structure saas with tools
This commit is contained in:
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,244 @@
|
||||
"""
|
||||
OpenAI Image Variations Handler
|
||||
"""
|
||||
|
||||
from typing import Callable, Optional
|
||||
|
||||
import httpx
|
||||
from openai import AsyncOpenAI, OpenAI
|
||||
|
||||
import litellm
|
||||
from litellm.types.utils import FileTypes, ImageResponse, LlmProviders
|
||||
from litellm.utils import ProviderConfigManager
|
||||
|
||||
from ...base_llm.image_variations.transformation import BaseImageVariationConfig
|
||||
from ...custom_httpx.llm_http_handler import LiteLLMLoggingObj
|
||||
from ..common_utils import OpenAIError
|
||||
|
||||
|
||||
class OpenAIImageVariationsHandler:
|
||||
def get_sync_client(
|
||||
self,
|
||||
client: Optional[OpenAI],
|
||||
init_client_params: dict,
|
||||
):
|
||||
if client is None:
|
||||
openai_client = OpenAI(
|
||||
**init_client_params,
|
||||
)
|
||||
else:
|
||||
openai_client = client
|
||||
return openai_client
|
||||
|
||||
def get_async_client(
|
||||
self, client: Optional[AsyncOpenAI], init_client_params: dict
|
||||
) -> AsyncOpenAI:
|
||||
if client is None:
|
||||
openai_client = AsyncOpenAI(
|
||||
**init_client_params,
|
||||
)
|
||||
else:
|
||||
openai_client = client
|
||||
return openai_client
|
||||
|
||||
async def async_image_variations(
|
||||
self,
|
||||
api_key: str,
|
||||
api_base: str,
|
||||
organization: Optional[str],
|
||||
client: Optional[AsyncOpenAI],
|
||||
data: dict,
|
||||
headers: dict,
|
||||
model: Optional[str],
|
||||
timeout: float,
|
||||
max_retries: int,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
model_response: ImageResponse,
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
image: FileTypes,
|
||||
provider_config: BaseImageVariationConfig,
|
||||
) -> ImageResponse:
|
||||
try:
|
||||
init_client_params = {
|
||||
"api_key": api_key,
|
||||
"base_url": api_base,
|
||||
"http_client": litellm.client_session,
|
||||
"timeout": timeout,
|
||||
"max_retries": max_retries, # type: ignore
|
||||
"organization": organization,
|
||||
}
|
||||
|
||||
client = self.get_async_client(
|
||||
client=client, init_client_params=init_client_params
|
||||
)
|
||||
|
||||
raw_response = await client.images.with_raw_response.create_variation(**data) # type: ignore
|
||||
response = raw_response.parse()
|
||||
response_json = response.model_dump()
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
api_key=api_key,
|
||||
original_response=response_json,
|
||||
additional_args={
|
||||
"headers": headers,
|
||||
"api_base": api_base,
|
||||
},
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
return provider_config.transform_response_image_variation(
|
||||
model=model,
|
||||
model_response=ImageResponse(**response_json),
|
||||
raw_response=httpx.Response(
|
||||
status_code=200,
|
||||
request=httpx.Request(
|
||||
method="GET", url="https://litellm.ai"
|
||||
), # mock request object
|
||||
),
|
||||
logging_obj=logging_obj,
|
||||
request_data=data,
|
||||
image=image,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
encoding=None,
|
||||
api_key=api_key,
|
||||
)
|
||||
except Exception as e:
|
||||
status_code = getattr(e, "status_code", 500)
|
||||
error_headers = getattr(e, "headers", None)
|
||||
error_text = getattr(e, "text", str(e))
|
||||
error_response = getattr(e, "response", None)
|
||||
if error_headers is None and error_response:
|
||||
error_headers = getattr(error_response, "headers", None)
|
||||
raise OpenAIError(
|
||||
status_code=status_code, message=error_text, headers=error_headers
|
||||
)
|
||||
|
||||
def image_variations(
|
||||
self,
|
||||
model_response: ImageResponse,
|
||||
api_key: str,
|
||||
api_base: str,
|
||||
model: Optional[str],
|
||||
image: FileTypes,
|
||||
timeout: float,
|
||||
custom_llm_provider: str,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
print_verbose: Optional[Callable] = None,
|
||||
logger_fn=None,
|
||||
client=None,
|
||||
organization: Optional[str] = None,
|
||||
headers: Optional[dict] = None,
|
||||
) -> ImageResponse:
|
||||
try:
|
||||
provider_config = ProviderConfigManager.get_provider_image_variation_config(
|
||||
model=model or "", # openai defaults to dall-e-2
|
||||
provider=LlmProviders.OPENAI,
|
||||
)
|
||||
|
||||
if provider_config is None:
|
||||
raise ValueError(
|
||||
f"image variation provider not found: {custom_llm_provider}."
|
||||
)
|
||||
|
||||
max_retries = optional_params.pop("max_retries", 2)
|
||||
|
||||
data = provider_config.transform_request_image_variation(
|
||||
model=model,
|
||||
image=image,
|
||||
optional_params=optional_params,
|
||||
headers=headers or {},
|
||||
)
|
||||
json_data = data.get("data")
|
||||
if not json_data:
|
||||
raise ValueError(
|
||||
f"data field is required, for openai image variations. Got={data}"
|
||||
)
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input="",
|
||||
api_key=api_key,
|
||||
additional_args={
|
||||
"headers": headers,
|
||||
"api_base": api_base,
|
||||
"complete_input_dict": data,
|
||||
},
|
||||
)
|
||||
if litellm_params.get("async_call", False):
|
||||
return self.async_image_variations(
|
||||
api_base=api_base,
|
||||
data=json_data,
|
||||
headers=headers or {},
|
||||
model_response=model_response,
|
||||
api_key=api_key,
|
||||
logging_obj=logging_obj,
|
||||
model=model,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
organization=organization,
|
||||
client=client,
|
||||
provider_config=provider_config,
|
||||
image=image,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
) # type: ignore
|
||||
|
||||
init_client_params = {
|
||||
"api_key": api_key,
|
||||
"base_url": api_base,
|
||||
"http_client": litellm.client_session,
|
||||
"timeout": timeout,
|
||||
"max_retries": max_retries, # type: ignore
|
||||
"organization": organization,
|
||||
}
|
||||
|
||||
client = self.get_sync_client(
|
||||
client=client, init_client_params=init_client_params
|
||||
)
|
||||
|
||||
raw_response = client.images.with_raw_response.create_variation(**json_data) # type: ignore
|
||||
response = raw_response.parse()
|
||||
response_json = response.model_dump()
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
api_key=api_key,
|
||||
original_response=response_json,
|
||||
additional_args={
|
||||
"headers": headers,
|
||||
"api_base": api_base,
|
||||
},
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
return provider_config.transform_response_image_variation(
|
||||
model=model,
|
||||
model_response=ImageResponse(**response_json),
|
||||
raw_response=httpx.Response(
|
||||
status_code=200,
|
||||
request=httpx.Request(
|
||||
method="GET", url="https://litellm.ai"
|
||||
), # mock request object
|
||||
),
|
||||
logging_obj=logging_obj,
|
||||
request_data=json_data,
|
||||
image=image,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
encoding=None,
|
||||
api_key=api_key,
|
||||
)
|
||||
except Exception as e:
|
||||
status_code = getattr(e, "status_code", 500)
|
||||
error_headers = getattr(e, "headers", None)
|
||||
error_text = getattr(e, "text", str(e))
|
||||
error_response = getattr(e, "response", None)
|
||||
if error_headers is None and error_response:
|
||||
error_headers = getattr(error_response, "headers", None)
|
||||
raise OpenAIError(
|
||||
status_code=status_code, message=error_text, headers=error_headers
|
||||
)
|
||||
@@ -0,0 +1,82 @@
|
||||
from typing import Any, List, Optional, Union
|
||||
|
||||
from aiohttp import ClientResponse
|
||||
from httpx import Headers, Response
|
||||
|
||||
from litellm.llms.base_llm.chat.transformation import BaseLLMException
|
||||
from litellm.llms.base_llm.image_variations.transformation import LiteLLMLoggingObj
|
||||
from litellm.types.llms.openai import OpenAIImageVariationOptionalParams
|
||||
from litellm.types.utils import FileTypes, HttpHandlerRequestFields, ImageResponse
|
||||
|
||||
from ...base_llm.image_variations.transformation import BaseImageVariationConfig
|
||||
from ..common_utils import OpenAIError
|
||||
|
||||
|
||||
class OpenAIImageVariationConfig(BaseImageVariationConfig):
|
||||
def get_supported_openai_params(
|
||||
self, model: str
|
||||
) -> List[OpenAIImageVariationOptionalParams]:
|
||||
return ["n", "size", "response_format", "user"]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
optional_params.update(non_default_params)
|
||||
return optional_params
|
||||
|
||||
def transform_request_image_variation(
|
||||
self,
|
||||
model: Optional[str],
|
||||
image: FileTypes,
|
||||
optional_params: dict,
|
||||
headers: dict,
|
||||
) -> HttpHandlerRequestFields:
|
||||
return {
|
||||
"data": {
|
||||
"image": image,
|
||||
**optional_params,
|
||||
}
|
||||
}
|
||||
|
||||
async def async_transform_response_image_variation(
|
||||
self,
|
||||
model: Optional[str],
|
||||
raw_response: ClientResponse,
|
||||
model_response: ImageResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
image: FileTypes,
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
) -> ImageResponse:
|
||||
return model_response
|
||||
|
||||
def transform_response_image_variation(
|
||||
self,
|
||||
model: Optional[str],
|
||||
raw_response: Response,
|
||||
model_response: ImageResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
image: FileTypes,
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
) -> ImageResponse:
|
||||
return model_response
|
||||
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[dict, Headers]
|
||||
) -> BaseLLMException:
|
||||
return OpenAIError(
|
||||
status_code=status_code,
|
||||
message=error_message,
|
||||
headers=headers,
|
||||
)
|
||||
Reference in New Issue
Block a user