structure saas with tools
This commit is contained in:
Binary file not shown.
@@ -0,0 +1,262 @@
|
||||
import json
|
||||
from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
from litellm.litellm_core_utils.prompt_templates.common_utils import (
|
||||
convert_content_list_to_str,
|
||||
)
|
||||
from litellm.llms.base_llm.base_model_iterator import FakeStreamResponseIterator
|
||||
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
|
||||
from litellm.types.llms.openai import AllMessageValues
|
||||
from litellm.types.utils import (
|
||||
ChatCompletionToolCallChunk,
|
||||
ChatCompletionUsageBlock,
|
||||
Choices,
|
||||
GenericStreamingChunk,
|
||||
Message,
|
||||
ModelResponse,
|
||||
Usage,
|
||||
)
|
||||
from litellm.utils import token_counter
|
||||
|
||||
from ..common_utils import ClarifaiError
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||||
|
||||
LoggingClass = LiteLLMLoggingObj
|
||||
else:
|
||||
LoggingClass = Any
|
||||
|
||||
|
||||
class ClarifaiConfig(BaseConfig):
|
||||
"""
|
||||
Reference: https://clarifai.com/meta/Llama-2/models/llama2-70b-chat
|
||||
"""
|
||||
|
||||
max_tokens: Optional[int] = None
|
||||
temperature: Optional[int] = None
|
||||
top_k: Optional[int] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_tokens: Optional[int] = None,
|
||||
temperature: Optional[int] = None,
|
||||
top_k: Optional[int] = None,
|
||||
) -> None:
|
||||
locals_ = locals().copy()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return super().get_config()
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> list:
|
||||
return [
|
||||
"temperature",
|
||||
"max_tokens",
|
||||
]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
for param, value in non_default_params.items():
|
||||
if param == "temperature":
|
||||
optional_params["temperature"] = value
|
||||
elif param == "max_tokens":
|
||||
optional_params["max_tokens"] = value
|
||||
|
||||
return optional_params
|
||||
|
||||
def _completions_to_model(self, prompt: str, optional_params: dict) -> dict:
|
||||
params = {}
|
||||
if temperature := optional_params.get("temperature"):
|
||||
params["temperature"] = temperature
|
||||
if max_tokens := optional_params.get("max_tokens"):
|
||||
params["max_tokens"] = max_tokens
|
||||
return {
|
||||
"inputs": [{"data": {"text": {"raw": prompt}}}],
|
||||
"model": {"output_info": {"params": params}},
|
||||
}
|
||||
|
||||
def _convert_model_to_url(self, model: str, api_base: str):
|
||||
user_id, app_id, model_id = model.split(".")
|
||||
return f"{api_base}/users/{user_id}/apps/{app_id}/models/{model_id}/outputs"
|
||||
|
||||
def transform_request(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
headers: dict,
|
||||
) -> dict:
|
||||
prompt = " ".join(convert_content_list_to_str(message) for message in messages)
|
||||
|
||||
## Load Config
|
||||
config = self.get_config()
|
||||
for k, v in config.items():
|
||||
if k not in optional_params:
|
||||
optional_params[k] = v
|
||||
|
||||
data = self._completions_to_model(
|
||||
prompt=prompt, optional_params=optional_params
|
||||
)
|
||||
|
||||
return data
|
||||
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: dict,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
) -> dict:
|
||||
headers = {
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
}
|
||||
|
||||
if api_key:
|
||||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
return headers
|
||||
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
||||
) -> BaseLLMException:
|
||||
return ClarifaiError(message=error_message, status_code=status_code)
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: httpx.Response,
|
||||
model_response: ModelResponse,
|
||||
logging_obj: LoggingClass,
|
||||
request_data: dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: str,
|
||||
api_key: Optional[str] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> ModelResponse:
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
original_response=raw_response.text,
|
||||
additional_args={"complete_input_dict": request_data},
|
||||
)
|
||||
## RESPONSE OBJECT
|
||||
try:
|
||||
completion_response = raw_response.json()
|
||||
except httpx.HTTPStatusError as e:
|
||||
raise ClarifaiError(
|
||||
message=str(e),
|
||||
status_code=raw_response.status_code,
|
||||
)
|
||||
except Exception as e:
|
||||
raise ClarifaiError(
|
||||
message=str(e),
|
||||
status_code=422,
|
||||
)
|
||||
# print(completion_response)
|
||||
try:
|
||||
choices_list = []
|
||||
for idx, item in enumerate(completion_response["outputs"]):
|
||||
if len(item["data"]["text"]["raw"]) > 0:
|
||||
message_obj = Message(content=item["data"]["text"]["raw"])
|
||||
else:
|
||||
message_obj = Message(content=None)
|
||||
choice_obj = Choices(
|
||||
finish_reason="stop",
|
||||
index=idx + 1, # check
|
||||
message=message_obj,
|
||||
)
|
||||
choices_list.append(choice_obj)
|
||||
model_response.choices = choices_list # type: ignore
|
||||
|
||||
except Exception as e:
|
||||
raise ClarifaiError(
|
||||
message=str(e),
|
||||
status_code=422,
|
||||
)
|
||||
|
||||
# Calculate Usage
|
||||
prompt_tokens = token_counter(model=model, messages=messages)
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"].get("content"))
|
||||
)
|
||||
model_response.model = model
|
||||
setattr(
|
||||
model_response,
|
||||
"usage",
|
||||
Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
),
|
||||
)
|
||||
return model_response
|
||||
|
||||
def get_model_response_iterator(
|
||||
self,
|
||||
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
|
||||
sync_stream: bool,
|
||||
json_mode: Optional[bool] = False,
|
||||
) -> Any:
|
||||
return ClarifaiModelResponseIterator(
|
||||
model_response=streaming_response,
|
||||
json_mode=json_mode,
|
||||
)
|
||||
|
||||
|
||||
class ClarifaiModelResponseIterator(FakeStreamResponseIterator):
|
||||
def __init__(
|
||||
self,
|
||||
model_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
|
||||
json_mode: Optional[bool] = False,
|
||||
):
|
||||
super().__init__(
|
||||
model_response=model_response,
|
||||
json_mode=json_mode,
|
||||
)
|
||||
|
||||
def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
|
||||
try:
|
||||
text = ""
|
||||
tool_use: Optional[ChatCompletionToolCallChunk] = None
|
||||
is_finished = False
|
||||
finish_reason = ""
|
||||
usage: Optional[ChatCompletionUsageBlock] = None
|
||||
provider_specific_fields = None
|
||||
|
||||
text = (
|
||||
chunk.get("outputs", "")[0]
|
||||
.get("data", "")
|
||||
.get("text", "")
|
||||
.get("raw", "")
|
||||
)
|
||||
|
||||
index: int = 0
|
||||
|
||||
return GenericStreamingChunk(
|
||||
text=text,
|
||||
tool_use=tool_use,
|
||||
is_finished=is_finished,
|
||||
finish_reason=finish_reason,
|
||||
usage=usage,
|
||||
index=index,
|
||||
provider_specific_fields=provider_specific_fields,
|
||||
)
|
||||
except json.JSONDecodeError:
|
||||
raise ValueError(f"Failed to decode JSON from chunk: {chunk}")
|
||||
Reference in New Issue
Block a user