structure saas with tools
This commit is contained in:
@@ -0,0 +1,102 @@
|
||||
"""
|
||||
Ollama /chat/completion calls handled in llm_http_handler.py
|
||||
|
||||
[TODO]: migrate embeddings to a base handler as well.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import litellm
|
||||
from litellm.types.utils import EmbeddingResponse
|
||||
|
||||
# ollama wants plain base64 jpeg/png files as images. strip any leading dataURI
|
||||
# and convert to jpeg if necessary.
|
||||
|
||||
|
||||
async def ollama_aembeddings(
|
||||
api_base: str,
|
||||
model: str,
|
||||
prompts: List[str],
|
||||
model_response: EmbeddingResponse,
|
||||
optional_params: dict,
|
||||
logging_obj: Any,
|
||||
encoding: Any,
|
||||
):
|
||||
if api_base.endswith("/api/embed"):
|
||||
url = api_base
|
||||
else:
|
||||
url = f"{api_base}/api/embed"
|
||||
|
||||
## Load Config
|
||||
config = litellm.OllamaConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
data: Dict[str, Any] = {"model": model, "input": prompts}
|
||||
special_optional_params = ["truncate", "options", "keep_alive"]
|
||||
|
||||
for k, v in optional_params.items():
|
||||
if k in special_optional_params:
|
||||
data[k] = v
|
||||
else:
|
||||
# Ensure "options" is a dictionary before updating it
|
||||
data.setdefault("options", {})
|
||||
if isinstance(data["options"], dict):
|
||||
data["options"].update({k: v})
|
||||
total_input_tokens = 0
|
||||
output_data = []
|
||||
|
||||
response = await litellm.module_level_aclient.post(url=url, json=data)
|
||||
|
||||
response_json = response.json()
|
||||
|
||||
embeddings: List[List[float]] = response_json["embeddings"]
|
||||
for idx, emb in enumerate(embeddings):
|
||||
output_data.append({"object": "embedding", "index": idx, "embedding": emb})
|
||||
|
||||
input_tokens = response_json.get("prompt_eval_count") or len(
|
||||
encoding.encode("".join(prompt for prompt in prompts))
|
||||
)
|
||||
total_input_tokens += input_tokens
|
||||
|
||||
model_response.object = "list"
|
||||
model_response.data = output_data
|
||||
model_response.model = "ollama/" + model
|
||||
setattr(
|
||||
model_response,
|
||||
"usage",
|
||||
litellm.Usage(
|
||||
prompt_tokens=total_input_tokens,
|
||||
completion_tokens=total_input_tokens,
|
||||
total_tokens=total_input_tokens,
|
||||
prompt_tokens_details=None,
|
||||
completion_tokens_details=None,
|
||||
),
|
||||
)
|
||||
return model_response
|
||||
|
||||
|
||||
def ollama_embeddings(
|
||||
api_base: str,
|
||||
model: str,
|
||||
prompts: list,
|
||||
optional_params: dict,
|
||||
model_response: EmbeddingResponse,
|
||||
logging_obj: Any,
|
||||
encoding=None,
|
||||
):
|
||||
return asyncio.run(
|
||||
ollama_aembeddings(
|
||||
api_base=api_base,
|
||||
model=model,
|
||||
prompts=prompts,
|
||||
model_response=model_response,
|
||||
optional_params=optional_params,
|
||||
logging_obj=logging_obj,
|
||||
encoding=encoding,
|
||||
)
|
||||
)
|
||||
Reference in New Issue
Block a user