structure saas with tools
This commit is contained in:
Binary file not shown.
@@ -0,0 +1,78 @@
|
||||
"""
|
||||
Transformation logic from OpenAI /v1/embeddings format to Jina AI's `/v1/embeddings` format.
|
||||
|
||||
Why separate file? Make it easy to see how transformation works
|
||||
|
||||
Docs - https://jina.ai/embeddings/
|
||||
"""
|
||||
|
||||
import types
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
from litellm import LlmProviders
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
|
||||
|
||||
class JinaAIEmbeddingConfig:
|
||||
"""
|
||||
Reference: https://jina.ai/embeddings/
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
) -> None:
|
||||
locals_ = locals().copy()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params(self) -> List[str]:
|
||||
return ["dimensions"]
|
||||
|
||||
def map_openai_params(
|
||||
self, non_default_params: dict, optional_params: dict
|
||||
) -> dict:
|
||||
if "dimensions" in non_default_params:
|
||||
optional_params["dimensions"] = non_default_params["dimensions"]
|
||||
return optional_params
|
||||
|
||||
def _get_openai_compatible_provider_info(
|
||||
self,
|
||||
api_base: Optional[str],
|
||||
api_key: Optional[str],
|
||||
) -> Tuple[str, Optional[str], Optional[str]]:
|
||||
"""
|
||||
Returns:
|
||||
Tuple[str, Optional[str], Optional[str]]:
|
||||
- custom_llm_provider: str
|
||||
- api_base: str
|
||||
- dynamic_api_key: str
|
||||
"""
|
||||
api_base = (
|
||||
api_base or get_secret_str("JINA_AI_API_BASE") or "https://api.jina.ai/v1"
|
||||
) # type: ignore
|
||||
dynamic_api_key = api_key or (
|
||||
get_secret_str("JINA_AI_API_KEY")
|
||||
or get_secret_str("JINA_AI_API_KEY")
|
||||
or get_secret_str("JINA_AI_API_KEY")
|
||||
or get_secret_str("JINA_AI_TOKEN")
|
||||
)
|
||||
return LlmProviders.JINA_AI.value, api_base, dynamic_api_key
|
||||
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,3 @@
|
||||
"""
|
||||
HTTP calling migrated to `llm_http_handler.py`
|
||||
"""
|
||||
@@ -0,0 +1,143 @@
|
||||
"""
|
||||
Transformation logic from Cohere's /v1/rerank format to Jina AI's `/v1/rerank` format.
|
||||
|
||||
Why separate file? Make it easy to see how transformation works
|
||||
|
||||
Docs - https://jina.ai/reranker
|
||||
"""
|
||||
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
from httpx import URL, Response
|
||||
|
||||
from litellm.llms.base_llm.chat.transformation import LiteLLMLoggingObj
|
||||
from litellm.llms.base_llm.rerank.transformation import BaseRerankConfig
|
||||
from litellm.types.rerank import (
|
||||
OptionalRerankParams,
|
||||
RerankBilledUnits,
|
||||
RerankResponse,
|
||||
RerankResponseMeta,
|
||||
RerankTokens,
|
||||
)
|
||||
from litellm.types.utils import ModelInfo
|
||||
|
||||
|
||||
class JinaAIRerankConfig(BaseRerankConfig):
|
||||
def get_supported_cohere_rerank_params(self, model: str) -> list:
|
||||
return [
|
||||
"query",
|
||||
"top_n",
|
||||
"documents",
|
||||
"return_documents",
|
||||
]
|
||||
|
||||
def map_cohere_rerank_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
query: str,
|
||||
documents: List[Union[str, Dict[str, Any]]],
|
||||
custom_llm_provider: Optional[str] = None,
|
||||
top_n: Optional[int] = None,
|
||||
rank_fields: Optional[List[str]] = None,
|
||||
return_documents: Optional[bool] = True,
|
||||
max_chunks_per_doc: Optional[int] = None,
|
||||
max_tokens_per_doc: Optional[int] = None,
|
||||
) -> OptionalRerankParams:
|
||||
optional_params = {}
|
||||
supported_params = self.get_supported_cohere_rerank_params(model)
|
||||
for k, v in non_default_params.items():
|
||||
if k in supported_params:
|
||||
optional_params[k] = v
|
||||
return OptionalRerankParams(
|
||||
**optional_params,
|
||||
)
|
||||
|
||||
def get_complete_url(self, api_base: Optional[str], model: str) -> str:
|
||||
base_path = "/v1/rerank"
|
||||
|
||||
if api_base is None:
|
||||
return "https://api.jina.ai/v1/rerank"
|
||||
base = URL(api_base)
|
||||
# Reconstruct URL with cleaned path
|
||||
cleaned_base = str(base.copy_with(path=base_path))
|
||||
|
||||
return cleaned_base
|
||||
|
||||
def transform_rerank_request(
|
||||
self, model: str, optional_rerank_params: OptionalRerankParams, headers: Dict
|
||||
) -> Dict:
|
||||
return {"model": model, **optional_rerank_params}
|
||||
|
||||
def transform_rerank_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: Response,
|
||||
model_response: RerankResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
api_key: Optional[str] = None,
|
||||
request_data: Dict = {},
|
||||
optional_params: Dict = {},
|
||||
litellm_params: Dict = {},
|
||||
) -> RerankResponse:
|
||||
if raw_response.status_code != 200:
|
||||
raise Exception(raw_response.text)
|
||||
|
||||
logging_obj.post_call(original_response=raw_response.text)
|
||||
|
||||
_json_response = raw_response.json()
|
||||
|
||||
_billed_units = RerankBilledUnits(**_json_response.get("usage", {}))
|
||||
_tokens = RerankTokens(**_json_response.get("usage", {}))
|
||||
rerank_meta = RerankResponseMeta(billed_units=_billed_units, tokens=_tokens)
|
||||
|
||||
_results: Optional[List[dict]] = _json_response.get("results")
|
||||
|
||||
if _results is None:
|
||||
raise ValueError(f"No results found in the response={_json_response}")
|
||||
|
||||
return RerankResponse(
|
||||
id=_json_response.get("id") or str(uuid.uuid4()),
|
||||
results=_results, # type: ignore
|
||||
meta=rerank_meta,
|
||||
) # Return response
|
||||
|
||||
def validate_environment(
|
||||
self, headers: Dict, model: str, api_key: Optional[str] = None
|
||||
) -> Dict:
|
||||
if api_key is None:
|
||||
raise ValueError(
|
||||
"api_key is required. Set via `api_key` parameter or `JINA_API_KEY` environment variable."
|
||||
)
|
||||
return {
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
"authorization": f"Bearer {api_key}",
|
||||
}
|
||||
|
||||
def calculate_rerank_cost(
|
||||
self,
|
||||
model: str,
|
||||
custom_llm_provider: Optional[str] = None,
|
||||
billed_units: Optional[RerankBilledUnits] = None,
|
||||
model_info: Optional[ModelInfo] = None,
|
||||
) -> Tuple[float, float]:
|
||||
"""
|
||||
Jina AI reranker is priced at $0.000000018 per token.
|
||||
"""
|
||||
if (
|
||||
model_info is None
|
||||
or "input_cost_per_token" not in model_info
|
||||
or model_info["input_cost_per_token"] is None
|
||||
or billed_units is None
|
||||
):
|
||||
return 0.0, 0.0
|
||||
|
||||
total_tokens = billed_units.get("total_tokens")
|
||||
if total_tokens is None:
|
||||
return 0.0, 0.0
|
||||
|
||||
input_cost = model_info["input_cost_per_token"] * total_tokens
|
||||
return input_cost, 0.0
|
||||
Reference in New Issue
Block a user