structure saas with tools
This commit is contained in:
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,373 @@
|
||||
import json
|
||||
import time
|
||||
from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm.litellm_core_utils.prompt_templates.factory import cohere_messages_pt_v2
|
||||
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
|
||||
from litellm.types.llms.openai import AllMessageValues
|
||||
from litellm.types.utils import ModelResponse, Usage
|
||||
|
||||
from ..common_utils import ModelResponseIterator as CohereModelResponseIterator
|
||||
from ..common_utils import validate_environment as cohere_validate_environment
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
|
||||
|
||||
LiteLLMLoggingObj = _LiteLLMLoggingObj
|
||||
else:
|
||||
LiteLLMLoggingObj = Any
|
||||
|
||||
|
||||
class CohereError(BaseLLMException):
|
||||
def __init__(
|
||||
self,
|
||||
status_code: int,
|
||||
message: str,
|
||||
headers: Optional[httpx.Headers] = None,
|
||||
):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = httpx.Request(method="POST", url="https://api.cohere.ai/v1/chat")
|
||||
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||
super().__init__(
|
||||
status_code=status_code,
|
||||
message=message,
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
|
||||
class CohereChatConfig(BaseConfig):
|
||||
"""
|
||||
Configuration class for Cohere's API interface.
|
||||
|
||||
Args:
|
||||
preamble (str, optional): When specified, the default Cohere preamble will be replaced with the provided one.
|
||||
chat_history (List[Dict[str, str]], optional): A list of previous messages between the user and the model.
|
||||
generation_id (str, optional): Unique identifier for the generated reply.
|
||||
response_id (str, optional): Unique identifier for the response.
|
||||
conversation_id (str, optional): An alternative to chat_history, creates or resumes a persisted conversation.
|
||||
prompt_truncation (str, optional): Dictates how the prompt will be constructed. Options: 'AUTO', 'AUTO_PRESERVE_ORDER', 'OFF'.
|
||||
connectors (List[Dict[str, str]], optional): List of connectors (e.g., web-search) to enrich the model's reply.
|
||||
search_queries_only (bool, optional): When true, the response will only contain a list of generated search queries.
|
||||
documents (List[Dict[str, str]], optional): A list of relevant documents that the model can cite.
|
||||
temperature (float, optional): A non-negative float that tunes the degree of randomness in generation.
|
||||
max_tokens [DEPRECATED - use max_completion_tokens] (int, optional): The maximum number of tokens the model will generate as part of the response.
|
||||
max_completion_tokens (int, optional): The maximum number of tokens the model will generate as part of the response.
|
||||
k (int, optional): Ensures only the top k most likely tokens are considered for generation at each step.
|
||||
p (float, optional): Ensures that only the most likely tokens, with total probability mass of p, are considered for generation.
|
||||
frequency_penalty (float, optional): Used to reduce repetitiveness of generated tokens.
|
||||
presence_penalty (float, optional): Used to reduce repetitiveness of generated tokens.
|
||||
tools (List[Dict[str, str]], optional): A list of available tools (functions) that the model may suggest invoking.
|
||||
tool_results (List[Dict[str, Any]], optional): A list of results from invoking tools.
|
||||
seed (int, optional): A seed to assist reproducibility of the model's response.
|
||||
"""
|
||||
|
||||
preamble: Optional[str] = None
|
||||
chat_history: Optional[list] = None
|
||||
generation_id: Optional[str] = None
|
||||
response_id: Optional[str] = None
|
||||
conversation_id: Optional[str] = None
|
||||
prompt_truncation: Optional[str] = None
|
||||
connectors: Optional[list] = None
|
||||
search_queries_only: Optional[bool] = None
|
||||
documents: Optional[list] = None
|
||||
temperature: Optional[int] = None
|
||||
max_tokens: Optional[int] = None
|
||||
max_completion_tokens: Optional[int] = None
|
||||
k: Optional[int] = None
|
||||
p: Optional[int] = None
|
||||
frequency_penalty: Optional[int] = None
|
||||
presence_penalty: Optional[int] = None
|
||||
tools: Optional[list] = None
|
||||
tool_results: Optional[list] = None
|
||||
seed: Optional[int] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
preamble: Optional[str] = None,
|
||||
chat_history: Optional[list] = None,
|
||||
generation_id: Optional[str] = None,
|
||||
response_id: Optional[str] = None,
|
||||
conversation_id: Optional[str] = None,
|
||||
prompt_truncation: Optional[str] = None,
|
||||
connectors: Optional[list] = None,
|
||||
search_queries_only: Optional[bool] = None,
|
||||
documents: Optional[list] = None,
|
||||
temperature: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
max_completion_tokens: Optional[int] = None,
|
||||
k: Optional[int] = None,
|
||||
p: Optional[int] = None,
|
||||
frequency_penalty: Optional[int] = None,
|
||||
presence_penalty: Optional[int] = None,
|
||||
tools: Optional[list] = None,
|
||||
tool_results: Optional[list] = None,
|
||||
seed: Optional[int] = None,
|
||||
) -> None:
|
||||
locals_ = locals().copy()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: dict,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
) -> dict:
|
||||
return cohere_validate_environment(
|
||||
headers=headers,
|
||||
model=model,
|
||||
messages=messages,
|
||||
optional_params=optional_params,
|
||||
api_key=api_key,
|
||||
)
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> List[str]:
|
||||
return [
|
||||
"stream",
|
||||
"temperature",
|
||||
"max_tokens",
|
||||
"max_completion_tokens",
|
||||
"top_p",
|
||||
"frequency_penalty",
|
||||
"presence_penalty",
|
||||
"stop",
|
||||
"n",
|
||||
"tools",
|
||||
"tool_choice",
|
||||
"seed",
|
||||
"extra_headers",
|
||||
]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
for param, value in non_default_params.items():
|
||||
if param == "stream":
|
||||
optional_params["stream"] = value
|
||||
if param == "temperature":
|
||||
optional_params["temperature"] = value
|
||||
if param == "max_tokens":
|
||||
optional_params["max_tokens"] = value
|
||||
if param == "max_completion_tokens":
|
||||
optional_params["max_tokens"] = value
|
||||
if param == "n":
|
||||
optional_params["num_generations"] = value
|
||||
if param == "top_p":
|
||||
optional_params["p"] = value
|
||||
if param == "frequency_penalty":
|
||||
optional_params["frequency_penalty"] = value
|
||||
if param == "presence_penalty":
|
||||
optional_params["presence_penalty"] = value
|
||||
if param == "stop":
|
||||
optional_params["stop_sequences"] = value
|
||||
if param == "tools":
|
||||
optional_params["tools"] = value
|
||||
if param == "seed":
|
||||
optional_params["seed"] = value
|
||||
return optional_params
|
||||
|
||||
def transform_request(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
headers: dict,
|
||||
) -> dict:
|
||||
## Load Config
|
||||
for k, v in litellm.CohereChatConfig.get_config().items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
most_recent_message, chat_history = cohere_messages_pt_v2(
|
||||
messages=messages, model=model, llm_provider="cohere_chat"
|
||||
)
|
||||
|
||||
## Handle Tool Calling
|
||||
if "tools" in optional_params:
|
||||
_is_function_call = True
|
||||
cohere_tools = self._construct_cohere_tool(tools=optional_params["tools"])
|
||||
optional_params["tools"] = cohere_tools
|
||||
if isinstance(most_recent_message, dict):
|
||||
optional_params["tool_results"] = [most_recent_message]
|
||||
elif isinstance(most_recent_message, str):
|
||||
optional_params["message"] = most_recent_message
|
||||
|
||||
## check if chat history message is 'user' and 'tool_results' is given -> force_single_step=True, else cohere api fails
|
||||
if len(chat_history) > 0 and chat_history[-1]["role"] == "USER":
|
||||
optional_params["force_single_step"] = True
|
||||
|
||||
return optional_params
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: httpx.Response,
|
||||
model_response: ModelResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> ModelResponse:
|
||||
try:
|
||||
raw_response_json = raw_response.json()
|
||||
model_response.choices[0].message.content = raw_response_json["text"] # type: ignore
|
||||
except Exception:
|
||||
raise CohereError(
|
||||
message=raw_response.text, status_code=raw_response.status_code
|
||||
)
|
||||
|
||||
## ADD CITATIONS
|
||||
if "citations" in raw_response_json:
|
||||
setattr(model_response, "citations", raw_response_json["citations"])
|
||||
|
||||
## Tool calling response
|
||||
cohere_tools_response = raw_response_json.get("tool_calls", None)
|
||||
if cohere_tools_response is not None and cohere_tools_response != []:
|
||||
# convert cohere_tools_response to OpenAI response format
|
||||
tool_calls = []
|
||||
for tool in cohere_tools_response:
|
||||
function_name = tool.get("name", "")
|
||||
generation_id = tool.get("generation_id", "")
|
||||
parameters = tool.get("parameters", {})
|
||||
tool_call = {
|
||||
"id": f"call_{generation_id}",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": function_name,
|
||||
"arguments": json.dumps(parameters),
|
||||
},
|
||||
}
|
||||
tool_calls.append(tool_call)
|
||||
_message = litellm.Message(
|
||||
tool_calls=tool_calls,
|
||||
content=None,
|
||||
)
|
||||
model_response.choices[0].message = _message # type: ignore
|
||||
|
||||
## CALCULATING USAGE - use cohere `billed_units` for returning usage
|
||||
billed_units = raw_response_json.get("meta", {}).get("billed_units", {})
|
||||
|
||||
prompt_tokens = billed_units.get("input_tokens", 0)
|
||||
completion_tokens = billed_units.get("output_tokens", 0)
|
||||
|
||||
model_response.created = int(time.time())
|
||||
model_response.model = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
def _construct_cohere_tool(
|
||||
self,
|
||||
tools: Optional[list] = None,
|
||||
):
|
||||
if tools is None:
|
||||
tools = []
|
||||
cohere_tools = []
|
||||
for tool in tools:
|
||||
cohere_tool = self._translate_openai_tool_to_cohere(tool)
|
||||
cohere_tools.append(cohere_tool)
|
||||
return cohere_tools
|
||||
|
||||
def _translate_openai_tool_to_cohere(
|
||||
self,
|
||||
openai_tool: dict,
|
||||
):
|
||||
# cohere tools look like this
|
||||
"""
|
||||
{
|
||||
"name": "query_daily_sales_report",
|
||||
"description": "Connects to a database to retrieve overall sales volumes and sales information for a given day.",
|
||||
"parameter_definitions": {
|
||||
"day": {
|
||||
"description": "Retrieves sales data for this day, formatted as YYYY-MM-DD.",
|
||||
"type": "str",
|
||||
"required": True
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
# OpenAI tools look like this
|
||||
"""
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA",
|
||||
},
|
||||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
},
|
||||
}
|
||||
"""
|
||||
cohere_tool = {
|
||||
"name": openai_tool["function"]["name"],
|
||||
"description": openai_tool["function"]["description"],
|
||||
"parameter_definitions": {},
|
||||
}
|
||||
|
||||
for param_name, param_def in openai_tool["function"]["parameters"][
|
||||
"properties"
|
||||
].items():
|
||||
required_params = (
|
||||
openai_tool.get("function", {})
|
||||
.get("parameters", {})
|
||||
.get("required", [])
|
||||
)
|
||||
cohere_param_def = {
|
||||
"description": param_def.get("description", ""),
|
||||
"type": param_def.get("type", ""),
|
||||
"required": param_name in required_params,
|
||||
}
|
||||
cohere_tool["parameter_definitions"][param_name] = cohere_param_def
|
||||
|
||||
return cohere_tool
|
||||
|
||||
def get_model_response_iterator(
|
||||
self,
|
||||
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
|
||||
sync_stream: bool,
|
||||
json_mode: Optional[bool] = False,
|
||||
):
|
||||
return CohereModelResponseIterator(
|
||||
streaming_response=streaming_response,
|
||||
sync_stream=sync_stream,
|
||||
json_mode=json_mode,
|
||||
)
|
||||
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
||||
) -> BaseLLMException:
|
||||
return CohereError(status_code=status_code, message=error_message)
|
||||
@@ -0,0 +1,356 @@
|
||||
import time
|
||||
from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm.litellm_core_utils.prompt_templates.factory import cohere_messages_pt_v2
|
||||
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
|
||||
from litellm.types.llms.cohere import CohereV2ChatResponse
|
||||
from litellm.types.llms.openai import AllMessageValues, ChatCompletionToolCallChunk
|
||||
from litellm.types.utils import ModelResponse, Usage
|
||||
|
||||
from ..common_utils import CohereError
|
||||
from ..common_utils import ModelResponseIterator as CohereModelResponseIterator
|
||||
from ..common_utils import validate_environment as cohere_validate_environment
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
|
||||
|
||||
LiteLLMLoggingObj = _LiteLLMLoggingObj
|
||||
else:
|
||||
LiteLLMLoggingObj = Any
|
||||
|
||||
|
||||
class CohereV2ChatConfig(BaseConfig):
|
||||
"""
|
||||
Configuration class for Cohere's API interface.
|
||||
|
||||
Args:
|
||||
preamble (str, optional): When specified, the default Cohere preamble will be replaced with the provided one.
|
||||
chat_history (List[Dict[str, str]], optional): A list of previous messages between the user and the model.
|
||||
generation_id (str, optional): Unique identifier for the generated reply.
|
||||
response_id (str, optional): Unique identifier for the response.
|
||||
conversation_id (str, optional): An alternative to chat_history, creates or resumes a persisted conversation.
|
||||
prompt_truncation (str, optional): Dictates how the prompt will be constructed. Options: 'AUTO', 'AUTO_PRESERVE_ORDER', 'OFF'.
|
||||
connectors (List[Dict[str, str]], optional): List of connectors (e.g., web-search) to enrich the model's reply.
|
||||
search_queries_only (bool, optional): When true, the response will only contain a list of generated search queries.
|
||||
documents (List[Dict[str, str]], optional): A list of relevant documents that the model can cite.
|
||||
temperature (float, optional): A non-negative float that tunes the degree of randomness in generation.
|
||||
max_tokens (int, optional): The maximum number of tokens the model will generate as part of the response.
|
||||
k (int, optional): Ensures only the top k most likely tokens are considered for generation at each step.
|
||||
p (float, optional): Ensures that only the most likely tokens, with total probability mass of p, are considered for generation.
|
||||
frequency_penalty (float, optional): Used to reduce repetitiveness of generated tokens.
|
||||
presence_penalty (float, optional): Used to reduce repetitiveness of generated tokens.
|
||||
tools (List[Dict[str, str]], optional): A list of available tools (functions) that the model may suggest invoking.
|
||||
tool_results (List[Dict[str, Any]], optional): A list of results from invoking tools.
|
||||
seed (int, optional): A seed to assist reproducibility of the model's response.
|
||||
"""
|
||||
|
||||
preamble: Optional[str] = None
|
||||
chat_history: Optional[list] = None
|
||||
generation_id: Optional[str] = None
|
||||
response_id: Optional[str] = None
|
||||
conversation_id: Optional[str] = None
|
||||
prompt_truncation: Optional[str] = None
|
||||
connectors: Optional[list] = None
|
||||
search_queries_only: Optional[bool] = None
|
||||
documents: Optional[list] = None
|
||||
temperature: Optional[int] = None
|
||||
max_tokens: Optional[int] = None
|
||||
k: Optional[int] = None
|
||||
p: Optional[int] = None
|
||||
frequency_penalty: Optional[int] = None
|
||||
presence_penalty: Optional[int] = None
|
||||
tools: Optional[list] = None
|
||||
tool_results: Optional[list] = None
|
||||
seed: Optional[int] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
preamble: Optional[str] = None,
|
||||
chat_history: Optional[list] = None,
|
||||
generation_id: Optional[str] = None,
|
||||
response_id: Optional[str] = None,
|
||||
conversation_id: Optional[str] = None,
|
||||
prompt_truncation: Optional[str] = None,
|
||||
connectors: Optional[list] = None,
|
||||
search_queries_only: Optional[bool] = None,
|
||||
documents: Optional[list] = None,
|
||||
temperature: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
k: Optional[int] = None,
|
||||
p: Optional[int] = None,
|
||||
frequency_penalty: Optional[int] = None,
|
||||
presence_penalty: Optional[int] = None,
|
||||
tools: Optional[list] = None,
|
||||
tool_results: Optional[list] = None,
|
||||
seed: Optional[int] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: dict,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
) -> dict:
|
||||
return cohere_validate_environment(
|
||||
headers=headers,
|
||||
model=model,
|
||||
messages=messages,
|
||||
optional_params=optional_params,
|
||||
api_key=api_key,
|
||||
)
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> List[str]:
|
||||
return [
|
||||
"stream",
|
||||
"temperature",
|
||||
"max_tokens",
|
||||
"top_p",
|
||||
"frequency_penalty",
|
||||
"presence_penalty",
|
||||
"stop",
|
||||
"n",
|
||||
"tools",
|
||||
"tool_choice",
|
||||
"seed",
|
||||
"extra_headers",
|
||||
]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
for param, value in non_default_params.items():
|
||||
if param == "stream":
|
||||
optional_params["stream"] = value
|
||||
if param == "temperature":
|
||||
optional_params["temperature"] = value
|
||||
if param == "max_tokens":
|
||||
optional_params["max_tokens"] = value
|
||||
if param == "n":
|
||||
optional_params["num_generations"] = value
|
||||
if param == "top_p":
|
||||
optional_params["p"] = value
|
||||
if param == "frequency_penalty":
|
||||
optional_params["frequency_penalty"] = value
|
||||
if param == "presence_penalty":
|
||||
optional_params["presence_penalty"] = value
|
||||
if param == "stop":
|
||||
optional_params["stop_sequences"] = value
|
||||
if param == "tools":
|
||||
optional_params["tools"] = value
|
||||
if param == "seed":
|
||||
optional_params["seed"] = value
|
||||
return optional_params
|
||||
|
||||
def transform_request(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
headers: dict,
|
||||
) -> dict:
|
||||
## Load Config
|
||||
for k, v in litellm.CohereChatConfig.get_config().items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
most_recent_message, chat_history = cohere_messages_pt_v2(
|
||||
messages=messages, model=model, llm_provider="cohere_chat"
|
||||
)
|
||||
|
||||
## Handle Tool Calling
|
||||
if "tools" in optional_params:
|
||||
_is_function_call = True
|
||||
cohere_tools = self._construct_cohere_tool(tools=optional_params["tools"])
|
||||
optional_params["tools"] = cohere_tools
|
||||
if isinstance(most_recent_message, dict):
|
||||
optional_params["tool_results"] = [most_recent_message]
|
||||
elif isinstance(most_recent_message, str):
|
||||
optional_params["message"] = most_recent_message
|
||||
|
||||
## check if chat history message is 'user' and 'tool_results' is given -> force_single_step=True, else cohere api fails
|
||||
if len(chat_history) > 0 and chat_history[-1]["role"] == "USER":
|
||||
optional_params["force_single_step"] = True
|
||||
|
||||
return optional_params
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: httpx.Response,
|
||||
model_response: ModelResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> ModelResponse:
|
||||
try:
|
||||
raw_response_json = raw_response.json()
|
||||
except Exception:
|
||||
raise CohereError(
|
||||
message=raw_response.text, status_code=raw_response.status_code
|
||||
)
|
||||
|
||||
try:
|
||||
cohere_v2_chat_response = CohereV2ChatResponse(**raw_response_json) # type: ignore
|
||||
except Exception:
|
||||
raise CohereError(message=raw_response.text, status_code=422)
|
||||
|
||||
cohere_content = cohere_v2_chat_response["message"].get("content", None)
|
||||
if cohere_content is not None:
|
||||
model_response.choices[0].message.content = "".join( # type: ignore
|
||||
[
|
||||
content.get("text", "")
|
||||
for content in cohere_content
|
||||
if content is not None
|
||||
]
|
||||
)
|
||||
|
||||
## ADD CITATIONS
|
||||
if "citations" in cohere_v2_chat_response:
|
||||
setattr(model_response, "citations", cohere_v2_chat_response["citations"])
|
||||
|
||||
## Tool calling response
|
||||
cohere_tools_response = cohere_v2_chat_response["message"].get("tool_calls", [])
|
||||
if cohere_tools_response is not None and cohere_tools_response != []:
|
||||
# convert cohere_tools_response to OpenAI response format
|
||||
tool_calls: List[ChatCompletionToolCallChunk] = []
|
||||
for index, tool in enumerate(cohere_tools_response):
|
||||
tool_call: ChatCompletionToolCallChunk = {
|
||||
**tool, # type: ignore
|
||||
"index": index,
|
||||
}
|
||||
tool_calls.append(tool_call)
|
||||
_message = litellm.Message(
|
||||
tool_calls=tool_calls,
|
||||
content=None,
|
||||
)
|
||||
model_response.choices[0].message = _message # type: ignore
|
||||
|
||||
## CALCULATING USAGE - use cohere `billed_units` for returning usage
|
||||
token_usage = cohere_v2_chat_response["usage"].get("tokens", {})
|
||||
prompt_tokens = token_usage.get("input_tokens", 0)
|
||||
completion_tokens = token_usage.get("output_tokens", 0)
|
||||
|
||||
model_response.created = int(time.time())
|
||||
model_response.model = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
def _construct_cohere_tool(
|
||||
self,
|
||||
tools: Optional[list] = None,
|
||||
):
|
||||
if tools is None:
|
||||
tools = []
|
||||
cohere_tools = []
|
||||
for tool in tools:
|
||||
cohere_tool = self._translate_openai_tool_to_cohere(tool)
|
||||
cohere_tools.append(cohere_tool)
|
||||
return cohere_tools
|
||||
|
||||
def _translate_openai_tool_to_cohere(
|
||||
self,
|
||||
openai_tool: dict,
|
||||
):
|
||||
# cohere tools look like this
|
||||
"""
|
||||
{
|
||||
"name": "query_daily_sales_report",
|
||||
"description": "Connects to a database to retrieve overall sales volumes and sales information for a given day.",
|
||||
"parameter_definitions": {
|
||||
"day": {
|
||||
"description": "Retrieves sales data for this day, formatted as YYYY-MM-DD.",
|
||||
"type": "str",
|
||||
"required": True
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
# OpenAI tools look like this
|
||||
"""
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA",
|
||||
},
|
||||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
},
|
||||
}
|
||||
"""
|
||||
cohere_tool = {
|
||||
"name": openai_tool["function"]["name"],
|
||||
"description": openai_tool["function"]["description"],
|
||||
"parameter_definitions": {},
|
||||
}
|
||||
|
||||
for param_name, param_def in openai_tool["function"]["parameters"][
|
||||
"properties"
|
||||
].items():
|
||||
required_params = (
|
||||
openai_tool.get("function", {})
|
||||
.get("parameters", {})
|
||||
.get("required", [])
|
||||
)
|
||||
cohere_param_def = {
|
||||
"description": param_def.get("description", ""),
|
||||
"type": param_def.get("type", ""),
|
||||
"required": param_name in required_params,
|
||||
}
|
||||
cohere_tool["parameter_definitions"][param_name] = cohere_param_def
|
||||
|
||||
return cohere_tool
|
||||
|
||||
def get_model_response_iterator(
|
||||
self,
|
||||
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
|
||||
sync_stream: bool,
|
||||
json_mode: Optional[bool] = False,
|
||||
):
|
||||
return CohereModelResponseIterator(
|
||||
streaming_response=streaming_response,
|
||||
sync_stream=sync_stream,
|
||||
json_mode=json_mode,
|
||||
)
|
||||
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
||||
) -> BaseLLMException:
|
||||
return CohereError(status_code=status_code, message=error_message)
|
||||
Reference in New Issue
Block a user