structure saas with tools
This commit is contained in:
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,5 @@
|
||||
"""
|
||||
Cohere /generate API - uses `llm_http_handler.py` to make httpx requests
|
||||
|
||||
Request/Response transformation is handled in `transformation.py`
|
||||
"""
|
||||
@@ -0,0 +1,265 @@
|
||||
import time
|
||||
from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm.litellm_core_utils.prompt_templates.common_utils import (
|
||||
convert_content_list_to_str,
|
||||
)
|
||||
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
|
||||
from litellm.types.llms.openai import AllMessageValues
|
||||
from litellm.types.utils import Choices, Message, ModelResponse, Usage
|
||||
|
||||
from ..common_utils import CohereError
|
||||
from ..common_utils import ModelResponseIterator as CohereModelResponseIterator
|
||||
from ..common_utils import validate_environment as cohere_validate_environment
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
|
||||
|
||||
LiteLLMLoggingObj = _LiteLLMLoggingObj
|
||||
else:
|
||||
LiteLLMLoggingObj = Any
|
||||
|
||||
|
||||
class CohereTextConfig(BaseConfig):
|
||||
"""
|
||||
Reference: https://docs.cohere.com/reference/generate
|
||||
|
||||
The class `CohereConfig` provides configuration for the Cohere's API interface. Below are the parameters:
|
||||
|
||||
- `num_generations` (integer): Maximum number of generations returned. Default is 1, with a minimum value of 1 and a maximum value of 5.
|
||||
|
||||
- `max_tokens` (integer): Maximum number of tokens the model will generate as part of the response. Default value is 20.
|
||||
|
||||
- `truncate` (string): Specifies how the API handles inputs longer than maximum token length. Options include NONE, START, END. Default is END.
|
||||
|
||||
- `temperature` (number): A non-negative float controlling the randomness in generation. Lower temperatures result in less random generations. Default is 0.75.
|
||||
|
||||
- `preset` (string): Identifier of a custom preset, a combination of parameters such as prompt, temperature etc.
|
||||
|
||||
- `end_sequences` (array of strings): The generated text gets cut at the beginning of the earliest occurrence of an end sequence, which will be excluded from the text.
|
||||
|
||||
- `stop_sequences` (array of strings): The generated text gets cut at the end of the earliest occurrence of a stop sequence, which will be included in the text.
|
||||
|
||||
- `k` (integer): Limits generation at each step to top `k` most likely tokens. Default is 0.
|
||||
|
||||
- `p` (number): Limits generation at each step to most likely tokens with total probability mass of `p`. Default is 0.
|
||||
|
||||
- `frequency_penalty` (number): Reduces repetitiveness of generated tokens. Higher values apply stronger penalties to previously occurred tokens.
|
||||
|
||||
- `presence_penalty` (number): Reduces repetitiveness of generated tokens. Similar to frequency_penalty, but this penalty applies equally to all tokens that have already appeared.
|
||||
|
||||
- `return_likelihoods` (string): Specifies how and if token likelihoods are returned with the response. Options include GENERATION, ALL and NONE.
|
||||
|
||||
- `logit_bias` (object): Used to prevent the model from generating unwanted tokens or to incentivize it to include desired tokens. e.g. {"hello_world": 1233}
|
||||
"""
|
||||
|
||||
num_generations: Optional[int] = None
|
||||
max_tokens: Optional[int] = None
|
||||
truncate: Optional[str] = None
|
||||
temperature: Optional[int] = None
|
||||
preset: Optional[str] = None
|
||||
end_sequences: Optional[list] = None
|
||||
stop_sequences: Optional[list] = None
|
||||
k: Optional[int] = None
|
||||
p: Optional[int] = None
|
||||
frequency_penalty: Optional[int] = None
|
||||
presence_penalty: Optional[int] = None
|
||||
return_likelihoods: Optional[str] = None
|
||||
logit_bias: Optional[dict] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_generations: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
truncate: Optional[str] = None,
|
||||
temperature: Optional[int] = None,
|
||||
preset: Optional[str] = None,
|
||||
end_sequences: Optional[list] = None,
|
||||
stop_sequences: Optional[list] = None,
|
||||
k: Optional[int] = None,
|
||||
p: Optional[int] = None,
|
||||
frequency_penalty: Optional[int] = None,
|
||||
presence_penalty: Optional[int] = None,
|
||||
return_likelihoods: Optional[str] = None,
|
||||
logit_bias: Optional[dict] = None,
|
||||
) -> None:
|
||||
locals_ = locals().copy()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return super().get_config()
|
||||
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: dict,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
) -> dict:
|
||||
return cohere_validate_environment(
|
||||
headers=headers,
|
||||
model=model,
|
||||
messages=messages,
|
||||
optional_params=optional_params,
|
||||
api_key=api_key,
|
||||
)
|
||||
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
||||
) -> BaseLLMException:
|
||||
return CohereError(status_code=status_code, message=error_message)
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> List:
|
||||
return [
|
||||
"stream",
|
||||
"temperature",
|
||||
"max_tokens",
|
||||
"logit_bias",
|
||||
"top_p",
|
||||
"frequency_penalty",
|
||||
"presence_penalty",
|
||||
"stop",
|
||||
"n",
|
||||
"extra_headers",
|
||||
]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
for param, value in non_default_params.items():
|
||||
if param == "stream":
|
||||
optional_params["stream"] = value
|
||||
elif param == "temperature":
|
||||
optional_params["temperature"] = value
|
||||
elif param == "max_tokens":
|
||||
optional_params["max_tokens"] = value
|
||||
elif param == "n":
|
||||
optional_params["num_generations"] = value
|
||||
elif param == "logit_bias":
|
||||
optional_params["logit_bias"] = value
|
||||
elif param == "top_p":
|
||||
optional_params["p"] = value
|
||||
elif param == "frequency_penalty":
|
||||
optional_params["frequency_penalty"] = value
|
||||
elif param == "presence_penalty":
|
||||
optional_params["presence_penalty"] = value
|
||||
elif param == "stop":
|
||||
optional_params["stop_sequences"] = value
|
||||
return optional_params
|
||||
|
||||
def transform_request(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
headers: dict,
|
||||
) -> dict:
|
||||
prompt = " ".join(
|
||||
convert_content_list_to_str(message=message) for message in messages
|
||||
)
|
||||
|
||||
## Load Config
|
||||
config = litellm.CohereConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
## Handle Tool Calling
|
||||
if "tools" in optional_params:
|
||||
_is_function_call = True
|
||||
tool_calling_system_prompt = self._construct_cohere_tool_for_completion_api(
|
||||
tools=optional_params["tools"]
|
||||
)
|
||||
optional_params["tools"] = tool_calling_system_prompt
|
||||
|
||||
data = {
|
||||
"model": model,
|
||||
"prompt": prompt,
|
||||
**optional_params,
|
||||
}
|
||||
|
||||
return data
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: httpx.Response,
|
||||
model_response: ModelResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> ModelResponse:
|
||||
prompt = " ".join(
|
||||
convert_content_list_to_str(message=message) for message in messages
|
||||
)
|
||||
completion_response = raw_response.json()
|
||||
choices_list = []
|
||||
for idx, item in enumerate(completion_response["generations"]):
|
||||
if len(item["text"]) > 0:
|
||||
message_obj = Message(content=item["text"])
|
||||
else:
|
||||
message_obj = Message(content=None)
|
||||
choice_obj = Choices(
|
||||
finish_reason=item["finish_reason"],
|
||||
index=idx + 1,
|
||||
message=message_obj,
|
||||
)
|
||||
choices_list.append(choice_obj)
|
||||
model_response.choices = choices_list # type: ignore
|
||||
|
||||
## CALCULATING USAGE
|
||||
prompt_tokens = len(encoding.encode(prompt))
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
||||
)
|
||||
|
||||
model_response.created = int(time.time())
|
||||
model_response.model = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
def _construct_cohere_tool_for_completion_api(
|
||||
self,
|
||||
tools: Optional[List] = None,
|
||||
) -> dict:
|
||||
if tools is None:
|
||||
tools = []
|
||||
return {"tools": tools}
|
||||
|
||||
def get_model_response_iterator(
|
||||
self,
|
||||
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
|
||||
sync_stream: bool,
|
||||
json_mode: Optional[bool] = False,
|
||||
):
|
||||
return CohereModelResponseIterator(
|
||||
streaming_response=streaming_response,
|
||||
sync_stream=sync_stream,
|
||||
json_mode=json_mode,
|
||||
)
|
||||
Reference in New Issue
Block a user