|
||||
base_model: Optional[str],
|
||||
) -> ModelResponse:
|
||||
response_json = response.json()
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
api_key="",
|
||||
original_response=response_json,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
|
||||
if json_mode:
|
||||
for choice in response_json["choices"]:
|
||||
message = (
|
||||
OpenAILikeChatConfig._json_mode_convert_tool_response_to_message(
|
||||
choice.get("message"), json_mode
|
||||
)
|
||||
)
|
||||
choice["message"] = message
|
||||
|
||||
returned_response = ModelResponse(**response_json)
|
||||
|
||||
if custom_llm_provider is not None:
|
||||
returned_response.model = (
|
||||
custom_llm_provider + "/" + (returned_response.model or "")
|
||||
)
|
||||
|
||||
if base_model is not None:
|
||||
returned_response._hidden_params["model"] = base_model
|
||||
return returned_response
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: httpx.Response,
|
||||
model_response: ModelResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> ModelResponse:
|
||||
return OpenAILikeChatConfig._transform_response(
|
||||
model=model,
|
||||
response=raw_response,
|
||||
model_response=model_response,
|
||||
stream=optional_params.get("stream", False),
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
api_key=api_key,
|
||||
data=request_data,
|
||||
messages=messages,
|
||||
print_verbose=None,
|
||||
encoding=None,
|
||||
json_mode=json_mode,
|
||||
custom_llm_provider=None,
|
||||
base_model=None,
|
||||
)
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
replace_max_completion_tokens_with_max_tokens: bool = True,
|
||||
) -> dict:
|
||||
mapped_params = super().map_openai_params(
|
||||
non_default_params, optional_params, model, drop_params
|
||||
)
|
||||
if (
|
||||
"max_completion_tokens" in non_default_params
|
||||
and replace_max_completion_tokens_with_max_tokens
|
||||
):
|
||||
mapped_params["max_tokens"] = non_default_params[
|
||||
"max_completion_tokens"
|
||||
] # most openai-compatible providers support 'max_tokens' not 'max_completion_tokens'
|
||||
mapped_params.pop("max_completion_tokens", None)
|
||||
|
||||
return mapped_params
|
||||
Reference in New Issue
Block a user