structure saas with tools

This commit is contained in:
Davidson Gomes
2025-04-25 15:30:54 -03:00
commit 1aef473937
16434 changed files with 6584257 additions and 0 deletions

View File

@@ -0,0 +1,137 @@
from typing import Dict, List, Optional
import litellm
from litellm.litellm_core_utils.prompt_templates.factory import (
convert_generic_image_chunk_to_openai_image_obj,
convert_to_anthropic_image_obj,
)
from litellm.types.llms.openai import AllMessageValues
from litellm.types.llms.vertex_ai import ContentType, PartType
from litellm.utils import supports_reasoning
from ...vertex_ai.gemini.transformation import _gemini_convert_messages_with_history
from ...vertex_ai.gemini.vertex_and_google_ai_studio_gemini import VertexGeminiConfig
class GoogleAIStudioGeminiConfig(VertexGeminiConfig):
"""
Reference: https://ai.google.dev/api/rest/v1beta/GenerationConfig
The class `GoogleAIStudioGeminiConfig` provides configuration for the Google AI Studio's Gemini API interface. Below are the parameters:
- `temperature` (float): This controls the degree of randomness in token selection.
- `max_output_tokens` (integer): This sets the limitation for the maximum amount of token in the text output. In this case, the default value is 256.
- `top_p` (float): The tokens are selected from the most probable to the least probable until the sum of their probabilities equals the `top_p` value. Default is 0.95.
- `top_k` (integer): The value of `top_k` determines how many of the most probable tokens are considered in the selection. For example, a `top_k` of 1 means the selected token is the most probable among all tokens. The default value is 40.
- `response_mime_type` (str): The MIME type of the response. The default value is 'text/plain'. Other values - `application/json`.
- `response_schema` (dict): Optional. Output response schema of the generated candidate text when response mime type can have schema. Schema can be objects, primitives or arrays and is a subset of OpenAPI schema. If set, a compatible response_mime_type must also be set. Compatible mimetypes: application/json: Schema for JSON response.
- `candidate_count` (int): Number of generated responses to return.
- `stop_sequences` (List[str]): The set of character sequences (up to 5) that will stop output generation. If specified, the API will stop at the first appearance of a stop sequence. The stop sequence will not be included as part of the response.
Note: Please make sure to modify the default parameters as required for your use case.
"""
temperature: Optional[float] = None
max_output_tokens: Optional[int] = None
top_p: Optional[float] = None
top_k: Optional[int] = None
response_mime_type: Optional[str] = None
response_schema: Optional[dict] = None
candidate_count: Optional[int] = None
stop_sequences: Optional[list] = None
def __init__(
self,
temperature: Optional[float] = None,
max_output_tokens: Optional[int] = None,
top_p: Optional[float] = None,
top_k: Optional[int] = None,
response_mime_type: Optional[str] = None,
response_schema: Optional[dict] = None,
candidate_count: Optional[int] = None,
stop_sequences: Optional[list] = None,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def get_supported_openai_params(self, model: str) -> List[str]:
supported_params = [
"temperature",
"top_p",
"max_tokens",
"max_completion_tokens",
"stream",
"tools",
"tool_choice",
"functions",
"response_format",
"n",
"stop",
"logprobs",
"frequency_penalty",
"modalities",
]
if supports_reasoning(model):
supported_params.append("reasoning_effort")
supported_params.append("thinking")
return supported_params
def map_openai_params(
self,
non_default_params: Dict,
optional_params: Dict,
model: str,
drop_params: bool,
) -> Dict:
if litellm.vertex_ai_safety_settings is not None:
optional_params["safety_settings"] = litellm.vertex_ai_safety_settings
return super().map_openai_params(
model=model,
non_default_params=non_default_params,
optional_params=optional_params,
drop_params=drop_params,
)
def _transform_messages(
self, messages: List[AllMessageValues]
) -> List[ContentType]:
"""
Google AI Studio Gemini does not support image urls in messages.
"""
for message in messages:
_message_content = message.get("content")
if _message_content is not None and isinstance(_message_content, list):
_parts: List[PartType] = []
for element in _message_content:
if element.get("type") == "image_url":
img_element = element
_image_url: Optional[str] = None
format: Optional[str] = None
if isinstance(img_element.get("image_url"), dict):
_image_url = img_element["image_url"].get("url") # type: ignore
format = img_element["image_url"].get("format") # type: ignore
else:
_image_url = img_element.get("image_url") # type: ignore
if _image_url and "https://" in _image_url:
image_obj = convert_to_anthropic_image_obj(
_image_url, format=format
)
img_element["image_url"] = ( # type: ignore
convert_generic_image_chunk_to_openai_image_obj(
image_obj
)
)
return _gemini_convert_messages_with_history(messages=messages)

View File

@@ -0,0 +1,84 @@
from typing import List, Optional, Union
import httpx
import litellm
from litellm.llms.base_llm.base_utils import BaseLLMModelInfo
from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues
class GeminiError(BaseLLMException):
pass
class GeminiModelInfo(BaseLLMModelInfo):
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
"""Google AI Studio sends api key in query params"""
return headers
@property
def api_version(self) -> str:
return "v1beta"
@staticmethod
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
return (
api_base
or get_secret_str("GEMINI_API_BASE")
or "https://generativelanguage.googleapis.com"
)
@staticmethod
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
return api_key or (get_secret_str("GEMINI_API_KEY"))
@staticmethod
def get_base_model(model: str) -> Optional[str]:
return model.replace("gemini/", "")
def get_models(
self, api_key: Optional[str] = None, api_base: Optional[str] = None
) -> List[str]:
api_base = GeminiModelInfo.get_api_base(api_base)
api_key = GeminiModelInfo.get_api_key(api_key)
endpoint = f"/{self.api_version}/models"
if api_base is None or api_key is None:
raise ValueError(
"GEMINI_API_BASE or GEMINI_API_KEY is not set. Please set the environment variable, to query Gemini's `/models` endpoint."
)
response = litellm.module_level_client.get(
url=f"{api_base}{endpoint}?key={api_key}",
)
if response.status_code != 200:
raise ValueError(
f"Failed to fetch models from Gemini. Status code: {response.status_code}, Response: {response.json()}"
)
models = response.json()["models"]
litellm_model_names = []
for model in models:
stripped_model_name = model["name"].strip("models/")
litellm_model_name = "gemini/" + stripped_model_name
litellm_model_names.append(litellm_model_name)
return litellm_model_names
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
) -> BaseLLMException:
return GeminiError(
status_code=status_code, message=error_message, headers=headers
)

View File

@@ -0,0 +1 @@
[Go here for the Gemini Context Caching code](../../vertex_ai/context_caching/)

View File

@@ -0,0 +1,21 @@
"""
This file is used to calculate the cost of the Gemini API.
Handles the context caching for Gemini API.
"""
from typing import Tuple
from litellm.litellm_core_utils.llm_cost_calc.utils import generic_cost_per_token
from litellm.types.utils import Usage
def cost_per_token(model: str, usage: Usage) -> Tuple[float, float]:
"""
Calculates the cost per token for a given model, prompt tokens, and completion tokens.
Follows the same logic as Anthropic's cost per token calculation.
"""
return generic_cost_per_token(
model=model, usage=usage, custom_llm_provider="gemini"
)

View File

@@ -0,0 +1,173 @@
"""
Supports writing files to Google AI Studio Files API.
For vertex ai, check out the vertex_ai/files/handler.py file.
"""
import time
from typing import List, Optional
import httpx
from litellm._logging import verbose_logger
from litellm.litellm_core_utils.prompt_templates.common_utils import extract_file_data
from litellm.llms.base_llm.files.transformation import (
BaseFilesConfig,
LiteLLMLoggingObj,
)
from litellm.types.llms.gemini import GeminiCreateFilesResponseObject
from litellm.types.llms.openai import (
CreateFileRequest,
OpenAICreateFileRequestOptionalParams,
OpenAIFileObject,
)
from litellm.types.utils import LlmProviders
from ..common_utils import GeminiModelInfo
class GoogleAIStudioFilesHandler(GeminiModelInfo, BaseFilesConfig):
def __init__(self):
pass
@property
def custom_llm_provider(self) -> LlmProviders:
return LlmProviders.GEMINI
def get_complete_url(
self,
api_base: Optional[str],
api_key: Optional[str],
model: str,
optional_params: dict,
litellm_params: dict,
stream: Optional[bool] = None,
) -> str:
"""
OPTIONAL
Get the complete url for the request
Some providers need `model` in `api_base`
"""
endpoint = "upload/v1beta/files"
api_base = self.get_api_base(api_base)
if not api_base:
raise ValueError("api_base is required")
if not api_key:
raise ValueError("api_key is required")
url = "{}/{}?key={}".format(api_base, endpoint, api_key)
return url
def get_supported_openai_params(
self, model: str
) -> List[OpenAICreateFileRequestOptionalParams]:
return []
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
return optional_params
def transform_create_file_request(
self,
model: str,
create_file_data: CreateFileRequest,
optional_params: dict,
litellm_params: dict,
) -> dict:
"""
Transform the OpenAI-style file creation request into Gemini's format
Returns:
dict: Contains both request data and headers for the two-step upload
"""
# Extract the file information
file_data = create_file_data.get("file")
if file_data is None:
raise ValueError("File data is required")
# Use the common utility function to extract file data
extracted_data = extract_file_data(file_data)
# Get file size
file_size = len(extracted_data["content"])
# Step 1: Initial resumable upload request
headers = {
"X-Goog-Upload-Protocol": "resumable",
"X-Goog-Upload-Command": "start",
"X-Goog-Upload-Header-Content-Length": str(file_size),
"X-Goog-Upload-Header-Content-Type": extracted_data["content_type"],
"Content-Type": "application/json",
}
headers.update(extracted_data["headers"]) # Add any custom headers
# Initial metadata request body
initial_data = {
"file": {
"display_name": extracted_data["filename"] or str(int(time.time()))
}
}
# Step 2: Actual file upload data
upload_headers = {
"Content-Length": str(file_size),
"X-Goog-Upload-Offset": "0",
"X-Goog-Upload-Command": "upload, finalize",
}
return {
"initial_request": {"headers": headers, "data": initial_data},
"upload_request": {
"headers": upload_headers,
"data": extracted_data["content"],
},
}
def transform_create_file_response(
self,
model: Optional[str],
raw_response: httpx.Response,
logging_obj: LiteLLMLoggingObj,
litellm_params: dict,
) -> OpenAIFileObject:
"""
Transform Gemini's file upload response into OpenAI-style FileObject
"""
try:
response_json = raw_response.json()
response_object = GeminiCreateFilesResponseObject(
**response_json.get("file", {}) # type: ignore
)
# Extract file information from Gemini response
return OpenAIFileObject(
id=response_object["uri"], # Gemini uses URI as identifier
bytes=int(
response_object["sizeBytes"]
), # Gemini doesn't return file size
created_at=int(
time.mktime(
time.strptime(
response_object["createTime"].replace("Z", "+00:00"),
"%Y-%m-%dT%H:%M:%S.%f%z",
)
)
),
filename=response_object["displayName"],
object="file",
purpose="user_data", # Default to assistants as that's the main use case
status="uploaded",
status_details=None,
)
except Exception as e:
verbose_logger.exception(f"Error parsing file upload response: {str(e)}")
raise ValueError(f"Error parsing file upload response: {str(e)}")